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of wave-height
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1College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China, 2School
of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology,
Zhenjiang, Jiangsu, China, 3Jiangsu Marine Technology Innovation Center, Nantong, Jiangsu, China
Irregular waves exhibit complex and erratic behavior, posing significant challenges

for accurate short-term ship motion forecasting. Reliable ship navigation depends

on precisemotion predictions, necessitating effective feature extraction fromwave

data to enhance predictive models. This study proposes a hybridmodel integrating

a wavelet principal component analysis (WPCA) for dimensionality reduction with

an optimized double circulation-long short-term memory (DC-LSTM) network.

The WPCA method retains key variance components, reducing redundant data

while preserving critical wave characteristics. The DC-LSTM model is optimized

using both internal and external circulation mechanisms to enhance learning

efficiency and stability. Numerical simulation data are used to train and validate

the model. Compared with conventional LSTM and PCA-LSTM models, the

proposed WPCA-DC-LSTM model improves R2 by 14% and reduces RMSE by

12% in validation datasets. The model demonstrates robust generalization,

effectively capturing nonlinear and high-dimensional wave features. The results

indicate that the hybridmodel effectivelymitigates the influence of redundant data,

reduces prediction randomness, and improves stability in handling wave-induced

ship movements. The study highlights the broad applicability of the WPCA-DC-

LSTM model for complex maritime data analysis and ship motion forecasting.
KEYWORDS

weighted principal component analysis, LSTM, irregular waves, ship motion,
prediction model
1 Introduction

With the global advancement of the shipping industry, the safety of ships sailing in the

waves has become more critical. In particular, irregular waves will cause unstable motions

of ships sailing in the sea, leading to difficulty maneuvering ships. Therefore, accurately

predicting ship movements in irregular waves is vital for improving the stability of ships.
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However, the nonlinear and unpredictable nature of sea waves

presents significant challenges to accurately forecasting the motion

of ships at sea.

The prediction of ship motion in waves has been a research

emphasis in ocean engineering for a long time. Early research

emphasized using statistical models that considered external

environmental factors and hydrodynamic parameters (Yoshimura,

1986; Khan et al., 2005). The Kalman filter, known for being a

recursive, linear, and minimum variance filter, has found extensive

application in dynamic ship positioning and short-term maneuver

predictions (Rigatos, 2013; Perera, 2017). However, predicting

motion using the ship's motion state equation and physical

models is significantly affected by external environmental

hydrodynamic parameters and computational fluid dynamics,

making it less effective for short-term predictions. In contrast,

autoregressive (AR) models have a simpler structure than Kalman

filters, requiring consideration only of the autoregressive properties

of time history data. Jiang et al. (2020) investigated the impact of

scale on Autoregressive (AR) models for ship motion prediction in

time. A common issue with these models is their assumption of a

linear data distribution. However, ship motion exhibits strong

nonlinearity, and this nonlinearity will impact the performance of

the prediction models (Zhang et al., 2024).

With advancements in neural networks and computing power,

recent years have seen an increasing number of studies using

machine learning models to predict the ship’s attitude motion. Li

et al. (2016) proposed a scheme to analyse and model ship sensor

data for motion prediction. Additionally, various machine learning

models have been utilized for this purpose, such as artificial neural

networks (ANN) (De Masi et al., 2011), support vector machines

(SVM) (Kawan et al., 2017), diagonal recurrent neural networks

(DRNN) (Shen and Xie, 2005), and extreme learning machines

(ELM) (Yin et al., 2014). Deep learning models have also

demonstrated strong performance in improving the control of

ships and predicting the attitude motion of ships. For example,

the BP model has been applied to address the chaotic essence of ship

motion time history data and enhance prediction accuracy (Peng

et al., 2014). Recurrent Neural Networks (RNN) have been

employed for nonparametric modelling to forecast ship

manoeuvring motion (D'Agostino et al., 2021). Furthermore, the

Long-Short-Term Memory (LSTM) neural network is one of RNN

variants, has become widely used for capturing long-term

dependencies and modelling complex temporal dynamics in

predicting ship attitude motions or trajectory (Zhang et al., 2021;

Xu et al., 2023, Xu et al., 2024).

Traditional models, such as Kalman filters and autoregressive

(AR) models, have limitations in addressing the nonlinearity of ship

motion. While Kalman filters offer recursive and linear filtering

capabilities, they struggle with high randomness in wave-induced

ship motion. AR models, despite their simplicity, fail to capture

nonlinear dependencies inherent in wave-ship interactions. Recent

advancements in deep learning models, like LSTM, have

demonstrated significant improvements; however, these models

face challenges in handling high-dimensional inputs and feature

redundancy, especially in maritime environments. To avoid the
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limitations of the single model, many researchers have proposed

hybrid methods that combine different models and algorithms. For

example, the GPR-LSTM hybrid model effectively combines the

high-accuracy point prediction capability of LSTM with the reliable

interval prediction ability of GPR, demonstrating superior

performance in accurately predicting ship motion attitudes for

operational decision-making (Sun et al., 2022). The SHM-CNN-

GRU-AM hybrid model, optimized using the GCWOA algorithm,

demonstrates superior forecasting accuracy for ship motion,

effectively addressing the complex nonlinear dynamics and

variable periodicity inherent in ship motion time history data (Li

et al., 2022). The EMD-PSO-LSTM hybrid model, utilizing

intelligent algorithms with a sliding window approach, effectively

predicts nonlinear and nonstationary ship motion attitudes (Geng

et al., 2023). The R-LSTM hybrid method, which combines an

LSTM model with a residual network and an attention mechanism,

enhances prediction accuracy and generalization for ship

maneuvers in challenging navigation conditions. This method

ensures efficient and safe navigation by offering real-time

trajectory forecasts (Zhou et al., 2023). These studies have

improved the accuracy of ships’ motion attitude to a certain extent.

Although the work of ship motion prediction has been

developed for a long time, the problem of high-dimension feature

data still cannot be avoided, leading to the model failure to converge

during training. The prediction of ships’ motion uses complex data

that combines ship motion features and wave features as input.

Determining the hyperparameters of the LSTM model effectively

and achieving convergence of results have become challenging

problems when dealing with the high dimension of input features.

Principal component analysis (PCA) is a commonly used technique

for dimension reduction that transforms high-dimensional datasets

into low-dimensional subspaces while retaining most of the

variation in the data (Greenacre et al., 2022). However, PCA may

not always capture the most relevant or informative aspects of the

data, especially if the features have complex interdependencies or

nonlinear relationships.

The study ensured the effectiveness of data by utilizing simulation

data generated through a hybrid method that combines the fully

nonlinear potential flow method and the viscous flow method. First,

motion data of the ship and wave height data at varying distances

from the ship are selected. The correlation coefficients between wave

height data at different distances from the ship’s bow are calculated

using Pearson correlation, which are subsequently processed as

weights for dimension reduction. To optimize the performance of

the WPCA (Weighted Principal Component Analysis), an initial

retained variance value is set prior to dimension reduction and is

dynamically updated during the process. This approach enables the

model to effectively capture the wave excitation acting on the ship

while reducing dimensionality and eliminating redundant

information. The motion data and the processed wave data are

combined to form the input dataset for training the neural network

model. The hyperparameters of the model are optimized through a

double circulation process, consisting of internal and external

circulation, to enhance predictive accuracy and generalization

capability. The prediction results of the proposed hybrid model are
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compared with conventional models and models employing

traditional data preprocessing methods, demonstrating the

advantages and effectiveness of the proposed approach. This

structured methodology highlights the innovative aspects of the

work, including advanced data processing and robust model

optimization, ensuring reliable and accurate ship motion prediction.
2 Principles and methods

2.1 Numerical methods

In previous work, the hybrid method has been applied and

validated for the numerical simulation of motion in waves and

manoeuvre of trimaran (Gong et al., 2020, Gong et al., 2021, Gong

et al., 2022b), and here, a brief summary to ensure the paper’s

completeness has been presented.

2.1.1 Numerical method
To accurately simulate surf-riding and broaching of a trimaran,

nonlinear effects such as side hull emergence, bow diving, and

transient draft variation are considered. The internal domain is

solved using a viscous flow method, assuming incompressible flow

with constant density and neglecting heat exchange. The

incompressible URANS equations are:

∂r
∂t

+
∂(rUi)
∂xi

= 0 (1)

∂Ui

∂t
+

∂

∂xj
(UiUj) = −

1
r
∂P
∂xi

+
1
r

∂

∂xj
m
∂Ui

∂xj
+ rtij

 !
(2)

Where r represents density, t denotes time, tij = −u0iu0 j denotes
the Reynolds Stress Tensor, P represents pressure, Ui and u0 i
represent the time-averaged and fluctuation components of

velocities, respectively, m denotes the dynamic viscosity. The flow

around the trimaran is accurately modelled using the Volume of

Fluid (VOF) method combined with compression techniques. This

approach effectively manages the Eulerian two-phase flow, ensuring

precise simulation of the fluid dynamics near the trimaran. An

artificial compression technique ensures a sharp interface between

air and water (Rusche, 2002; Weller, 2002).

The external domain assumes ideal flow, governed by the

Laplace equation. A wavemaker and adaptive wave absorption are

implemented at opposite boundaries. Internal and external domains

are coupled via interfaces, with more details on hybrid methods

available in references (Ma and Yan, 2009; Yan and Ma, 2010; Hu

et al., 2020; Gong et al., 2021).

2.1.2 Trimaran motion
The global coordinate system (x, y, z) is used for flow field

solutions, while a local coordinate system (x', y', z'), centered at the

trimaran’s center of gravity, is applied for motion calculations. The

ship’s 6DOF motion includes linear velocities (ux 0 , uy 0 , uz 0 ) and

angular velocities (rx 0 , ry 0 , rz 0 ), governed by:
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m( _u1 0 − u2 0r3 0 + u3 0r2 0 ) = FH1 0 + FWJ1 0

m( _u2 0 − u3 0r1 0 + u1 0r3 0 ) = FH2 0 + FWJ2 0

m( _u2 0 − u1 0r2 0 + u2 0r1 0 ) = FH1 0 + FWJ1 0

I1 0r1 0 + (I3 0 − I2 0 )r2 0r3 0 = MH1 0 +MWJ1 0

I2 0r2 0 + (I1 0 − I3 0 )r1 0r3 0 = MH2 0 +MWJ2 0

I3 0r3 0 + (I2 0 − I1 0 )r1 0r2 0 = MH3 0 +MWJ3 0

8>>>>>>>>>>><
>>>>>>>>>>>:

(3)

where m is the trimaran’s mass, (Ix 0 , Iy 0 , Iz 0 ) are moments of

inertia, and (FHx 0 , FHy 0 , FHz 0 ) and (MHx 0 ,MHy 0 ,MHz 0 ) are forces and

moments from the hull. Water-jet propulsion forces and moments

(FWJx 0 , FWJy 0 , FWJz 0 ) and (MWJx 0 , MWJy 0 , MWJz 0 ) are modeled semi-

empirically. After solving Equation 3, the changing rate of the Euler

angle can be determined by

1 sinx4tanx5 cosx4tanx5
0 cosx4 −sinx4
0 sinx4=cosx5 cosx4=cosx5

2
664

3
775

r1 0

r2 0

r3 0

2
664

3
775 (4)

The target course of the autopilot is set to 0°, and PD

(proportional derivative) control scheme is adopted. Autopilot

control uses a PD controller, where the target nozzle deflection

angle d is:

d = Kpx6 + Kd
_x6 (5)

Here, Kp=9.5, Kd=3.0, with dmax=35° and _d=10°/s.

2.1.3 Domain and grid generation
The external domain grid is based on the QALE-FEM method

(Yan et al., 2019), adjusted to the trimaran's navigation range. The

internal domain dimensions are 4.5L×3.0L×2.0L, with water above

and below set to 0.5L and 1.0L, respectively (ITTC, 2014). Grids are

generated using OpenFOAM’s blockMesh and snappyHexMesh

tools, following procedures in zigzag maneuver simulations (Gong

et al., 2022a). The boundary definition of the hybrid method and the

grid sketch are shown in Figure 1.

The internal domain uses a k−w SST turbulence model and the

PISO method to solve pressure-velocity coupling. Boundary

conditions are coupled with the external domain, transferring

velocity and volume fraction at each time step. Diagrams of the

grid and boundary conditions illustrate the setup.
FIGURE 1

The sketch of the hybrid method's boundary.
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The specific characteristic dimension of the trimaran form in

this paper is shown in Table 1. The specific meanings of symbols in

trimaran have been shown in Figure 2.
2.2 Pearson correlation

Principal Component Analysis (PCA) is a highly effective

statistical method used for dimension reduction, data

visualization, and feature extraction. The Pearson correlation

coefficient has been employed in calculating the linear

correlations between ship motion dynamics and environmental

conditions when analyzing ship motion (Zhang et al., 2023). In

this paper, visualizing the relation between different distances of

wave height will reinforce the understanding of the influence

between waves and ship motion.

For two different features, a1 and a2, their correlation

coefficient can be computed:

r =
cov(a1,a2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(a1)
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var(a2)
p (6)

where cov(a1,  a2) is the covariance of the two features, var(a1),

var(a2) is the variance of feature a1 and feature a2, respectively.

The value of r ranges from -1 to 1. The closer the value is to 1, the

more positive linear correlation between the two features, and the

closer the value is to -1, the more negative linear correlation

between the two features. When r is 1, it signifies a complete

positive linear correlation; when r is -1, it signifies a complete

negative linear correlation. A r value of 0 means there is no linear

correlation between the variables.

In this paper, assuming that the time history of one feature is

denoted as  X = x1,  x2,⋯, xnf g, and another feature represent as

Y = y1, y2,⋯ ynf g. X and Y represent a whole time history of the
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feature with n nodes, then the correlation coefficient of the two

features is (Cohen et al., 2009):

r = on
i=1(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

on
i=1(xi − �x)2on

i=1(yi − �y)2
q (7)
2.3 Reduction of wave feature dimension

Suppose that each wave height feature is represented as Xi =

xi1,  x
i
2,⋯,  xin

� �
, where xin represents the n-th node in a time history

of the i-th feature. The complete dataset of wave features can be

represented as a matrix:

X =

x11 ⋯ xi1

⋮ ⋱ ⋮

x1n ⋯ xin

2
664

3
775 = (X1,X2,⋯,Xn) (8)

Combined with the Equation 8, the overall covariance S and

each element in overall covariance were denoted as follows

(Martinez and Kak, 2001):

S = (Sij)n�n,   sij =
1

n − 1o
n
k−1(xk − �xi)(xk − �xj)

T ,   �xi =
1
no

n
k=1xki

The standard PCA treats all data points and features equally,

and cannot capture the most relevant aspects of the data with

complex interdependencies or nonlinear relationships. However,

the influences between wave and ship change with the increasing

distance (Torsvik, 2009). This paper will employ the WPCA with

the Pearson correlation as the weight based on the reference (Xiao

et al., 2023). Setting an initial value g of retained variance can be

optimized in the model training process. Assign a weight wi to each
TABLE 1 The specific parameters of incident waves and ship.

Particulars B/L D/L Cb B1=L1 D1=L1 Cb1 p/L t/L

Value 0.08 0.04 0.52 0.05 0.04 0.46 0.0 0.1
FIGURE 2

The sketch and dimensions of a trimaran.
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feature i, reflecting its importance. Modify the computation of the

covariance between features i and j to include weights:
s0ij =

1

on
k=1wk − 1o

n
k=1wk(xki − �x0i)(xkj − �x0j),   �x

0
i

= o
n
k=1wkxki

on
k=1wk

(10)

wk = ( om
i=1(xki − �x0i)(xkj − �x0j)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

om
i=1(xki − �x0i)

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

om
j=1(xkj − �x0j)

2
q )2 (11)

The weighted covariance matrix S0 is then used in place of the

standard covariance matrix for PCA:

S0 =

S
0
11 ⋯ S

0
1n

⋮ ⋱ ⋮

S
0
n1 ⋯ S

0
nn

2
664

3
775 (12)

The eigenvalues and the eigenmatrix of S0 are l and a, they

satisfied the following formula:

S0ai = l iai,i = 1, 2,⋯, n (13)

To adjust the eigenvalues and eigenvectors of S0 and obtain the

edge transformation matrix A, follow these steps:

A = (a1,⋯, an) (14)

Then, the principal component matrix can be expressed as:

P = (X − �xi) · A (15)

The retention variance is the ratio of the retained variance to the

total variance:

g = on
i=1lk

trace(S0)
(16)
2.4 LSTM model

LSTM models, also called Long Short-Term Memory

models, are a specialized form of recurrent neural networks
Frontiers in Marine Science 05
(RNNs) specifically designed to handle and learn from time

sequential data. Their architecture allows them to effectively

capture long-term dependencies, making them particularly

suitable for tasks involving the understanding and forecasting

of time-based patterns. With gated mechanisms, including input,

forget, and output gates, LSTMs effectively manage information

flow. In time series prediction, LSTMs excel in capturing

complex patterns and long-term dependencies (Rithani et al.,

2023), making them suitable for tasks like stock prices and

weather forecasting. In maritime applications, LSTMs can

predict vessel trajectories, detect anomalies, and monitor vessel

operational status, thereby enhancing navigation safety and

efficiency. The LSTM unit includes the LSTM cells, each of

which includes an input gate, an output gate, and a forget gate,

as shown in Figure 3.

The key principles of each gate in LSTM can be concluded as the

following equations (the connotation of each symbol in LSTM cell is

shown in Table 2):

it = sg(Wf xt + Uf ht−1 + bf )

ft = sg(Wixt + Uiht−1 + bi)

ot = sg(Woxt + Uoht−1 + bo) (17)

~ct = tanh(Wcxt + Ucht−1 + bc)

ct = ft ⊙ ct−1 + it ⊙~ct

ht = ot ⊙sh(ct)
2.5 The proposed model

Extracting valuable features from the waves and ship motions

and reducing risks from the high dimension of features are the main

problems in training the neural network. In this section, the specific

model structure and algorithmic steps which are used to predict

ship motion in this paper will be discussed.
FIGURE 3

Structure of LSTM cell.
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The proposed model will divide the features into two groups.

Then, the WPCA algorithm will be employed to extract the main

information of waves and the reduce the dimension of the wave

feature based on the feature weighting coefficients. This method

reduces dimensionality while retaining critical information handles

noisy data effectively, and adapts to varying conditions. The

optimization process of the hybrid model hyperparameters is

divided into external and internal circulation. And the internal

and external circulations also form the Double-Circulation (DC)

module. The internal circulation repeatedly improves the

hyperparameters of the hybrid model based on the metrics of

prediction results, while the external circulation optimizes the

hyperparameters of the hybrid model based on the retained

variance value of WPCA.

The workflow and steps of the proposed ship motion prediction

model are shown in Figure 4. In the first step, the data on motion

and wave features will be extracted from the results of the numerical
Frontiers in Marine Science 06
simulation. In the second step, the Pearson coefficient between

different distance waves is calculated as the weight of WPCA, and

then the dimension of the wave feature is reduced based on the

weight. In the third step, the proposed wave features and motion

features are combined as the input dataset to train the model. In the

fourth step, the hyperparameters will be improved through the

internal and external circulation based on the prediction results.

The detailed schematic diagram of the proposed model is shown in

Figure 5. Table 3 shows specific hyperparameters of the neural

network and the training setting of model architecture. Where is

the number of final selected features which will be input to the

proposed model, the number of the input features will change with

the changes of dimension reduction schemes in this paper. The

model is composed of seven layers which contains three LSTM

layers, three dropout layers, and a dense output layer. All the layers

are connected in the order shown in the Table 3. The inclusion of

dropout layers aims to mitigate overfitting by forcing the network to

learn more robust features that generalize well to new data. The

prediction strategy employed involves using 1000 time steps of

selected feature data as input to forecast the same feature data for

the next fiftieth or more time step.
2.6 Performance evaluation of model

Three metrics help evaluate the model’s performance in

predicting ship movement in this paper, where R² indicates the

proportion of the explained variance, RMSE indicates the typical

size of the forecast error, and MAE provides a more interpretable

measure of forecast accuracy.

R2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −o

n
i=1(y

0
i − yi)

2

on
i=1(�y − yi)

2

s
(18)
TABLE 2 The connotation of each symbol in LSTM cell.

Symbol Connotation Symbol Connotation

it

The activation
value of the
input gate

W,   b,  U
Matrix in training, the

network learns to compute the
meta value

ft

The activation
value of the
forget gate

ot

The activation
values of the
output gate

⊙
The sigmoid

activation function

~ct
The candidate
memory cell

sg ,  sh
Sigmoid and hyperbolic

tangent function

ct The memory cell ht The hidden state
FIGURE 4

Schematic diagram of the proposed ship motion prediction in irregular waves based on the WPCA-DC-LSTM model.
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1(y

0
i − yi)

2

r
(19)

MAE =
1
no

n
i=1 y0i − yi
�� �� (20)
3 Case study

3.1 The effect of each distance wave
feature on the ship’s motion prediction

In this section, the data of wave height is selected every five

meters from the bow of the trimaran to 20m ahead, as shown in

Figure 4. Five datasets have been generated, each of which contains

the data of wave and motion features. The specific conditions of

each dataset have been shown in Table 4.

The total time of the navigation under the condition of 0.35 Fn

is 55s, and the data from 0s to 45s has been employed to train the
Frontiers in Marine Science 07
proposed hybrid model, the rest of the data is used for verification.

Notably, each time step of the dataset is 0.004s. Figure 6 shows the

prediction results of the model trained by the different cases. Table 5

shows R², RMSE, and MAE for predicting the model trained by the

different cases.

In Figure 6, the datasets combining motion and wave features

perform well in model training. Comparing the prediction results of

the ship’s heave in Figure 6A, the results of Case1 and Case2 are

more accurate than those from Case3 to Case5. In Figures 6B, D,

there is an apparent bias between the original data and prediction

results, suggesting that the introduced feature augmentation fails to

uphold robust generalization across various features during model

training. It can be seen that the dataset obtained by adding features

cannot maintain good generalization for most features when

training the model. In addition, the effect of waves at short

distances on the ship's motion is greater than that of far waves.

In Table 5, the bias of R², RMSE, and MAE between these cases

shows that waves in distances of 0m and 5m are more valuable in

training the model. However, the slight variation in error indicates

that these features of different distances cannot be ignored

during training.

In general, different distances wave height features have

different influences on the model's predictive capability. It can be

found that the data set combining waves at short distances (0-5m in

this case) performs better than the wave features at long distances.

However, it also increases the burden of model learning, and if more
FIGURE 5

Detailed information of the WPCA-DC-LSTM model.
TABLE 3 The specific structure and parameters of the neural network.

Layers
Specific

Parameters
Initial

settings
Specific

Parameters

LSTM#1 units: 128 Activation LeakyReLU

Dropout#1 rate: 0.4 MinMaxScaler
feature range:

(0, 1)

LSTM#2 units: 128
Train-

Test Split
train ratio: 80%,
test ratio: 20%

Dropout#2 rate: 0.3 Time Step time step: 20

LSTM#3 units: 64 Epoch 30

Dropout#3 rate: 0.3 Batch_size 50

Dense
units: n(determined after

WPCA-processing)
– –
TABLE 4 The specific conditions of the different cases.

Dataset Fn Motion Wave gauge position

Case1

0.35 6DOF

0m

Case2 5m

Case3 10m

Case4 15m

Case5 20m
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wave features are added at one time, the problem of dimensional

explosion will be generated.
3.2 Reduction of feature dimension based
on WPCA

Due to the redundancy of wave height data at different

distances, the feature dimension is too high, which increases the

complexity of model training. To alleviate the dimensional disaster

of the features and improve the efficiency of model training and

performance of the model prediction, the wave feature data will be

processed with the WPCA proposed in previous section. Figure 7

shows the Pearson coefficient between different features.

Figure 7A shows the coefficients between wave features, and

Figure 7B shows the coefficients between wave and ship motions.

The Pearson coefficients between wave features and the ship’s

trajectory are close to zero, so those effects can be ignored while

calculating the weights before reducing the dimension. Pearson

coefficients between other motion features and wave features were
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calculated respectively, and the expected value of the corresponding

feature was taken as the weight of dimension reduction. In WPCA,

the feature weights reflect their importance and correlation with the

target variable. When a high retained variance (95%) is needed, the

model must consider more details and complexity, thus requiring

more principal components (WPCA_1, WPCA_2, and WPCA_3).

When a lower retained variance (e.g., 85%) is acceptable, the model

becomes simpler, requiring only two principal components

(WPCA_1 and WPCA_2). The model is highly simplified at very

low retained variance levels (below 75%), requiring only one

principal component (WPCA_1), indicating that this single

component is sufficient to explain the major variance

and information.
3.3 Comparison of the hybrid model and
conventional model

In this section, the performance of three models will be

compared based on the prediction results. The models are the

WPCA-DC-LSTM model, PCA-LSTM, and conventional LSTM

model. The method of WPCA will generate three groups based on

different retained variances. The specific features are shown in

Table 6. A mark “√" indicates the feature data included at input,

and the mark “x" indicates that this feature was not included

at input.

In Case#2.1, the PCA-LSTM model was employed. Cases from

2.2 to 2.4 utilized the WPCA-DC-LSTM model, while Case#2.5 and

Case#2.6 utilized the conventional LSTM model.

Figure 8 shows the results of ship’s motion prediction in

irregular waves. The first 45 seconds represent the training data
TABLE 5 R², RMSE, and MAE for prediction results.

Dataset R2 RMSE MAE

Case1 0.39 1.99 1.24

Case2 0.41 1.89 1.2

Case3 0.36 2.11 1.34

Case4 0.38 2.04 1.25

Case5 0.37 2.17 1.26
FIGURE 6

Comparison between the prediction and the original data.
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used by the models, followed by the input data from 45 to 49

seconds. The last 6 seconds show the output predictions generated

by the models compared against the true values of the prediction

target. Table 7 shows the performance metrics of the models on

both the training dataset and the validation dataset.

In Figure 8, the three models have good performance of

prediction on the selected dataset. Case#2.2 achieved high

precision fit in predictions of heave, roll, pitch, and heading.

With the decrease of retained variance, the performance of

WPCA-DC-LSTM also decreases slightly. The PCA-LSTM model,

which also reduces the wave features to three dimensions, has an
Frontiers in Marine Science 09
apparent bias in motion prediction. The prediction results of the

conventional LSTMmodel without adding wave features also shows

poor performance.

In Table 7, the minimum values of RMSE and MAE appear in

the results of dataset Case#2.3. The results indicate that while the

prediction accuracy of the WPCA-DC-LSTM model shows certain

limitations, particularly in comparison to more advanced or fine-

tuned prediction frameworks, it allows for a clearer observation of

the impact of different methodological variations. For instance, the

performance of Case#2.2, with an R² value of 0.43612, significantly

outperforms Case#2.3 (R² = 0.41673), despite their RMSE and MAE

values being relatively close. This highlights that the retained

variance of 95% in Case#2.2 is more effective in capturing

meaningful information than the 85% retained variance in

Case#2.3, especially in terms of model fit. Furthermore, the

comparison between Case#2.5 and Case#2.6 emphasizes the

positive effect of incorporating wave features, as the former shows

better performance in all metrics, including a higher R² (0.33715 vs.

0.23079), demonstrating the importance of such features in

enhancing prediction accuracy.

Overall, the WPCA-DC-LSTM model demonstrates that higher

retained variances (above 85%) are critical for achieving reliable

predictions, with performance converging at these levels. While the

absolute predictive accuracy is moderate, the model effectively
FIGURE 7

Visualization of correlation for the features.
TABLE 6 The specific features of each selected dataset.

Dataset Fn
Motion
features

WPCA_1 WPCA_2 WPCA_3 PCA-features Wave-features

Case#2.1

0.35

√ × × × √ ×

Case#2.2 √ √ √ √ × ×

Case#2.3 √ √ √ × × ×

Case#2.4 √ √ × × × ×

Case#2.5 √ × × × × √

Case#2.6 √ × × × × ×
TABLE 7 R², RMSE, and MAE for prediction results.

Dataset R2 RMSE MAE

Case2.1 0.27361 2.10801 1.29458

Case2.2 0.43612 1.98113 1.19284

Case2.3 0.41673 1.97689 1.15138

Case2.4 0.21502 2.07722 1.20868

Case2.5 0.33715 1.98357 1.20694

Case2.6 0.23079 2.12252 1.29668
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avoids overfitting and dimensionality issues observed in

conventional methods. This allows a more controlled and

interpretable evaluation of the influence of feature selection,

dimensionality reduction, and wave feature inclusion on

prediction outcomes. Future work should focus on further

optimizing feature weighting before dimensionality reduction and

incorporating more wave-related features to enhance the predictive

capability for ship motion.
4 Prediction results and discussion

In this section, the trained model will be employed to predict

the motion of the ship based on the new complete dataset, the Fn of

which is 0.65. The retained variance of the WPCA-DC-LSTM is

95%. The other parameters of the model have been shown in section

2.6. The generalization ability of the model will be further discussed.

In this section, the whole 55s prediction work will be implemented,

excluding the first 1000-time steps.
4.1 Comparison of different advanced time
steps based on 20m wave

Based on wave height data collected at distances of N (less than

20) m from the ship bow, these data are processed using Weighted

Principal Component Analysis (WPCA). The processed wave

height data, along with motion data, are then combined to input
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the hybrid model for predicting the ship’s motion. The specific

features of the dataset are shown in Table 8. The features of wave

height and 6DOF will be inputted the model.

The advanced time steps of prediction are 50, 75, 100, 125, and

150. Figure 9 illustrates the comparison between the time histories

of predicted ship motion based on various input schemes and the

original data. Figure 10 presents three metrics of the models on the

selected validation datasets.

In Figure 9, the model has good prediction effects on the selected

dataset when the advanced time step is 50. With the increase in the

advanced time step, the discrepancy between the predicted values

and the original data is more apparent. In Figure 9A, the performance

of the heave prediction is worse than that of other motion features.

Especially the discrepancy between the prediction results and

original values at the marked troughs and peaks is most affected by

the increase of advanced time steps. In Figure 9B, there is a

phenomenon of poor fitting to the periodic change data when the

advanced time steps are more than 100. The prediction of pitch and

heading met the expectation to some extent. The high accuracy of the

short-term prediction reflects the ability of the WPCA-DC-LSTM

hybrid model to extract the features of the ship’s motions and

waves height.

In Figure 10, the RMSE and MAE achieved the minimum value

when the advanced time steps were 50, it means the model is

effectively minimizing large prediction errors when the advanced

time is 50. Although the loss does not increase with the increase of

the advanced time step, the overall trend is higher loss at the high

advanced time step.
FIGURE 8

Comparison between the predicted results of different models and the original data.
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In general, the predictive capability of the model on the new

data set is not too bad when the advanced time below 75, indicating

that the proposed model has good ability of generalization. And the

advanced time of single heading feature have room for testing. The

accuracy of the heading prediction results is higher than the other

features, showing that the features extracted from the waves have a

more positive influence on the heading in the trained model.
4.2 Comparison of different advanced time
steps based on 15m wave

The distance from the ship is reduced from 20 to 15 meters, and

the wave height data at 0m,5m,10m, and 15m are taken. Then the

wave height data processed byWPCA and motion data will be input

into the model together to predict the ship’s motion. The advanced

time steps of prediction are 50, 75, 100, 125, and 150. The different

comparisons between the time history of the ship motion predicted

based on different input database processing schemes and the

original data is shown in Figure 11. Figure 12 shows the three

final metrics of the models on the selected validation dataset.
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In Figure 11, the model has good prediction effects on the roll,

pitch, and heading when the advanced time step is 50. The accuracy

of the 50t-s in Figure 11 is similar to that of the 75t-s in Figure 9.

With the increase in the advanced time step, the discrepancy

between predicted values and original data is more apparent. In

Figure 11A, the performance of the heave prediction is worse than

that of other motion features. Apparent biases can be observed at

some low advanced time steps. This means that the model’s ability

to process long-term dependencies is declining compared to the

results in section 4.1. However, the prediction of the heading also

met the expectation.

In Figure 12, the values of RMSE and MAE at higher advanced

time steps are larger than that at low higher times steps. The overall

loss of Figure 12 is larger than that of the corresponding advanced

time step in Figure 10. It shows that the contribution of the far wave

height features to the prediction cannot be ignored during the

process of reducing features dimension. When the wave height data

at 20m is reduced, the prediction performance of the model worse

overall, indicating that the model obtained the less information with

the decrease of wave features.

In light of these observations, it is evident that the WPCA-DC-

LSTM model's performance is highly dependent on the inclusion of

comprehensive wave height data. The decline in prediction

accuracy, particularly for heave at lower advanced time steps,

underscores the model’s sensitivity to long-term dependencies.

The increased biases and overall loss at higher advanced time

steps, as shown in Figures 11 and 12, suggest that reducing the

dimensionality of wave height features, especially those at greater

distances like 20m, results in significant information loss. This
TABLE 8 Specific features of datasets.

Classification Selected Features

Wave height 0m 5m 10m 15m 20m

Motion
x3

(heave)
x4

(roll)
x5

(pitch)
y

(heading)
Trajectory
FIGURE 9

Comparison between the predicted results based on different input schemes and the original data.
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highlights the critical role that distant wave features play in accurate

motion prediction. Therefore, ensuring the retention of key wave

height data during feature reduction is crucial for maintaining

model performance. Furthermore, enhancing the model's capacity

to capture long-term dependencies and incorporating advanced

feature extraction methods could further improve its robustness

and accuracy in predicting ship motion. Additionally, refining noise

reduction techniques will help in preserving essential wave

information, thereby enhancing the model's predictive capabilities

even with fewer features.
4.3 Comparison of different advanced time
steps based on 10m wave

Using wave height data from three points—0 m, 5 m, and 10 m

from the ship bow—processed by WPCA, and combining these

with motion data, input features were created to predict the ship’s

motion. Figure 13 shows the comparison between the original data

and the time history of ship motion predicted using different input

schemes. Figure 14 shows three metrics of the models on the

training dataset and validation dataset.

The trend of the prediction values in Figure 13 closely resembles

that in Figures 9 and 11. However, the main distinction lies in the

increasing bias between the predicted values and the original data at

advanced time steps, particularly at marked points. In Figure 13D,

the prediction of the heading shows significant fluctuations after 40

seconds, with a more pronounced bias compared to Figure 9D

In Figure 14, both RMSE and MAE values increase at higher

advanced time steps, with overall losses exceeding those in

Figures 10 and 12 at corresponding time steps. While MAE

consistently rises with the time step, RMSE fluctuates around an
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intermediate value, highlighting its sensitivity to large errors and

anomalies. Despite the fluctuations, the model's overall

performance stabilizes as wave characteristics diminish. However,

this stabilization does not imply improved prediction accuracy. The

differing sensitivities of RMSE and MAE to factors such as error

distribution, outliers, and skewness further explain these variations.

Overall, the results indicate a decline in the model's generalization

ability as fewer wave features are extracted.

Comparing predictions across the three datasets, the model's

performance at advanced time steps deteriorates as wave features

are reduced. Wave data may contain noise, but assigning higher

weights to significant features during dimensionality reduction

reduces the influence of noisy features. This process enhances

data quality and model robustness. However, when key features

critical to prediction are removed, the model loses essential

information. Furthermore, the complementary relationships

among wave features are disrupted, limiting the model's ability to

capture complex wave patterns.

Overall, the WPCA-DC-LSTM model demonstrates strong

generalization capabilities across new datasets. Although its

predictive accuracy declines over time steps for certain motion

features, such as heading and pitch, it excels in accurately

predicting heave and roll motions. The reduction in wave

features highlights the model's ability to capture essential

information, but it also underscores the importance of

comprehensive feature extraction for maintaining prediction

accuracy. By assigning higher weights to significant features

during dimensionality reduction, the model effectively mitigates

the impact of noise and preserves critical wave patterns, even with

fewer features. This capability ensures the model remains robust

and adaptable, reinforcing its effectiveness in capturing and

generalizing complex wave dynamics.
FIGURE 10

RMSE, and MAE for prediction results.
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4.4 Comparison with other methods

To further validate the effectiveness of the proposed method, a

comparative analysis was conducted against several widely used

prediction models, including LSTM, BiLSTM, PSO-BiLSTM

(BiLSTM optimized with tradi t ional Part ic le Swarm

Optimization), and ADPSO-BiLSTM (BiLSTM optimized with

Adaptive Particle Swarm Optimization) (Cheliotis et al., 2020;
Frontiers in Marine Science 13
Han et al., 2024). The goal of this comparison was to highlight

the performance differences in terms of prediction accuracy and the

ability to handle complex, high-dimensional wave-ship

interaction data.

The LSTM and BiLSTM models were chosen as baseline

methods due to their popularity in time-series prediction tasks.

PSO-BiLSTM and ADPSO-BiLSTM represent more advanced

techniques, incorporating optimization algorithms to enhance
FIGURE 12

R2, RMSE, and MAE for prediction results.
FIGURE 11

Comparison between the prediction results based on different input database processing schemes and the original data.
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BiLSTM's predictive capabilities. These methods are frequently

employed in the field to address nonlinear and complex dynamic

systems. The training dataset consisted of sequential data

combining wave features and motion features. The wave features

included wave heights at distances of 0 m, 5 m, 10 m, 15 m, and 20

m from the vessel, while the motion features represented the six

degrees of freedom (6DOF) of the ship’s movement (surge, sway,

heave, roll, pitch, and yaw). These features were chosen to fully
Frontiers in Marine Science 14
characterize the dynamic interactions between the vessel and the

irregular wave conditions.

The comparison was performed on the same dataset, ensuring

consistency in input features, training parameters, and evaluation

metrics. Results were analyzed based on key performance

indicators, including RMSE, MAE, and R².

From the Figure 15, the comparative evaluation of Model.4.1 to

Model.4.5 (LSTM, BiLSTM, PSO-BiLSTM, ADPSO-BiLSTM, and
FIGURE 13

Comparison between the prediction results with different input schemes and the original data.
FIGURE 14

R2, RMSE, and MAE for prediction results.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1497956
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gong et al. 10.3389/fmars.2025.1497956
WPCA-LSTM) reveals that WPCA-LSTM (Model.4.5) achieves the

highest accuracy in predicting ship motion dynamics across all

degrees of freedom. While all models capture the general trends of

the original data, WPCA-LSTM consistently exhibits the closest

alignment, particularly during steady-state oscillations (t>50 s).

This performance highlights the effectiveness of combining

WPCA for feature extraction with LSTM-based temporal modeling.

In the transient phase (t=36–50s), WPCA-LSTM outperforms

other models by minimizing deviations, handling rapid dynamic

changes more effectively than earlier architectures. During the

steady-state phase, its predictions demonstrate exceptional

stability and precision, as evidenced by reduced deviations and

accurate periodic oscillation capture. Across specific degrees of

freedom, WPCA-LSTM shows superior performance in yaw, roll,

heave, and pitch, particularly in capturing high-frequency and peak

oscillations where other models falter.
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The progressive improvement from Model.4.1 to Model.4.5

underscores the impact of advanced optimization techniques and

architectural refinements. WPCA-LSTM leverages these

advancements to provide the most accurate and robust

predictions, though minor residuals in the transient phase suggest

room for further enhancement through adaptive modeling

techniques. Overall, WPCA-LSTM sets a new benchmark for

predictive performance in complex ship motion dynamics,

offering a promising approach for future applications.

In Table 9, LSTM and BiLSTM demonstrated reasonable

performance but were less capable of capturing the full

complexity of the dataset, particularly when dealing with irregular

wave conditions. PSO-BiLSTM and ADPSO-BiLSTM achieved

improved predictive accuracy compared to the baseline methods.

However, their performance gains were limited when the dataset's

dimensionality increased due to irregular wave data. The proposed

method outperformed the baseline and optimization-based models

in certain tasks, particularly in capturing the underlying dynamics

of wave-ship interactions. Its performance was also more consistent

across different prediction tasks.

This comparative analysis highlights the robustness and

adaptability of the proposed approach in addressing the

challenges posed by high-dimensional and irregular wave data.

While optimization-based methods like PSO-BiLSTM and

ADPSO-BiLSTM show promise, the proposed method provides a

balanced solution, achieving competitive accuracy while

maintaining interpretability and computational efficiency.
FIGURE 15

Comparison between the prediction results of different models and the original data.
TABLE 9 R², RMSE, and MAE for prediction results.

Model RMSE MAE R2

LSTM 0.187 0.145 0.792

BiLSTM 0.172 0.132 0.810

PSO-BiLSTM 0.158 0.114 0.827

ADPSO-BiLSTM 0.150 0.108 0.896

WPCA-LSTM 0.142 0.109 0.904
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5 Conclusion

To improve the safety and stable navigation of ships in irregular

waves, optimize the accuracy of ships’ motion prediction, and

reduce the high dimension of feature, this paper proposed a

WPCA-DC-LSTM prediction model based on wave height

features. The dimension of wave height features was reduced with

the WPCA. Then, the model employed internal and external

circulation to optimize the hyperparameters of the LSTM

structure based on the retained variance value of WPCA to

improve the generalization capability of the model. The predictive

capability of the proposed hybrid model has been discussed by

comparing different models and methods. The advanced time step

of prediction and the retained number of wave features have been

compared. The proposed WPCA-DC-LSTM model is employed to

process the motion and wave data from the autopilot trimaran. The

key points of this paper can be concluded as follows.
Fron
1. Compared with the conventional LSTM model and PCA-

LSTM hybrid model, the WPCA-DC-LSTM model

achieves superior performance in predicting ship attitude

motion, especially in generalizing to new datasets. The

WPCA method enhances the ability to process nonlinear

features like wave heights, while double circulation

optimization improves model stability by dynamically

adjusting the retained variance.

2. Incorporating wave height features at varying distances

improves the model’s understanding of ship motion

patterns, enabling more accurate and comprehensive

motion predictions.

3. The WPCA-DC-LSTM model demonstrates strong

generalization in new datasets. While prediction accuracy

for some features declines with longer time steps, the model

effectively captures overall motion trends.

4. The bias in prediction performance across different motion

features highlights WPCA's limitations in fully capturing

the relationship between wave and motion features.

5. Maritime Applications: The WPCA-DC-LSTM model

offers practical value for maritime applications, including

real-time autopilot systems for safer navigation, route

optimization under varying wave conditions, and vessel

design and performance analysis. Its accurate motion

predictions enhance operational safety and efficiency in

maritime environments.
Limitations and improvement:
1. The model’s performance shows a bias across different

motion features, indicating limitations in addressing the

complex interactions between ship motion and

wave features.

2. The prediction accuracy declines as the advanced time step

increases, particularly for features with higher nonlinearity,

which might affect long-term predictions.
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3. The computational cost of the double circulation

optimization process is relatively high, which may limit

the practical application of the model in real-

time scenarios.

4. Incorporate temporal feature extraction methods, such as

attention mechanisms, to better capture dynamic

relationships and improve long-term prediction accuracy.
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