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and Nengyou Wu3,5

1College of Marine Science and Technology, China University of Geosciences, Wuhan, China,
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for Marine Mineral Resources, Laoshan Laboratory, Qingdao, China, 4School of Chemical and
Bioprocess Engineering, University College Dublin, Dublin, Ireland, 5The Key Laboratory of Gas
Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao, China
CH4-C3H8 mixed gas hydrates are widely distributed in deep-sea weakly-

consolidated muddy sediments of the South China Sea, enriched with

biological clastics like foraminifera-rich sand. However, the role of complex

mineral composition of mud and foraminifera-rich sand on the formation of

these natural gas hydrates remains unclear. This study employed five natural

sediments from the South China Sea, i.e., foraminifera-rich sand, a mixture of

mud and foraminifera-rich sand, and three different mud samples, to reveal their

effects on CH4-C3H8 mixed gas hydrate formation. Gas hydrates were formed

from water and a constant-feed gas composition containing 96 mol% CH4 and 4

mol% C3H8. The formation process was continuously observed using

microscopic observation and in situ Raman spectroscopy. Additional ex situ

Raman measurements were also conducted jointly. The results show that only

structure II gas hydrates were formed with two crystal morphologies in these

sediments, showing no significant differences in gas composition or large-to-

small cavity ratio. The concentration of CH4 and C3H8 in the mixed gas hydrates

almost did not vary over time in clean foraminifera-rich sand or mud. In a mixture

of mud and foraminifera-rich sand, CH4 was preferentially encased into the

hydrate cavities at the initial formation stage, while the encasement of C3H8

increased during the ongoing formation process. Not all small 512 cages and large

51264 cages were filled with CH4 during the euhedral hydrate crystals formation.

Foraminifera-rich sand, large quartz particles, illite, and kaolinite positively

influence the encasement of CH4 into hydrate cavities. These findings provide

insights into howmarine sediment composition influences gas hydrate formation

and their implications for marine ecosystem functioning and structure.
KEYWORDS

CH4-C3H8 mixed gas hydrates, formation process, Raman spectroscopy, foraminifera-
rich sand, mud particles
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GRAPHICAL ABSTRACT
Highlights
Fron
• Natural marine muddy sediments obtained from the South

China Sea were studied.

• Both ex situ and in situ Raman experiments were performed.

• Twomorphologies of hydrate crystals in different sediments

were observed and evaluated.

• CH4 and C3H8 content and cage occupancy in hydrates vary

across different sediments.

• CH4 and C3H8 encasement in hydrate cavities varies over

time in a mixture of mud and foraminifera-rich sand.
1 Introduction

Natural gas hydrates are ice-like crystalline compounds formed

by water and gas molecules at high pressure and low temperature

conditions (von Stackelberg and Müller, 1954; Sloan, 2003). Three

structure types of gas hydrates, including the cubic structures I and

II (sI and sII) and the hexagonal structure (sH), were identified in

marine sediments (e.g. Davidson et al. (1986); Sassen and

MacDonald (1994)). Small guest molecules such as CH4, CO2 or

H2S form structure I hydrates, whereas the presence of larger

hydrocarbon molecules (≥ C3) results in the formation of

structure II or structure H hydrates (Sloan and Koh, 2008).
tiers in Marine Science 02
Almost all natural gas hydrate deposits contain certain amounts

of other gases besides CH4 (Milkov, 2005; Beeskow-Strauch et al.,

2011; Abbasov et al., 2016), which in some cases has resulted in the

coexistence of gas hydrate phases with different compositions and/

or structures. The coexistence of different structures of gas hydrates

was confirmed in the Gulf of Mexico (Klapp et al., 2010), the

Cascadia margin (Lu et al., 2007), the middle-upper continental

slope of Sabah (Paganoni et al., 2016), the South China Sea (Wei

et al., 2018; Qian et al., 2018; Liang et al., 2019; Zhang et al., 2019;

Wei et al., 2021), and Lake Baikal (Kida et al., 2006, 2009).

Understanding the crystalline structure and gas composition of

gas hydrates in marine sediments is crucial for assessing their

impact on marine ecosystem functioning and global carbon storage.

Mixed gas hydrate consisting of CH4 and C3H8 is a significant

hydrate type found in deep-sea sediments, also in the South China

Sea (Yang et al., 2017a; Zhang et al., 2019). An increasing number of

studies have been conducted on the crystalline structure of this

mixed gas hydrate. Several studies found the coexistence of sI and

sII gas hydrates formed from a feed gas mixture containing CH4

and C3H8 (Aladko et al., 2002; Uchida et al., 2004; Hester et al.,

2007; de Menezes et al., 2019; Klapproth et al., 2019; Cai et al.,

2022), but others demonstrated that only sII hydrates were observed

(Maeda, 2016; Tang et al., 2018; Truong-Lam et al., 2020). The

above-mentioned controversial statements might be related to the

varying formation time (Du et al., 2023), pressure, and temperature
frontiersin.org
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conditions (Aladko et al., 2002; Schicks et al., 2006), gas supply

conditions (Uchida et al., 2004; Hester et al., 2007; Klapproth et al.,

2019) as well as their phase states (Cai et al., 2022). Cage occupancy

and gas composition of CH4-C3H8 mixed gas hydrates during the

formation were also extensively investigated. It was shown that

C3H8 accumulates in the hydrate phase and that the C3H8 content

in the resulting hydrate phase is 5-10 times higher than that in the

feed gas phase (Schicks and Luzi-Helbing, 2015; Medvedev et al.,

2015; Du et al., 2023). CH4 occupied the cages of both types

(Ripmeester and Ratcliffe, 1988; Susilo et al., 2008; Du et al.,

2023), and the order of gas enclathration is CH4 in 512 ≫ CH4 in

51264 and C3H8 in 51264 as the formation of CH4-C3H8 mixed

hydrate proceeds (Schicks and Luzi-Helbing, 2013; Truong-Lam

et al., 2020). Susilo et al. (2008) demonstrated that CH4 enters the

large cage only when its content in the gas phase is 95% or higher,

and the occupancy of CH4 in both small and large cages is closely

related to temperature. Moreover, Hoshikawa et al. (2018)

confirmed that C3H8 completely occupied the large 51264 cages

when the CH4-to-C3H8 ratio reaches 2:1 in the feed gas phase.

Above studies revealed the microscopic view of CH4-C3H8 mixed

gas hydrates formation process and showed that C3H8 plays an

essential role. However, most of the current research lacks

investigations involving natural sediments. Factors such as

sediments surface characteristics, mineralogical changes, particle

size and the uneven distribution of particle size in natural sediments

jointly affect the formation of gas hydrates (Heeschen et al., 2016;

Kumari et al., 2021a, b). It is uncertain which of the above

conclusions is consistent with the actual formation of CH4-C3H8

mixed gas hydrates in natural sediments.

The mineral content, grain size and lithology are crucial in

natural gas hydrate formation (Xie et al., 2024). Gas hydrate

saturation is usually higher in coarse-grained sediments, mainly

composed of 98.5% quartz, compared to fine-grained sediments

such as muds (Lu et al., 2004, 2004, 2008). However, the current

perspectives on how the particle size of coarse-grained sediments

affects gas hydrate formation kinetics are inconsistent (Qin et al.,

2021). These discrepancies mainly result from the influences of

capillary forces and specific surface area on fluid flow (Hills et al.,

1996; Duan et al., 2011). Apart from coarse-grained sediments,

marine muddy sediments are capable of storing a tremendous

amount of gas hydrates (Terzariol et al., 2020; Zhang et al., 2020).

Clay particles, often being a key component of muds, are primarily

consisting of montmorillonite, illite, kaolinite or chlorite, which

inevitably affect the formation of natural gas hydrates (Peng et al.,

2020). Clay particles, especially illite, improved the water

conversion rate (Feng et al., 2023). In mixtures of mud and

coarse-grained sediments, it could be shown that the initial

hydrate growth was significantly faster in quartz sand containing

kaolin compared to Bentheim sandstone and pure quartz sand

(Bello-Palacios et al., 2021). Other studies showed that methane

hydrate formation is hindered by silica sand but promoted by

bentonite clay (Riestenberg et al., 2003; Saw et al., 2015). In

contrast, Kumar et al. (2015) found that high clay content in

sediments reduces void spaces, hampers mass transfer of hydrate-

forming gases, and slows down water-to-hydrate conversion.
Frontiers in Marine Science 03
However, recent studies mainly focus on CH4 hydrates and they

predominantly utilize artificial sediment samples, which may

diverge significantly from natural sediments. Significantly, natural

deep-sea sediments, such as those found in the Indian Ocean, Blake

Ridge, Northwest Atlantic, the Limpopo Corridor, and the South

China Sea, contain numerous biological shells like foraminifera-rich

sand (Zhang et al., 2018, 2020; Bai et al., 2022; Lopes et al., 2023).

Muddy reservoirs rich in foraminifera-rich sand typically exhibit

high hydrate saturation, as many foraminifera feature empty

chambers and larger particle sizes compared to regular sand

particles (Yang et al., 2017b; Li et al., 2019; Wang et al., 2021; Bai

et al., 2022). Foraminifera-rich sand is a special but widely

distributed kind of sedimentary particle. However, what role does

the complex mineral composition of mud and foraminifera-rich

sand play on the formation of CH4-C3H8 mixed gas hydrates

remain unrevealed.

In this study, we investigated the formation process of CH4-

C3H8 mixed gas hydrates in natural marine mud and foraminifera-

rich sand from the South China Sea by ex situ and in situ Raman

spectroscopic measurements. The morphology, crystalline structure,

gas composition and large-to-small cavity ratio of CH4-C3H8 mixed

gas hydrates in different sediments were compared and the effects of

sediment properties on the formation process were revealed. The

results of these experiments enhance our understanding of how the

interactions of mud and foraminifera-rich sand with gas hydrates

impact the marine ecosystem, offering valuable knowledge for the

development of effective strategies for carbon storage.
2 Materials and methods

2.1 Experimental setups for in situ and ex
situ Raman spectroscopic measurements

Raman spectroscopy is a molecular spectroscopic technique

that utilizes the interaction of light with matter to gain insight into a

structure or properties of a material. For all Raman spectroscopic

measurements in this study, we used a LabRAM HR Evolution

dispersive Raman spectrometer from Horiba Scientific coupled to

an open microscope Olympus BXFM. The Raman spectrometer is

equipped with two gratings 1800 grooves/mm and 600 grooves/

mm. The used laser source was a frequency-doubled Nd: YAG

solid-state laser with an output power of 100 mW (max. ∼ 48 mW

at the sample surface) working at 532 nm.With a focal length of 800

mm, this spectrometer achieves a maximum spectral resolution

(grating 1800 grooves/mm) of 0.5 cm−1. A motorized pinhole in the

analyzing beam path enables to define the analyzed volume in z-

direction. For the measurements, a confocal pinhole of 100 μm was

chosen. For this study, we used a long-working distance objective

(Olympus LMplanFLN 20×, NA = 0.4) that has an optimum spatial

resolution of 1.6 mm in planar and 6.2 mm in the z direction. With

this confocal system, it is possible to analyze defined areas of

hydrate crystals not only in the x-y direction, but also in the z

direction. Acquisition times of 6 s and three average exposures were

defined during the measurements for obtaining a good signal-to-
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noise ratio for the Raman spectra. For the calibration of the Raman

spectrometer with regard to the position of the Raman bands, a

silicon chip was used. The composition of hydrate phase can be well

determined using Raman spectroscopy, as shown in Table 1. The

Raman bands at 2917 cm-1 and 869 cm-1 are assigned to CH4

molecules and C3H8 molecules in the gas phase, respectively

(Pan et al., 2023). However, the position of the Raman bands for

CH4 in the gas phase and CH4 enclosed in the 512 cages of hydrate

phase are relatively close to each other as shown in Figure 1B. In

addition, the inclusion of the CH4 molecules into the hydrate

structure results in a significant broadening of the Raman band

compared to the Raman band of the gaseous CH4. Both aspects

result in an overlap of the Raman bands, which can distort semi-

quantitative evaluation, especially at low intensities. This problem

cannot be completely solved even by using a confocal system for the

in situmeasurements and must be taken into account in the analysis

and interpretation of the data (Pan et al., 2023). Therefore, to obtain

accurate information on CH4-C3H8 mixed gas hydrate in natural

marine sediments, we jointly employed in situ Raman spectroscopic

investigations and ex situ Raman spectroscopic measurements,

which help exclude the effects of the gas phase for further analysis.

A major advantage of in situ Raman measurements is the

observation of a time-resolved formation process of gas hydrates.

Here, an optical pressure cell was used for in situ analysis

(Figure 1E). This sample cell is made from Hastelloy with an

inner sample space volume of about 550 ml. It can be run in a

temperature range between 263 K and 295 K and a pressure range

between 0.1 MPa and 10 MPa. The pressure is regulated with an ER

3000 pressure regulator with a precision of 2% rel. The real-time

pressure inside the vessel can be continuously monitored by an

additional pressure sensor located at the pressure vessel using

catmanEasy V4.2.2 software. The bottom of the cell body is used

for cooling with a Peltier cooler. The temperature of cell can be

adjusted with a precision of 0.1 K. A transparent quartz window

with a diameter 18 mm supports microscopic observation of the

processes in the sample chamber and in situ Raman spectroscopic

investigations. Further details of the Raman spectrometer and the

pressure cell for in situ investigations of micro-scale processes in gas

hydrates are described in Schicks et al. (2020).
Frontiers in Marine Science 04
The ex situ Raman observation is only possible after gas

hydrates formed and recovered from the high-pressure vessel

(Figure 1C) and transported to a Linkam cooling stage

(Figure 1D), which allows for retaining the gas hydrate samples at

the target temperature (T = 173.15 K) using liquid nitrogen

for cooling.
2.2 Sediments

There are abundant gas hydrate resources in the northern

continental slope of the South China Sea (Zhang et al., 2020). Since

2007, a number of gas hydrate drilling projects have been carried out

in the South China Sea by Guangzhou Marine Geological Survey

(GMGS) of the China Geological Survey and a large number of gas

hydrate samples have been recovered. The analysis of the gained data

confirmed that the hydrate-bearing reservoirs are located at the

interfluve of a long-slope-migrating submarine canyons and

characterized by silty clay and clayey silt (Wang et al., 2023).

Foraminifera fossils were commonly found in the gas hydrate-

bearing reservoirs in the South China Sea (Zhang et al., 2020;

Wang et al., 2020). In this study, five unconsolidated sediments

from different burial depths were investigated (Table 2; Figure 2): In

2019, the China Geological Survey collected Sediments 1, 2, 3, and 5

at depths of 0-360 cm below the seafloor from potential hydrate-

bearing areas in the Dongsha region of the South China Sea

(Figures 2B–E). Sediment 1 (Figure 2B), from a depth of 40-46 cm

below the seafloor, is composed of clean foraminifera-rich sand.

Sediment 2 (Figure 2C), from a depth of 50-52 cm below the seafloor,

consists of a mixture of foraminifera-rich sand and mud. Sediment 3

(345-360 cm below the seafloor, Figure 2D) and Sediment 5 (0-100

cm below the seafloor, Figure 2E) are made up of silt and clay.

Additionally, Sediment 4 (Figure 2A), composed of silt and clay, was

collected in 2016 from the Shenhu area of the South China Sea, near

the hydrate-bearing layer, at a depth of 140.25 m.

The analysis of mineral composition and particle size were

carried out at Qingdao Institute of Marine Geology, China

Geological Survey. Particle size and mineral composition of

sediments were analyzed using a Mastersizer 2000 laser

diffraction particle size analyzer and a D/Max 2500 X-ray

diffractometer, respectively. The detailed particle size distribution

of five sediments is shown in Supplementary Figure S2 in the

Supplementary Materials. According to the division of sediments

by Krumbein, 1934, 1936 (i.e. sand: < 4F; siltstone: 4-8 F; clay: >

8F), the results of particle size analysis of the sediment samples

indicated that Sediment 1 mainly consists of sand and silt

(Figure 3A). Sediment 2 mainly consists of silt, and small

amounts of sand and clay. Sediment 3, Sediment 4 and Sediment

5 mainly consist of silt and clay, and small amounts of sand. Please

note that Sediment 3 has a sand content of about 4% which is

slightly higher as compared to Sediments 4 and 5. Accordingly,

sediment 1 is named as clean foraminifera-rich sand. Sediment 2 is

named as a mixture of foraminifera-rich sand and mud. Sediments

3-5 are named as mud. Moreover, the detailed mineral composition

is presented specifically in Figures 3B, C.
TABLE 1 Raman bands and assignments for the studied components in
gas and hydrate phases.

Component nmeasured

(cm-1)
Vibration References

CH4 (gas) 2917 C-H stretching Subramanian and
Sloan, 1999;
Pan et al., 2023

CH4 (5
1264) 2902 C-H stretching Tang et al., 2018;

Pan et al., 2023

CH4 (5
12 - sII) 2912 C-H stretching Pan et al., 2023

C3H8 (gas) 869 C-C stretching Pan et al., 2023

C3H8 (5
1264) 876 C-C stretching Pan et al., 2023
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2.3 Formation conditions and
experimental procedure

Gas hydrates were formed using a synthetic and certified gas

mixture ordered from Riessner-Gase in Germany. Nevertheless, the

composition of the gas mixture in the cylinder is supposed to

change over time, therefore the exact gas composition was

measured before and during each experimental run. The vapor

phase composition before stated experiments is about 96 mol% CH4

and 4 mol% C3H8 by calculating the average value from the

integrated intensities of obtained Raman bands (Supplementary
Frontiers in Marine Science 05
Table S1 in the Supplementary Materials). This gas phase

composition referenced the actual gas phase composition of

natural gas in the South China Sea (Ye et al., 2019).

Before the ex situ Raman measurements, five different sediment

samples with the same water-to-sediment weight ratio (1.4: 1) were

placed in high-pressure vessels (Figure 1C). This value was chosen to

closely reflect the actual conditions of seafloor sediments being in a

saturated water state. Detailed weight of sediments and water, as well

as dry conditions and the calculation process are listed and presented

in Supplementary Table S2 in the Supplementary Materials. The

pressure vessels were pressurized to ~10 MPa with the CH4-C3H8
TABLE 2 Information of five sediments.

Sediments Collected area Collected year Depth below the seafloor Components

Sediment 1 Dongsha Area 2019 40-46 cm Clean foraminifera-rich sand

Sediment 2 Dongsha Area 2019 50-52 cm A mixture of foraminifera-rich sand and mud

Sediment 3 Dongsha Area 2019 345-360 cm mud

Sediment 4 Shenhu Area 2016 140.25 m mud

Sediment 5 Dongsha Area 2019 0-100 cm mud
FIGURE 1

(A) Raman spectra obtained from ex situ Raman measurements showing C-C stretching vibrations for C3H8 molecules encased in the (51264) cavities
at 876 cm-1, those of CH4 molecules encased in the large (51264) cavities (2902 cm-1), and in the small (512) cavities (2912 cm-1) of sII hydrates.
(B) Raman spectra obtained from in situ Raman measurements showing C-C stretching vibrations for C3H8 molecules encased in hydrate cavities at
876 cm-1, CH4 molecules encased in the large (51264) cavities at 2902 cm-1, and in the small (512) cavities at 2912 cm-1, as well as the CH4 molecule
in the gas phase at 2917 cm-1. (C) Gas hydrates are formed with natural sediments in high pressure vessels. (D) The Linkam cooling stage with
samples used for ex situ Raman measurements. (E) The customized optical pressure cell with samples for in situ Raman measurements.
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mixture and placed in the cooling freezer (temperature cycling

between 272 K and 274 K). The pressure and temperature changes

in the vessels were continuously recorded. After 10-13 weeks, no

changes in pressure were detected. At this stage, we assumed that the

water was completely converted into gas hydrates. The formed gas

hydrates were recovered and transported into the Linkam cooling

stage maintained at 173.15 K (Figure 1D) and placed under the

microscope of the Raman spectrometer. During the ex situ Raman

spectroscopic measurements, the laser beam was focused on the

surface of different hydrate crystals formed in the natural sediments.

For each run with a specific sediment, at least seven different hydrate

crystals were analyzed to determine the hydrate composition and

respective cage occupancy, minimizing data variability and

accounting for sample inhomogeneity.

As for the in situ Raman measurements, sediments with the

same water-to-sediment weight ratio (1.4: 1) were put into the

optical pressure cell (Figure 1E). Detailed weight of sediments and

water, as well as dry conditions and the calculation process are also

listed in Supplementary Table S2 in the Supplementary Materials.

After sealing the optical pressure cell, a continuous feed gas flow of

1 ml/min was operated. According to the calculation results of

CSMHYD, the equilibrium conditions of CH4-C3H8 gas hydrates

are at 5 MPa and 287.05 K. Therefore, in situ microscopic

observations were performed at the conditions of 5 MPa and
Frontiers in Marine Science 06
278.15 K. During the continuous in situ observations, the surfaces

of the selected hydrate crystals were analyzed focusing the laser

beam at a fixed spot for ~5 days until the hydrate composition did

not show further changes. On the last day, euhedral hydrate crystals

with a clear shape were purposefully measured because they are

considered as stable crystals.

In this study, four in situ Raman measurements and two ex situ

Raman measurements were conducted for each sample to ensure

the credibility of the data.
2.4 Raman spectra data analysis

The molar composition in the gas and hydrate phases were

calculated from Raman spectra on a semi-quantitative basis. The

calculation method was used as described in Beeskow-Strauch et al.

(2011). The molar fraction of one component in a mixed system can

be calculated using the following simplified Equation 1, based on

Placzek’s ratio method (Placzek, 1934), because the integrated

intensities of the Raman bands of the components are

proportional to the number of molecules presented in the sample.

Xa =
½Aa=(saxa)�
o½Ai=(sixi)�

(1)
FIGURE 2

Sediment 1: Clean foraminifera-rich sand (B); Sediment 2: Mud and foraminifera-rich sand mix (C); Sediment 3: mud (D); Sediment 5: mud (E);
Sediment 4: mud (A) from the South China Sea (mbsf: meters below sea floor). The enlarged image is a photograph of foraminifera taken under a
microscope. High-resolution images of the sediments are presented in Supplementary Figure S1 in the Supplementary Materials.
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where Xa, Aa, sa, and xa are, the molar fraction of component a,

the integrated intensity of the Raman band of component a, the

Raman scattering cross-section factor of component a and

instrumental efficiency, respectively. The index i and S represent

the appropriate values for all species present in the sample and their

sum, respectively.

The Raman band areas were corrected with wavelength-

independent cross-section factors. The cross-section factors is

assumed not to change with pressure, cage type, or the overall

composition of the phases (Schrötter and Klöckner, 1979; Schrader,

1995; Burke, 2001). In this study, the relative Raman scattering

cross-section factors employed are 8.55 (s1) and 1.60 (s2) for CH4

and C3H8, respectively (Schrader, 1995; Burke, 2001).

The calculation of the large-to-small cavity ratio was obtained

from Raman measurements using Equation 2. It considers that CH4

occupies both small 512 and large 51264 cavities of sII hydrate,

whereas C3H8 exclusively occupies the large 51264 cavities.

Large‐to‐small cavity ratio =
A at 2902 cm−1

s1 + A at 876 cm−1

s2
A at 2912 cm−1

s1

(2)

where A represents the integrated intensity of a specific Raman

band obtained from the Raman spectrum.
Frontiers in Marine Science 07
3 Results and discussion

3.1 Morphology observations

We acquired the morphology of gas hydrates using the

microscope coupled in the Raman spectrometer system through

both in situ and ex situ observations (Figure 4). A series of

snapshots were taken using a digital camera mounted on the

confocal microscope, to systematically study the morphological

changes of the hydrate crystals during the experimental period.

Figure 4A shows stable hydrate crystals formed in different

sediments at t = 5 days under 5 MPa and 278.15 K, as measured

by in situ Raman measurement. The changes in surface morphology

during the formation process, obtained from in situ Raman

measurements, are shown in Supplementary Figure S3 in the

Supplementary Materials. Figure 4B presents stable hydrate

crystals measured by ex situ measurement at 173.15 K and

ambient pressure. It is important to note that the substances

shown in Figure 4 are all hydrate crystals, with the sediment

beneath the hydrate crystals.

As the hydrate formation progresses, the size and shape of the

euhedral hydrate crystals gradually increase (Supplementary Figure S3).
FIGURE 3

(A) Sand, silt, and clay content, (B) mineral content; and (C) clay mineral content of five natural marine sediments.
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There are two morphologies of hydrate crystals, including euhedral

hydrate crystals (pointed by red arrows) and fine crystalline matrix

(indicated by green arrows), appearing in the same sediments

(Figure 4A, Supplementary Figure S3). However, the differences in gas

composition and large-to-small cavity ratio of these two hydrate crystal

types are not apparent during the hydrate formation, as shown in

Supplementary Figure S4 in the Supplementary Materials. Another

important observation is that the crystals formed in the sediments are

less well-structured and sharp-edged as those formed by pure water and

gas, as reported by Pan et al. (2023). This phenomenon indicates that

the sediments show a significant effect on the morphology of CH4-C3H8

mixed gas hydrates.

It is worth noting that the morphology of hydrate crystals in

different sediments appears indefinite which was the same when the

ex situ Raman observations were employed (Figure 4B). In the ex situ

Raman observations, a further effect complicated the analyses: since

each measurement required a specific duration, the accumulation of

condensed moisture on the surface of the samples significantly

interfered with the Raman signals after a period of monitoring,

thereby limiting the quality of the collected data and hindering

further ex situ analysis. With the use of in situ Raman

measurement device, the entire observation process was unaffected

by environmental factors, enabling a clear determination the hydrate

crystals morphology (Figure 4A, Supplementary Figure S3). Above

phenomena directly demonstrate that in situ Raman measurements

provide a relatively realistic morphology, which encourages the

employment of this method to accurately observe gas hydrates

formation in sediments at the microscopic level.
3.2 Crystalline structure

For a gas mixture containing C3H8 as well as CH4, the

thermodynamically stable gas hydrate phase is a sII CH4-C3H8
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mixed hydrate. Since the C3H8 molecule is too large to fit into a

cage of the sI hydrate structure, only a simple sI CH4 hydrate could

possibly form as a coexisting, metastable phase (Schicks et al., 2006).

However, our in situ Raman spectroscopic analysis indicates that the

structure of CH4-C3H8 mixed gas hydrates maintained throughout

the formation process (Figure 5). Both, the Raman band at 876 cm-1

(corresponding to C3H8 encased into the large 5
1264 cavities of the sII

hydrates) and the Raman bands at 2902 cm-1 and 2912 cm-1

(corresponding to CH4 encased into the 51264 and 512 cavities)

indicate that a sII CH4-C3H8 mixed hydrate has formed. The

Raman bands for the CH4 support this conclusion in two ways: 1)

The positions of the bands are at 2902 cm-1 for CH4 encased in

the 51264 cages and at 2912 cm-1 for CH4 encased in the 5
12 cages. For

structure I hydrates, the positions for the Raman bands are at slightly

higher wavenumbers, namely 2905 cm-1 for CH4 encased in the 51262

cages and 2915 cm-1 for CH4 encased in the 5
12 cages (Cai et al., 2022;

Pan et al., 2023; Naeiji et al., 2023). 2) The ratios of the bands: for sI

hydrates, the ratio of the integrated intensities of the Raman bands

approaches 3:1 and thus corresponds to the ratio of the 51262 cages to

the 512 cages in an sI hydrate (Cai et al., 2022). As shown in Figures 6

and 7, the quantity of CH4 in the large 51264 cavities was noticeably

lower than that in the small 512 cavities. This supports the conclusion

that only structure II hydrates were formed during the formation

process in different sediments, with no coexisting structure I hydrate

phase. The ex situ Raman measurement results also show that the

crystallographic structure of completely formed hydrates in natural

sediments was structure II, as shown in Figure 1A.

The observation that only structure II hydrates formed throughout

the whole process is identical to studies conducted by Schicks and Luzi-

Helbing (2013); Maeda (2016); Tang et al. (2018) and Truong-Lam et al.

(2020). They observed that a small amount of C3H8 in a gas mixture is

sufficient to form structure II gas hydrates. Even if a mixture of structure

I and structure II hydrates forms in the initial stage of the hydrate

formation process, the formed structure I hydrates quickly transform to
FIGURE 4

Morphology of stable hydrate crystals in Sediments 1-5 measured by (A) in situ measurements at 5 MPa and 278.15 K (euhedral hydrate crystals are
pointed by red arrows, and the fine crystalline matrix is indicated by green arrows) and (B) ex situ measurements at 173.15 K and ambient pressure.
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thermodynamically stable structure II hydrates during consequent

reactions (Du et al., 2023). However, our results differ from those

reported by Aladko et al. (2002); Uchida et al. (2004); Hester et al.

(2007); de Menezes et al. (2019); Klapproth et al. (2019) and Cai et al.

(2022), who observed the formation of a mixture of structure I/structure

II hydrates from a feed gas mixture containing CH4 and C3H8. Uchida

et al. (2004); Hester et al. (2007) and Klapproth et al. (2019) attributed
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the coexistence of structure I and structure II hydrates to the decreasing

concentration of gaseous C3H8 during the hydrate formation. In our

experiments, we employed an open system with a constant feed gas

flow, avoiding a depletion of the structure II-forming hydrocarbon.

Moreover, the formation of a possible kinetically favored but meta-

stable structure I hydrate phase, as it was observed in previous studies

(e.g. Schicks et al., 2006), was not observed, even though the pressure
FIGURE 5

In situ Raman spectra of CH4/C3H8 mixed gas hydrates in Sediment 1 during formation at 5 MPa and 278.15 K over 5 days.
FIGURE 6

(A) Variations in the gas hydrate composition (mol%) throughout the formation process based on in situ Raman measurements of different hydrate
crystals, (B) large-to-small cavity ratio for CH4 molecules; and (C) large-to-small cavity ratio for both CH4 and C3H8 molecules in the hydrate phase,
as determined by in situ Raman measurements. The formation process was maintained at 5 MPa and 278.15 K.
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and temperature conditions chosen in this study were within the

stability range of simple CH4 hydrates.
3.3 Gas composition and large-to-small
cavity ratio

3.3.1 In situ Raman measurements
Gas composition and large-to-small cavity ratio of gas hydrates

during the formation process were obtained by in situ Raman

measurements. Figure 6 presents the time-dependent overview of

the daily average results of the composition of the hydrate-bound

gas molecules and large-to-small cavity ratio of CH4-C3H8 mixed

gas hydrates during the formation process. The daily average results

for each sediment are shown separately in Supplementary Figure S5

in the Supplementary Materials. Detailed test results of four

replicates are attached to the Supplementary Figure S6 in the

Supplementary Materials.

The composition of the gas hydrate phase varies slightly during

hydrate formation in the presence of Sediment 2 (Figure 6A,

Supplementary Figure S5). For this system, CH4 was easily and

quickly trapped into the cages during the initial formation period.

Thereafter, the concentration of CH4 in hydrate crystals gradually

decreases and the content of C3H8 gradually increased as hydrate

crystallization progressed. The relative CH4 concentration
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decreased from around 75~85 mol% to about 70 mol% whereas

the C3H8 content increased from around 15~25 mol% to about 30

mol% during the euhedral hydrate crystals formation. In the other

systems, the fluctuations in the composition of the hydrate phase

show not such a clear trend. Above difference may be related to the

coexisting presence of a large amount of coarse foraminifera-rich

sand and fine-grained clayey particles in Sediment 2. The strong

heterogeneity results in variations in the adsorption rate and

content of CH4 and C3H8 during hydrate formation. However,

regardless of the sediment type, all gas hydrates show an

enrichment of C3H8 (above 25 mol%) compared to the feed gas

phase, which contains only 4 mol% C3H8. This behavior has been

reported before (Schicks and Luzi-Helbing, 2015; Medvedev et al.,

2015; Du et al., 2023) and might be attributed to a higher stabilizing

effect of C3H8 in the large 51264 cage of structure II hydrates.

Since structure II hydrates consist of 16 small 512 and 8 large

51264 cages, the ratio of large to small cages would be 0.5 if all cages

were occupied. Looking at the large-to-small cavity ratio for CH4

(i.e., L(CH4)/S(CH4) ratio) in Figure 6B, it varies between 0.1 and

0.45, indicating that only a small portion of the large 51264 cages is

occupied by CH4. Considering the L(C3H8+CH4)/S(CH4) ratio, the

values mainly vary between 0.5 and 0.95. This indicates that C3H8

was preferentially incorporated in the large 51264 cages, due to its

size and higher guest-to-cavity ratio which helps stabilizing the

large cavities better than CH4 molecule (Du et al., 2023). However,
FIGURE 7

(A) Variations in the gas hydrate composition (mol%) during the formation process, based on ex situ Raman measurements of specific hydrate
crystals at ambient pressure and 173.15 K; (B) large-to-small cavity ratio for CH4 molecules in the hydrate phase; and (C) large-to-small cavity ratio
for both CH4 and C3H8 molecules in the hydrate phase.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1510050
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Mao et al. 10.3389/fmars.2025.1510050
since the large-to-small cages ratio is also above 0.5 (Figure 6C),

particularly at the end of the experiments, it also shows that not all

small 512 cages in the mixed gas hydrates are filled with CH4. The L

(CH4)/S(CH4) ratio in Sediment 1 slightly decreases over time

(Figure 6B, Supplementary Figure S5). According to the change in

the composition of the gas hydrate phase in the presence of

Sediment 2, the L(CH4)/S(CH4) ratio also decreases over time,

which at first glance indicates that the CH4 is replaced by C3H8,

probably as a result of restructuring processes during formation.

This may also explain why the L(C3H8+CH4)/S(CH4) ratio in

Sediment 2 remains unchanged, which contrasts from the

evolution pattern of the C3H8 composition (Figure 6A). However,

the increasing encasement of C3H8 into the 51264 cavities does not

necessarily indicate an exchange of CH4. In previous studies

(Schicks and Luzi-Helbing, 2015), we were able to demonstrate

that CH4-filled 512 cavities are preferred formed at initial stages of

hydrate formation before the large 51264 cavities form. Initially,

these large 51264 cavities are filled with CH4, but with time, they are

preferential ly fi l led with C3H8. This preferential and

disproportionate new formation of large 51264 cavities encasing

C3H8, with simultaneous stagnation or slow increase of the number

of the 51264 cavities occupied with CH4 and a new formation of

small, CH4 occupied 512 cages, could also explain the observed

changes in composition and cage occupancy. For Sediment 3,

Sediment 4 and Sediment 5, the L(CH4)/S(CH4) ratio is

unchanged. The evolution pattern of L(C3H8+CH4)/S(CH4) ratio

in the Sediment 1, Sediment 3, Sediment 4 and Sediment 5 is

consistent with the variation of C3H8 content of the CH4-C3H8

mixed gas hydrates (Figure 6C, Supplementary Figure S5).

3.3.2 Ex situ Raman measurements
In addition to the in situ Raman measurements, the effect of

sediments on CH4-C3H8 mixed gas hydrates was also investigated

by applying ex situ Raman measurements. Figure 7 shows the

average gas composition in the hydrate phase and the large-to-

small cavity ratio of the CH4-C3H8 mixed gas hydrates crystals in

different sediments. The hydrate-bearing sediment samples were

recovered from the pressure cells after 10-13 weeks. The detailed

test results are shown in Supplementary Figure S7 in the

Supplementary Materials.

The CH4 amount in the formed hydrate crystals in five

sediments vary between 60 mol% and 75 mol% (Figure 7A).

Accordingly, the C3H8 concentration varies between 25 mol% and

40 mol%. The fraction of CH4 in the hydrate phase in sediments 1

and 2 is about 70 mol% and the fraction of C3H8 is correspondingly

30 mol%, which is in the same range as that for the in situ

experiments. However, the gas hydrate phases formed ex situ in

Sediments 4 and 5 showed lower contents of CH4 and

corresponding higher contents of C3H8 compared to those

formed in situ in Sediments 4 and 5. This could be due to the fact

that the hydrate formation process in the in situ measurements was

only observed over five days, whereas the hydrate formation in the

ex situ measurements took place over 10-13 weeks and thus the ex

situ experiments probably came closer to the equilibrium state.

The CH4 amount of CH4-C3H8 mixed gas hydrates in

foraminifera-rich sand and a mixture of mud and foraminifera-rich
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sand (i.e., Sediment 1 and Sediment 2) are slightly higher than that in

Sediment 4 and Sediment 5 (Figure 7A). Accordingly, the C3H8

amount in Sediment 1 and Sediment 2 are lower than that in the

Sediment 4 and Sediment 5. A possible explanation for these

phenomena could be that foraminifera-rich sand (calcite) promotes

the CH4 enrichment in the hydrate phase, as shown in Figures 3A, B.

Interestingly, the values for CH4 and C3H8 for Sediment 1, Sediment

2 and Sediment 4 are in the error bar of the values for Sediment 3.

The main reason maybe contributed to the wide particle size

distribution and high heterogeneity of Sediment 3. This

heterogeneity could possibly lead to the sediment composition

varying slightly in terms of particle size during the experiments,

thereby influencing the results, e.g. that the slightly higher presence of

quartz with large particle size in mud promote the CH4 adsorption.

The CH4 content and C3H8 content of gas hydrates in different

muds, i.e., Sediments 3-5, differ from those in Sediments 1 and 2,

but also from each other. The amount of CH4 in the mixed gas

hydrates in Sediment 3 and Sediment 4 is higher than that in

Sediments 5 (Figure 7A). The quartz content in Sediments 4 and 5

are the same (Figure 3B), ruling out the impact of quartz on the

difference. However, compared with Sediment 5, the amount of

kaolinite and illite are slightly higher in Sediment 4 (Figure 3C). A

high amount of kaolinite and illite lead to a higher liquid water

phase in the sediments and implies a better CH4 dissolution (de

Menezes et al., 2019; Kumari et al., 2021a). Therefore, the CH4

amount of CH4-C3H8 mixed gas hydrates in Sediment 4 is higher

than that in Sediments 5. It should be noted that the presence of

montmorillonite-based bentonite clay thermodynamically

promotes CH4 to form gas hydrates (Saw et al., 2015), and

montmorillonite is prone to hydration expansion (Wang et al.,

2022). However, the amount of montmorillonite in Sediments 3-5 is

quite low and the same. Therefore, we assume that the influence of

montmorillonite on CH4 adsorption of CH4-C3H8 mixed gas

hydrates in mud is limited. For Sediment 3 and Sediment 5, the

clay content is the same (Figure 3B), and the clay composition is

also similar (Figure 3C). The significant difference is that Sediment

3 has a wider particle size distribution (Supplementary Figure S2 in

the Supplementary Materials) and a high content of quartz. It is

speculated that the quartz particles in Sediment 3 are large (greater

than 4F). Accordingly, the comparison between Sediments 3 and 5

indicates that quartz with large particle size is helpful for the

adsorption of CH4.

In different sediments, the L(CH4)/S(CH4) ratio ranges from

0.08 to 0.18 (Figure 7B), whereby Sediment 5 exhibits the lowest L

(CH4)/S(CH4) ratio. The low ratios indicate that only a small

portion of the large 51264 cages is occupied by CH4. Compared to

the in situ samples, all L(CH4)/S(CH4) ratios show lower values,

suggesting that -due to the longer reaction time for the experiments

– the systems are more or less approaching an “equilibrium state”.

The L(C3H8+CH4)/S(CH4) ratio of CH4/C3H8 mixed gas

hydrates in different sediments is between 0.50~0.90 (Figure 7C).

This also shows that not all small 512 cages in the mixed gas

hydrates in different sediments are filled with CH4. A relatively

higher L(C3H8+CH4)/S(CH4) ratio is obtained in Sediment 5. The

trend of differences in the L(C3H8+CH4)/S(CH4) ratio of CH4-C3H8

mixed gas hydrates in different sediments is consistent with the
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trend of differences in the C3H8 content of hydrates in different

sediments. A possible explanation could be that foraminifera-rich

sand, quartz with large size particles, illite and kaolinite may

negatively affect the adsorption of C3H8. This also implies that

the effects of sediments on the L(C3H8+CH4)/S(CH4) ratio is

consistent with the effects on the C3H8 content.
4 Summary and conclusions

In this study, we investigated the formation of CH4-C3H8 mixed

gas hydrates in five different natural marine sediments from the

South China Sea using both in situ and ex situ Raman

measurements. The morphology, crystalline structure, gas

composition, and large-to-small cavity ratios of the CH4-C3H8

mixed gas hydrates were determined. The following results

were obtained:
Fron
1. In all five natural sediments analyzed, the resulting CH4-C3H8

mixed gas hydrates was exclusively structure II. Two distinct

morphologies of hydrate crystals were observed across

different sediments, but no significant differences were noted

in gas composition or large-to-small cavity ratios. Notably,

euhedral hydrate crystals formed within sediments appeared

less well-structured and sharp-edged characteristic of those

formed in systems of pure water and gas.

2. In clean foraminifera-rich sand or mud, the gas

composition and L(C3H8+CH4)/S(CH4) ratio in the

mixed gas hydrates almost don’t vary with time. In the

mixture of foraminifera-rich sand and mud, CH4 initially

occupied the hydrate cavities, with C3H8 gradually

incorporating into the lattice, increasing from 15~25 mol

% to around 30 mol% as crystallization progressed. The L

(CH4)/S(CH4) ratio slightly decreases over time, while the L

(C3H8+CH4)/S(CH4) ratio remains unchanged. The

increasing encasement of C3H8 into the 51264 cavities

does not necessarily indicate an exchange of CH4.

3. The amounts of CH4 and C3H8 encased in the hydrate phase

varied with the sediments, with CH4 concentrations ranging

from 60 mol% to 75 mol% and C3H8 concentrations from 25

mol% to 40 mol%. The L(CH4)/S(CH4) ratio, ranging from

0.08 to 0.18, and the L(C3H8+CH4)/S(CH4) ratio, ranging

from 0.50 to 0.90, suggest that not all small 512 cages and

large 51264 cages in mixed gas hydrates were fully occupied

by CH4. Foraminifera-rich sand, quartz with large size

particles, illite and kaolinite showed a positive influence on

CH4 adsorption when CH4-C3H8 mixed gas hydrates were

formed in natural sediments.
Our findings show that the presence of sediment particles not

only influenced gas composition but also impacted the large-to-small

cavity ratio and crystallization patterns, indicating the sediment’s role

in altering hydrate formation behavior. These results highlight both

expected outcomes, such as the selective incorporation of C3H8 and

CH4 into hydrate cavities, and some unexpected observations, such as
tiers in Marine Science 12
the variation in the crystalline morphology of hydrate crystals formed

in sedimentary systems. These observations offer valuable insights

into the interaction between sediments and CH4-C3H8 mixed gas

hydrates formation in natural marine environments, providing

deeper insights into the role of marine sediments in global carbon

storage, as well as their impacts onmarine ecosystem functioning and

structure. However, this article primarily discusses the mineral effects

of sediments on CH4-C3H8 mixed gas hydrates. Future research will

address the effects of salinity, sediment physical properties, and other

factors on the formation process.
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