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The northeast Atlantic Ocean contains multiple habitats considered critical for

shark conservation, including nursery areas, migratory corridors and aggregation

sites. In this context, updating knowledge on shark diversity and the threats

affecting them in this region is essential to defining priorities and implementing

the right management and conservation measures. Here, we show that

Macaronesian and Cabo Verde marine ecoregions are home to 78 shark

species (comprising 26 families), and 56% are threatened with extinction. The

Canary Islands revealed the greatest richness (with 56 species), followed by Cabo

Verde (53), Madeira (52), and the Azores (45). Cabo Verde presents fewer

similarities with the rest of the islands. We also found that: i) Azores share

more species with the Canary Islands than Madeira (despite the greater

geographical proximity with the latter), and ii) there are no oviparous species in

the Cabo Verde archipelago, contrary to the Canary Islands (5), the Azores (4),

and Madeira (3). Fishing and habitat degradation are the most relevant

anthropogenic pressures for the region, with Cabo Verde having the highest

number of endangered species (66%) and a greater magnitude and diversity of

threats. As such, this archipelago presents the highest priority area for shark

conservation due to the intense industrial fishing in its waters, poor management

measures in combination with its greater vulnerability to climate change.
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1 Introduction

Sharks belong to the ancient Chondrichthyes group (Dulvy et al.,

2017; Ebert et al., 2021). They appeared more than 400 million years ago

on the planet and have survived profound transformations of the Earth

(Davidson et al., 2016; Dulvy et al., 2014, 2017).With more than 500

species currently recognized, sharks are an ecologically important and

functionally diverse group (Ebert et al., 2021). However, they are

currently facing an unprecedented decline in their populations due

mainly to increased anthropogenic pressures (Dulvy et al., 2014;

Pacoureau et al., 2021). Their reproductive strategy, characterized by

late sexualmaturity, low fecundity, few offspring and low growth, renders

this groupmore vulnerable to anthropogenic pressures (Frisk et al., 2001;

Myers and Worm, 2005). It is estimated that around 100 million sharks

are caught every year and, in the last 50 years some oceanic species have

seen their populations decline by more than 70% (Pacoureau et al., 2021;

Worm et al., 2013). As a result, one-third of sharks and rays are

threatened with extinction mainly because of overfishing in targeted

fisheries and incidental catches (Dulvy et al., 2021).

Overfishing is a major anthropogenic threat in the ocean, leading

the decline in stocks of various organisms and disrupting marine

ecosystems (Dulvy et al., 2021; Jackson et al., 2001; Myers et al., 2007;

Roff et al., 2018). Industrial fishing in the Northeast Atlantic began in

the 1950s and has recorded one of the highest initial catches per unit

shelf area (Ferretti et al., 2010). Initially, sharks were caught as

bycatch or by small-scale artisanal fishing for subsistence. However,

with the global increase in their demand, mainly for their meat and

fins, and the associated high yields, sharks are now the subject of

targeted fishing (Dulvy et al., 2017). The North Atlantic, in specific, is

one of the regions with the greatest overlap between industrial fishing

and shark habitat use (Queiroz et al., 2016), representing one of the

most heavily fished regions of the world, with the blue shark

(Prionace glauca) and the shortfin mako shark (Isurus oxyrinchus)

among the elasmobranchs most often captured by industrial fisheries

(Camhi et al., 2008; Torres et al., 2016).

On the other hand, the northeast Atlantic Ocean represents an

important area for the conservation of marine megafauna (Afonso

et al., 2020). It is one of the most important cetacean biodiversity

hotspots in the world (Afonso et al., 2020; Wenzel et al., 2023), hosts

one of the largest sea turtle nesting grounds (Marco et al., 2012),

and nursery habitats for endemic and critically endangered shark

species (Jiménez‐Alvarado et al., 2020; Rosa et al., 2023). Within the

region, a group of volcanic islands historically known as the

Macaronesia biogeographic region stands out for its diversity of

marine habitats, biodiversity, and richness of endemism (Afonso

et al., 2020; Das and Afonso, 2017; Freitas et al., 2019; Roberts et al.,

2002; Wirtz et al., 2013). While traditionally said to include the

archipelagos of the Azores, Madeira, Canary Islands and Cabo

Verde, there is no consensus on the inclusion of the latter in the

Macaronesia biogeographic region based on the differences in

diversity and endemism of marine organisms between the

archipelagos (Freitas et al., 2019). However, the comparison of

elasmobranchs species, particularly sharks, among archipelagos has

seldom been explored, limiting its contribution to this debate.

Although many sharks are highly migratory, ocean currents and
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climatic gradients can limit the distribution of less mobile species

and segregate them according to their biological characteristics. In

fact, these archipelagos are influenced by different climatic zones,

with the Azores, Madeira and Canaries Islands being located in

temperate or sub-tropical latitudes, while Cabo Verde falls under

tropical latitudes (Spalding et al., 2007). Furthermore, the

archipelagos are influenced by a complex system of ocean

currents and sea surface temperature gradients ranging from 15

to 25 °C (Freitas et al., 2019; Reverdin et al., 2003).

Within this context, the main goal of the present study is to

compare shark diversity patterns among the different archipelagos

of the Macaronesian and Cabo Verde ecoregions, evaluate the

main threats, and discuss where conservation strategies should

be prioritized.
2 Methods

2.1 Study area

Macaronesia region and Cabo Verde consist of islands of

volcanic origin located in the Northeast Atlantic Ocean, spanning

from 39°N 31°W to 15°N 23°W (Figure 1). It encompasses, from

north to south, the Azores, Madeira, the Canary Islands, and Cabo

Verde archipelagos (Illera et al., 2012). The archipelagos occupy a

latitudinal extension of almost 3000 km and a great climatic

gradient with the Azores in the temperate zone, Madeira and the

Canary Islands under the Mediterranean climate and Cabo Verde in

the tropics (Fernández-Palacios et al., 2011; Florencio et al., 2021).

Due to their common volcanic origin, the islands have similar

coastal features surrounded by small continental shelves, abyssal

depths near the coastlines and various seamount habitats

(Fernández-Palacios et al., 2023). The great variations in

geological age, size, latitudinal location and climate are the main

drivers in the difference in the marine species assemblages of each

archipelago (Florencio et al., 2021; Freitas et al., 2019; Whittaker,

1998). Moreover, while these archipelagos are relatively similar in

terms of habitat composition, the Canary Islands are isolated in

featuring extensive seagrass meadows (Barberá et al., 2005; Creed

et al., 2016; McKenzie et al., 2020; Schäfer et al., 2021; Bishop et al.,

2022a) and being strongly influenced by the Canary Current

upwelling system, promoting marine productivity and supporting

species diversity (Sambe et al., 2016; Watermeyer et al., 2022). On

the other hand, sandy shores are not as ubiquitous in the Azores

(Bishop et al., 2022b) while Cabo Verde has relatively few artificial

shorelines and submerged structures (Suthers et al., 2022a; Suthers

et al., 2022b) and is outside of present-day rhodolith distribution

(Fragkopoulou et al., 2021; Keith et al., 2022).

The Azores is the northernmost archipelago of Macaronesia,

composed of nine islands located 1,400 km from Europe (Afonso

et al., 2020; Sousa et al., 2021). The Madeira archipelago comprises

two main islands located about 840 km southeast of the Azores

(Sousa et al., 2021). The Canary Islands comprise seven main islands,

located 400 km south of Madeira and 115 km off the west coast of

Africa (Meyers et al., 2017; Sousa et al., 2021). Cabo Verde is the
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southernmost archipelago, consisting of 10 main islands situated

around 500 km off the west coast of Africa. The archipelagos of

Macaronesia and Cabo Verde are characterised by complex

oceanography and topography and are separated by depths of over

1,500 m (Freitas et al., 2019; Sousa et al., 2021). From a marine point

of view, the region is mainly influenced by the Azores and Canary

currents, along with the Gulf Stream (Barton, 2001; Cropper, 2013).
2.2 List of species and traits

For Cabo Verde, we used a checklist previously elaborated by one

of the authors (RF), as a starting point (Supplementary Table 4).

Additions and deletions were made using peer-reviewed scientific

publications, books, records from national investigation authorities

and official documents. For the Canary archipelago, we retrieved the

species from the International Union for Conservation of Nature

(IUCN) database (https://www.iucnredlist.org/; last accessed in July

2024) and Ebert et al. (2021) and supplemented them with other

scientific peer-reviewed publications (Supplementary Table 3). For

the other archipelagos, we used recent checklists published in peer-

reviewed journals, namely Santos et al. (2020) for the Azores and

Biscoito et al. (2018) for Madeira, and updated them with Ebert

et al. (2021) and IUCN database (Supplementary Tables 1, 2). Based

on the type of habitat each species is known to use, sharks were

categorized as neritic, oceanic and deep-sea. Neritic species use both

shore (depth ≤ 30m) and continental shelf (30 m ≤ depth ≤ 200 m)

while oceanic are found in offshore pelagic environments at depths

ranging from 200 m to 1000 m (Santos et al., 2024b). Sharks found
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at depths greater than 1000 m were considered deep-sea users, as

were benthic species that use environments greater than 200 m

(Santos et al., 2024b). We used the IUCN’s map of the geographical

range of species to classify each shark as boreal, temperate and

tropical. Boreal species use climatic zones at latitudes above 60°

north and south, temperate between 30° and 60° north and south

while tropical occur between 0° and 30° degrees north and south.

We followed Ebert et al. (2021) to assign each species to family level

and mode of reproduction (namely lecithotrophic viviparity,

matrotrophic viviparity, oviparity). The trophic position of each

species was classified as apex predator, mesopredator and

planktivore based on its diet and maximum body size (Cortes,

1999; Ebert et al., 2021; Weigmann, 2016). After compiling all the

shark species recorded in each archipelago, we built a presence-

absence table (Supplementary Tables). We then used a dissimilarity

matrix to investigate biogeographical similarities among the

archipelagos. To this end, the Jaccard distance metric was applied.
2.3 Threats

The threats facing each species were collected and adapted from

the Threats Classification Scheme of the IUCN (version 3.3, 2024,

last accessed in July 2024). For this study, we categorized the threats

into 5 groups that best mirror the anthropogenic pressures that

sharks are facing in today’s oceans: (i) “Fisheries”, which

correspond to IUCN threat 5, more specifically 5.4; (ii)

“Pollution”, which correspond to IUCN threat 9; (iii) “Direct

human intrusion” witch correspond to IUCN threat 6; (iv)
FIGURE 1

Geographical location of the Macaronesia and Cabo Verde archipelagos.
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“Climate change” which correspond to IUCN threat 11; and (v)

“Habitat degradation” which includes to IUCN threats 1-4, 7,8, and

12. Next, we collected the fishing vulnerability index score from

FishBase (www.fishbase.org/, last accessed in November 2024)

based on Cheung et al. (2005). It reflects the susceptibility of

species to fishing pressure, classified on a scale of 1 to 100,

categorized as Low (0-30), Moderate (30-50), High (50-70) and

Very High (70-100) (Cheung et al., 2005). The climate change risk

of each shark species was taken from a recent global assessment and

categorized as Very-low, Low, Medium-low, Medium, Medium-

high, High, and Very-high (Santos et al., 2024b). We obtained the

FUSE (Functionally Unique, Specialized, and Endangered) values

for each species from Pimiento et al. (2023). This conservation

metric combines each species’ contribution to functional diversity

and its IUCN extinction risk (Pimiento et al., 2020). FUSE index

identifies the species with the highest conservation priority whose

extinction leads to greater functional loss (Pimiento et al., 2023).
3 Results

3.1 Species richness

Around the archipelagos of Macaronesia and Cabo Verde, there

are 78 species of sharks belonging to 26 families, with

Carcharhinidae, Somniosidae, and Centrophoridae as the most

speciose (Figure 2). Within the region, the Canary Islands (56)

present the highest shark richness, followed by Cabo Verde (53),

Madeira (52), and the Azores (45).

Most of the species found in the Azores, Madeira and the

Canary Islands prefer temperate zones, while in Cabo Verde the

majority prefer tropical climates (Figure 3A). Cabo Verde has fewer
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species that use boreal zones compared to the other three

archipelagos further north (Figure 3A). The majority of species

use neritic habitats in all the archipelagos, followed by deep-sea in

the Azores, Madeira and the Canary Islands, while in Cabo Verde

there is a greater preference for pelagic environments (Figure 3B).

The species assemblage of all four archipelagos is dominated by

mesopredators, followed by apex predators increasing from the

Azores to Cabo Verde (Figure 3C). The three planktivorous species

are found around all four archipelagoes, namely the basking shark

(Cetorhinus maximus), megamouth shark (Megachasma pelagios),

and whale shark (Rhincodon typus). In terms of mode of

reproduction, six oviparous species of the family Scyliorhinidae

occur in Macaronesia. Cabo Verde is the only archipelago where no

oviparous shark species have been recorded, contrary to the Canary

Islands (5), the Azores (4), and Madeira (3) (Figure 3D).

In terms of similarity, the archipelagos are grouped into 3

clusters (Figure 4A). The Canary Islands and Madeira form the

group with the highest number of species in common, dominated

by the families Carcharhinidae and Somniosidae, respectively. The

Azores form a separate cluster, but they are more closely related to

the Canary Islands than to Madeira, despite their greater proximity

to the latter. There is a clear separation of Cabo Verde from the rest

of the archipelagos, leaving it isolated and dominated by migratory

species of the family Carcharhinidae. Cabo Verde has the highest

number of exclusive species (10), followed by the Canary Islands

(4), the Azores (3) and Madeira (1) (Figure 4B).
3.2 IUCN Red List Status and FUSE

Of the 78 shark species recorded in Macaronesia and Cabo

Verde, 56% are listed in one of the IUCN’s endangered categories as
FIGURE 2

Species richness of sharks, by families, across the Macaronesia and Cabo Verde archipelagos. AZO, Azores; MAD, Madeira; CAN, Canary Islands; CV,
Cabo Verde.
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Critically Endangered, Endangered, or Vulnerable (Figure 5A).

Carcharhinidae and Lamnidae are the families with the highest

number of species at the greatest risk of extinction. Looking at the

individual archipelagos, Cabo Verde (66%) has the highest number

of endangered species, followed by the Canary Islands (61%),

Madeira (52%), and the Azores (49%) (Figure 5A). The four

archipelagos share the same top six FUSE species, namely longfin

mako (Isurus paucus), shortfin mako (Isurus oxyrinchus), scalloped

hammerhead (Sphyrna lewini), basking shark (Cetorhinus
Frontiers in Marine Science 05
maximus), oceanic whitetip shark (Carcharhinus longimanus) and

whale shark (Rhincodon typus) (Figure 5B). The remaining four

species vary according to archipelago, with the angelshark

(Squatina squatina) present only in the Canary Islands with the

highest FUSE, followed by great hammerhead (Sphyrna mokarran)

and sandtiger shark (Carcharias taurus), both only present in Cabo

Verde and the Canary Islands (Figure 5B). Next with the highest

FUSE is tope shark (Galeorhinus galeus) (in all archipelagos)

followed by sandbar shark (Carcharhinus plumbeus) (Cabo
FIGURE 3

FFrequency of climate zones (A) boreal, temperate, and tropical), habitat types (B) neritic, deep-sea, and oceanic) used, trophic position (C) apex
predator, mesopredator and planktivore), and mode of reproduction (D) lecithotrophic viviparity, matrotrophic viviparity, and oviparity) per
archipelago. AZO, Azores; MAD, Madeira; CAN, Canary Islands; CV, Cabo Verde.
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Verde), white shark (Carcharodon carcharias) (Azores and

Madeira), rough longnose dogfish (Deania hystricosa) and dusky

shark (Carcharhinus obscurus) (Madeira), bramble shark

(Echinorhinus brucus) and gulper shark (Centrophorus

granulosus) (Azores).
3.3 Majors’ threats

Fishing (FIS) is the main threat to sharks in Macaronesia and

Cabo Verde and affects all species in the four archipelagos

(Figure 6A). Within the region, Cabo Verde has the highest

number of species threatened by fishing within one of the IUCN

threatened categories (Vulnerable, Endangered, and Critically

Endangered) (Figure 6A). Shark species in the Canary Islands are

most susceptible to fishing, followed by Cabo Verde, Madeira and

the Azores (Figure 6B).

Regarding habitat degradation, Cabo Verde once again has the

highest number of species considered to be affected by this

anthropogenic pressure included in the IUCN threatened

categories, followed by the Canary Islands (Figure 6A). Four

species, namely the bull shark (Carcharhinus leucas), blacktip
Frontiers in Marine Science 06
shark (Carcharhinus limbatus), nurse shark (Ginglymostoma

cirratum), and Greenland shark (Somniosus microcephalus) are

noted to be affected by climate change according to IUCN

(Figure 6A). One species, the oceanic whitetip shark, classified as

highly vulnerable to climate change is present in all archipelagos

(Figure 6C). Cabo Verde (16) has the highest number of species

considered to be at medium-high risk due to climate change,

followed by the Canary Islands (13), Madeira (10) and the Azores

(8) (Figure 6C). Nurse shark occurs in Cabo Verde and Canary

Islands and is the only one considered to be affected by all five

threats according to the IUCN. Direct human intrusion affects three

endangered species, nurse shark, whale shark, and angel shark

(Figure 6A). Taken all together, Cabo Verde and the Canary

Islands are the archipelagos where sharks are under the greatest

magnitudes and diversity of anthropogenic pressures.
4 Discussion

The diversity of marine habitats surrounding the oceanic islands

makes them important areas for species assemblages (Pimiento et al.,

2023). Together, the archipelagos of Macaronesia and Cabo Verde
FIGURE 4

Similarities (A) and number of exclusive shark species (B) in the Macaronesian archipelagos and Cabo Verde. AZO, Azores; MAD, Madeira; CAN,
Canary Islands; CV, Cabo Verde.
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represent a hotspot of shark diversity, hosting around 15% of all shark

species. Within the region, the Canary Islands stand out with the

greatest species richness, consistent with a previous study that found a

bimodal latitudinal gradient for sharks peaking in temperate region

between latitudes 30 and 40 in both hemispheres (Lucifora et al.,

2011). A similar latitudinal pattern has previously been observed in

other marine taxa such as cephalopods (Rosa et al., 2008, 2019), tuna,

billfish, and other fishes associated with optimal temperatures in the

mid-latitudes (Boyce et al., 2008; Chaudhary et al., 2016). A global

analysis to determine the main factors related to the richness of all

existing elasmobranchs found that temperature was the main factor,

particularly for sharks, with the Canary Islands standing out as one of

diversity hot spot (Guisande et al., 2013). On the other hand, the

Canary Islands are the archipelago closest to the mainland, Morocco

to be precise, an area of high elasmobranch richness (Guisande et al.,

2013). When comparing the richness of sharks among the

archipelagos, there is less similarity between Cabo Verde and the

rest. This supports the increasing evidence that excludes Cabo Verde

from Macaronesia due to significant differences in the composition of
Frontiers in Marine Science 07
marine assemblages. By comparing the differences between six marine

groups with different dispersal capacities, Freitas et al. (2019) found

less similarity between Cabo Verde and the rest of the archipelagos of

Macaronesia, and even suggested that the biogeographic unit should

be redefined.

Most of the shared species are oceanic sharks, whose migratory

nature gives them greater latitudinal distribution capacity (Camhi

et al., 2009; Queiroz et al., 2016). Water temperature is one of the

main drivers of elasmobranch migration, with pelagic species

preferring warmer tropical waters (Arrowsmith et al., 2021; Lee

et al., 2019; Spurgeon et al., 2022). This corroborates our finding

with Cabo Verde, the only archipelago located in the tropical region

with the highest number of oceanic migratory pelagic species.

Archipelagos with greater similarity and geographical proximity

share a higher number of less mobile species. However, the Azores

share more species with the Canary Islands than Madeira, despite its

closer proximity to the latter. In a previous study, a greater similarity

was found between the Azores and Madeira when comparing

elasmobranch assemblage, and the Canary Islands were clustered
FIGURE 5

IUCN Red List Status (A) and top ten FUSE (Functionally Unique, Specialized, and Endangered) sharks in Macaronesia and Cabo Verde (B). AZO,
Azores; MAD, Madeira; CAN, Canary Islands; CV, Cabo Verde.
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with Portugal’s mainland (Das and Afonso, 2017). As deep-sea and

non-migratory species are the main contributors to the difference in

assemblage composition, the authors emphasize the role of the

barriers imposed by the abyssal planes and the seamounts in the

region (Das and Afonso, 2017). However, it should be noted here that
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that study also included rays and chimaeras and had a smaller

number of shark species (39) (Das and Afonso, 2017) than the

present study (45) for the Azores.

In terms of mode of reproduction, Cabo Verde is the only

archipelago where there is no record of oviparous shark species. Six
FIGURE 6

Frequency of shark species affected by each of the main threats per archipelago and their respective risk of extinction according to the IUCN (A),
Fishing Vulnerability Index (B), and Climate Change Risk Assessment (C). DD, Data Deficient; NE, Not Evaluated; LC, Least Concern; NT, Near
Threatened; VU, Vulnerable; EN, Endangered; CE, Critically Endangered. AZO, Azores; MAD, Madeira; CAN, Canary Islands; CV, Cabo Verde; CLC,
Climate Change; DHI, Direct Human Intrusion; FIS, Fisheries; HAD, Habitat Degradation; POL, Pollution.
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oviparous species, namely Iceland catshark (Apristurus laurussonii),

ghost catshark (Apristurus manis), blackmouth catshark (Galeus

melastomus), mouse catshark (Galeus murinus), smallspotted

catshark (Scyliorhinus canicula) and nursehound (Scyliorhinus

stellaris) have been recorded around the temperate archipelagos

of Macaronesia. Although this needs further investigation, this

trend seems to apply to rays as well. Rays and chimaeras are

among the least studied chondrichthyans in the region,

particularly in the archipelagos of Madeira and Cabo Verde

(McIvor et al., 2022) and were not included in the present study

due to the lack of data from these groups to support a solid

comparison. Here, we argue that Cabo Verde’s great geographical

isolation from the rest of the archipelagos and the mainland in

combination with great depths and seamounts serve as a barrier to

the colonization of oviparous species in this archipelago. In fact,

oviparous sharks are generally small benthic and poor swimmers

dependent on continuous habitats, which limit their long

migrations (Ebert et al., 2021).

The North Atlantic Ocean is heavily exploited by industrial

fishing (Queiroz et al., 2012, 2016). In this region, the longline

fishing fleet is mainly made up of European Union countries,

particularly Spain, France, the United Kingdom, and Portugal

(Oceana, 2009). The fleets from these countries target areas that

pelagic sharks use as their preferred habitats (Queiroz et al., 2016).

Blue shark and the shortfin mako are reported to be the species

most caught by industrial fishing in all the archipelagos of

Macaronesia and Cabo Verde (Coelho et al., 2020; Pham et al.,

2013). The highly migratory nature of these species increases the

chance of interaction with industrial fisheries at high seas, both in

targeted fisheries and as bycatch (Torres et al., 2016). The global

annual catch of blue sharks has been estimated at 350000 tons,

making it the most caught shark species in the world and one of the

main elasmobranchs caught in the North Atlantic (Clarke et al.,

2006; Rogan and Mackey, 2007). Stock status indicator for blue

shark and shortfin mako, including analysis of size frequency

distributions and standardized catch-per-unit-of-efforts indexes

from pelagic longline fleets fishery of European Union in the

Cabo Verde EEZ between 2006 and 2015, was performed by

Coelho et al. (2020). They found that the blue shark catch is

composed mainly of adults, which can be a sign of a stable

population, contrary to shortfin mako, which consists mainly of

juveniles (Coelho et al., 2020). The authors argue that, together with

a decrease in the mean size of shortfin mako caught by the

European Union fleet, it may indicate overfishing of the species in

the region (Coelho et al., 2020). As our results show, the species that

occur in the Canary Islands and Cabo Verde have a higher

vulnerability index to fishing than the Azores and Madeira. This

is partly due to the greater number of pelagic species in the Canary

Islands and Cabo Verde, favoring their greater interaction with

industrial fishing. On the other hand, the overexploitation of species

in Cabo Verde (Coelho et al., 2020; Seymour et al., 2024) can be

explained by poor governance in insular tropical countries, as noted

in a previous study (MacNeil et al., 2020). While in the Azores,

Madeira and the Canary Islands operate only their national and EU

fleets, Cabo Verde has fishing agreements with several other

countries and poor enforcement of fishing regulations in its
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waters (Carneiro, 2011; Seymour et al., 2024). In addition to the

agreement with the European Union, which currently allows access

to 56 vessels from Spain, France and Portugal, Cabo Verde also has

fishing agreements with Senegal, Mauritania, São Tomé and

Principe, Japan and China (Ministério do Mar, 2024). On top of

this, Cabo Verde’s national fleet has seen an increase in both

artisanal and semi-industrial vessels in recent years (Ministério do

Mar, 2024), while the other Macaronesian archipelagos show the

opposite trend (Fernández-Palacios et al., 2023).

Marine protected areas are widely recognized as one of the most

effective tools for protecting marine habitats and species, including

sharks (Albano et al., 2021). Its effectiveness depends on the extent of

the protected area and the level of protection (Bonnin et al., 2021;

Ferreira et al., 2022; Lara-Lizardi et al., 2022; Murie et al., 2023). The

current state of governance of marine protected areas in the Azores

offers greater protection to sharks than the archipelagos further south.

The Azores has the largest EEZ (approximately 980,000 km2) in

Macaronesia and was one of the pioneers in establishing marine

protected areas in the 1980s (Abecasis et al., 2015; Maestro et al.,

2020). The extent of its marine protected area covers 112,635 km2

(Maestro et al., 2020). More recently, the Azorean regional

government passed legislation extending its network of marine

protected areas to cover 30% of its EEZ, 15% of which is fully

protected and 15% highly protected. Like the archipelagos of Madeira

and the Canary Islands, the Azores’ marine protected areas cover a

diversity of coastal, open sea, seamounts and deep-sea habitats,

offering greater protection for sharks in the region (Afonso et al.,

2022; Vandeperre et al., 2014). Madeira and the Canary Islands have

an exclusive economic zone (around 450,000 km2) and a marine

protected area of approximately the same size of around 12,000 km2.

The Selvagens islands of Madeira have one of the largest fully

protected marine areas in Europe, covering an area of

approximately 2700 km2 (Alves et al., 2022). Cabo Verde has the

second largest EEZ (approximately 730,000 km2) and the smallest

MPA in the region (only 1321.28 km2) (Sena et al., 2023). In addition,

its marine protected areas are all exclusively coastal, established as

extensions of terrestrial protected areas, focusing mainly on

protecting of sea turtles and seabirds (Seymour et al., 2024).

Habitat degradation is the second most significant pressure on

sharks in Macaronesia and Cabo Verde, affecting many species, most

of them coastal and all threatened with extinction. This finding is very

relevant to the region, given that due to its tourist attractions, there is

a growing pressure on coastal areas (Morey et al., 2019). However,

Das and Afonso (2017) state that there is no clear evidence of habitat

degradation, pollution, or other factors affecting elasmobranchs in the

Azores. The angel shark is a critically endangered coastal species

found in Canarian waters (Morey et al., 2019; Jiménez‐Alvarado et al.,

2020). The rapid development of new infrastructure,

accommodation, and facilities to meet the demands of increased

tourism is known to potentially increase habitat loss and degradation,

water pollution, and altered sediment transport, thus affecting the

fitness of the angelshark species in the Canary Islands (Morey et al.,

2019; Barker et al., 2016). In Cabo Verde, for example, there has been

increased pressure from tourists visiting a potential nursery area of

lemon sharks (Negaprion brevirostris), in the island of Sal. This is a

very shallow area that favors the presence of people, which can
frontiersin.org

https://doi.org/10.3389/fmars.2025.1490317
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Varela et al. 10.3389/fmars.2025.1490317
consequently alter the bottom, the behavior of the animals, and

potentially their abundance.

Of the 78 shark species that occur inMacaronesia and Cabo Verde,

only four are recognized by the IUCN as being affected by climate

change. These species are bull shark (Carcharhinus leucas), blacktip

shark (Carcharhinus limbatus), nurse shark (Ginglymostoma cirratum),

and Greenland shark (Somniosus microcephalus). They are all

threatened with extinction and are indirectly affected by climate

change through impacts on their habitats, prey, or changes to their

range. However, many studies have shown that several other species

already suffer some direct or indirect impact from climate change

(Santos et al., 2021). In fact, the North Atlantic will experience

significant warming, loss of oxygen content (Bates and Johnson,

2020), and changes in salinity and ocean currents (Ditlevsen and

Ditlevsen, 2023; Manabe and Stouffer, 1995) depending on the different

greenhouse gas emission scenarios. Many pelagic shark species in the

North Atlantic are highly migratory (Coelho et al., 2020; Queiroz et al.,

2016) and their movements correlate with sea water temperature

(Hammerschlag et al., 2022; Vedor et al., 2021a). Evidence shows

that sharks may respond to climate change by shifting their latitudinal

range or moving to deeper, cooler waters to enhance their physiological

processes (Bangley et al., 2018; Crear et al., 2023). In the context of

climate change, the tropical region (where many species live at their

thermal limit) will lose habitat suitability while the higher latitudes will

gain for many sharks (Diaz-Carballido et al., 2022; Rodriguez-Burgos

et al., 2022; Santos et al., 2024a). Cabo Verde has fewer species that use

boreal and temperate zones, compared to the other archipelagos, which

makes it more vulnerable to climate change, and therefore with more

species under medium-high risk (Santos et al., 2024b). On the other

hand, in the archipelagos with higher latitudes, species have a greater

latitudinal range and there is a gain in habitat suitability. For example,

in recent years there has been an increase in whale shark sightings in

the Azores associated with increasingly warmer water in the region

(Afonso et al., 2014). Hammerschlag et al. (2022) used combined

analysis of animal tracking, remotely sensed environmental data,

habitat modeling, and capture data to investigate the impacts of

climate variability and change on the distributional range and

migratory phenology of tiger shark (Galeocerdo cuvier) in the North

Atlantic. They found that tiger sharks extended their migrations farther

poleward, arriving earlier in the northern latitude in response to

anomalously high sea-surface temperature (Hammerschlag et al.,

2022). In the same study, they analyzed about four decades of tiger

shark captures in the region and found that areas of highest catch

densities have continuously increased towards the north, and catches

are occurring earlier (Hammerschlag et al., 2022). In another study,

researchers using satellite tagging of blue sharks and environmental

modelling in the oxygen minimum zone around Cabo Verde’s

Exclusive Economic Zone, showed that sharks are pushed to the

surface and thus potentially increase the chance of interaction with

industrial fishing and their capture (Vedor et al., 2021b).

Considering FUSE, we found that all four archipelagos share the

same top six priority sharks for protection. In addition to all being

listed as endangered or critically endangered, they all exhibit very

high vulnerability to fishing. With the exception of basking shark and
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scalloped hammerhead, which are at medium risk from climate

change, longfin mako, shortfin mako and whale shark are at

medium-high risk, while oceanic whitetip is at high risk (Santos et

al., 2024b). The critically endangered Galeorhinus galeus, found

throughout the archipelagos, is also a species of conservation

concern because of its high FUSE value. Due to their highly

migratory nature, the protection of species in the region requires a

joint effort between the archipelagos to ensure effective species

conservation. This finding supports the idea previously suggested of

the need to declare a marine corridor to protect elasmobranchs in the

region (Tuya et al., 2022). A shared marine protected area in the

region would protect not only sharks but also other taxa such as sea

turtles and cetaceans that use the region for their migratory routes.

This study shows that the Macaronesian and Cabo Verde

regions faces similar challenges for shark conservation. However,

the archipelago of Cabo Verde presents greater challenges due to

the existence of a greater number of threatened species and fragility

due to poor monitoring, conservation and research. Faced with

these challenges, better control of the species caught in its waters is

essential to ensure that only species permitted under the agreements

are caught and to collect scientific data that can be used for

decision-making. The next reviews of laws and management

measures should look at other species (e.g. sand tiger shark) that

are not migratory but are highly impacted by local fisheries (e.g.

nurse shark). Local fisheries should also be the target of scientific

studies, better involvement in the decision-making and

management measures, as well as training in the identification of

prohibited species and release mechanisms. There is an urgent need

to expand and create more marine protected areas (both coastal and

pelagic environments) in Cabo Verde that guarantee the protection

of critical areas, such as Sal Rei Bay, Boa Vista Island, the first shark

nursery described in Cabo Verde and the only one of multiple

species in the whole of Atlantic Africa (Rosa et al., 2023). While for

Cabo Verde it is essential to boost research to define new science-

based marine protected areas to ensure the inclusion of key habitats

and endangered species, for the Azores, Madeira and the Canary

Islands their main priorities are effective management and

enforcement of their waters.
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Maestro, M., Chica-Ruiz, J. A., and Pérez-Cayeiro, M. L. (2020). Analysis of marine
protected area management: The Marine Park of the Azores (Portugal). Mar. Policy
119, 104104. doi: 10.1016/j.marpol.2020.104104

Manabe, S., and Stouffer, R. J. (1995). Simulation of abrupt climate change induced
by freshwater input to the North Atlantic Ocean. Nature 378, 165–167. doi: 10.1038/
378165a0

Marco, A., Abella, E., Liria-Loza, A., Martins, S., López, O., Jiménez-Bordón, S.,
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