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Introduction: The accurate determination of the ocean sound speed profile

(SSP) is essential for oceanographic research and marine engineering. Traditional

methods for acquiring SSP data are often time-consuming and costly. Machine

learning techniques provide a more efficient alternative for SSP inversion,

effectively addressing the limitations of conventional approaches.

Methods: This study proposes a novel SSP inversion model based on a grouped

dilated convolution (GDC) Informer architecture. By replacing the standard one-

dimensional convolution in the Informer model with GDC, the proposed model

expands its receptive field and improves computational efficiency. The model

was trained using Argo profile data from 2008 to 2017, incorporating empirical

orthogonal function (EOF) decomposition data, geographic location, temporal

information, and historical SSP data, enabling SSP inversion across diverse

regions and time periods.

Results: The model’s performance was evaluated using mean absolute error

(MAE), root mean square error (RMSE) and mean absolute percentage error

(MAPE) metrics. Experimental results demonstrate that the Informer-GDCmodel

achieves evaluation metrics of 0.355 m/s and 0.611 m/s for MAE, 0.241 m/s and

0.394 m/s for RMSE, and 0.018% and 0.025% for MAPE compared with measured

data from 2018.

Discussion: Compared to the LSTM and Informer models, the proposed model

improves MAE, RMSE, and MAPE by 46.51% and 29.66%, 51.65% and 39.28%, and

51.25% and 37.08%, respectively. These findings highlight the superior accuracy,

stability, and efficiency of the Informer-GDC model, marking a significant

advancement in SSP inversion methodologies.
KEYWORDS

sound speed profile, inversion, grouped dilated convolution, informer model, empirical
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1 Introduction

The sound speed profile (SSP) is a fundamental parameter in

oceanography, marine engineering, and seabed topography studies

(Liu and Jiayu, 2010). Accurate determination of SSP is crucial for

various research areas (LeBlanc et al., 1980; Leroy et al., 2008; Talib

et al., 2011). Traditionally, SSP observations have relied on in-situ

measurements, such as sound velocity profilers (SVPs). However,

deploying such equipment across large oceanic regions is both time-

intensive and expensive, making large-scale monitoring impractical

(Heidemann et al., 2012; Huang et al., 2020). To address these

challenges, researchers have proposed indirect SSP inversion

methods (DeSanto, 1984), among which machine learning-based

approaches have emerged as particularly representative. These

methods analyze historical data to estimate SSP, significantly

reducing costs and improving scalability.

Recent studies have demonstrated that machine learning-based

methods not only enhance SSP prediction accuracy but also enable

real-time monitoring and high-resolution data analysis, making

them highly applicable for large-scale ocean studies and

environmental monitoring (Bianco et al., 2019; Li et al., 2022).

Notably, machine learning models such as artificial neural networks

(ANN), long short-term memory (LSTM) networks, and self-

organizing maps (SOM) have shown great potential for SSP

inversion (Jain and Ali, 2006; Feng et al., 2021). For example, Li

et al. utilized ANN models to invert SSP with promising results,

laying a foundation for subsequent ANN-based studies (Li et al.,

2022). Huang et al. combined ANN with ray theory to invert SSP

(Huang et al., 2018). Similarly, Huang et al. applied clustering

analysis and feedforward neural networks to construct a multi-task

model for SSP inversion (Huang et al., 2023). Hou et al. developed a

hierarchical approach by stratifying SSP data and employing LSTM

networks to construct SSP models (Hou et al., 2020). Numerous

other studies have demonstrated the effectiveness of machine

learning in achieving high SSP inversion accuracy (Jain and Ali,

2006; Huang et al., 2012; Ballard et al., 2014; Yang et al., 2020; Yuan

et al., 2023; Huang et al., 2024). These models, trained on large

historical datasets, have proven capable of providing high-accuracy

predictions. However, challenges remain, including overfitting, the

requirement for extensive training data, and computational

complexities in processing high-dimensional nonlinear data.

To reduce computational complexity, Davis (1976) demonstrated

that empirical orthogonal function (EOF) decomposition effectively

extracts sound speed features. By combining the first mmm EOF

modes with the mean SSP, SSP characteristics can be accurately

represented, providing a theoretical foundation for subsequent

inversion studies. J.C. Park integrated EOF decomposition with

multilayer perceptron neural networks for SSP inversion. Li et al.

developed a model combining SOM and EOF-based regression

(sEOF-R) for SSP inversion (Li et al., 2021). Bianco et al. applied

sparse dictionary learning to optimize SSP representation and

integrated EOF decomposition for inversion (Bianco and Gerstoft,

2017; Castro-Correa et al., 2022). Feng et al. built an SSP inversion

model combining EOF decomposition with MLR, SVM, and
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XGBoost for Argo data inversion and prediction (Feng et al., 2024).

Other researchers have also employed EOF decomposition with

BPNN and LSTM (Wang et al., 2020; Piao et al., 2023). While

these methods have yielded promising results, models like BPNN and

SOM lack the flexibility of modern architectures, whereas LSTM and

deep networks require substantial training data and computational

resources, potentially limiting their application in data-

sparse environments.

Informer model, which utilizes a probabilistic sparse attention

mechanism, effectively addresses the challenges associated with

long-sequence SSP inversion. It demonstrates superior prediction

accuracy compared to alternative models by analyzing the intrinsic

relationships within the dataset (Zhou et al., 2021; Yang et al., 2022;

Tong et al., 2024). This study introduces Informer model to the

domain of SSP inversion and presents the following contributions:
1. The self-attention extraction process within the encoder

module of Informer model has been improved by replacing

traditional convolution with grouped dilated convolution

(GDC). This enhancement enables the model to prioritize

the extraction of SSP features, thereby augmenting its

capability for inverse operations.

2. SSP data were extracted from the Argo dataset and

subsequently decomposed using EOF. The training

dataset includes the following variables: temperature,

depth, salinity, EOF components, latitude, longitude,

time, and historical SSP. The results of a series of

experiments indicate that Informer-GDC model exhibits

superior performance compared to both LSTM and

Informer models, particularly in terms of inversion

accuracy and stability.
In summary, the structure of this paper is organized as follows:

Section 2 provides an overview of the relevant algorithms and the

unique process of SSP inversion. Section 3 outlines the data sources

employed in the experimental procedure and offers a comprehensive

description of the input dataset. Section 4 delivers a thorough analysis

of the experimental results. Finally, Section 5 synthesizes the results

and presents novel insights into SSP inversion.
2 Materials and methods

2.1 EOF representation of SSP

The complexity of marine ecosystems renders the use of basic

mathematical models insufficient for accurately representing the

characteristics of SSP. To mitigate the complexity associated with

SSP, the empirical orthogonal decomposition method is employed

to analyze sound speed data. Typically, the first five mode vectors

(i.e., those that account for a cumulative contribution rate exceeding

95%) are selected to characterize SSP within a given region (Smith

et al., 1996). SSP for a specific region can be articulated using the

first m feature vectors as follows:
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Cz=C0+o
m

i=1
a if i(z) (1)

where z represents depth; C0 represents the mean SSP; a i

represents the coefficients of the EOF modes for SSP; and f i(z)
represents EOF.
2.2 Informer model

Informer model is a long-sequence forecasting framework that

has been introduced in recent years. Its primary advantage lies in its

ability to effectively identify and elucidate the relationships among

features associated with different data points. Informer model

represents an advancement over Transformer model, sharing a

similar structural configuration. The encoder integrates ProbSparse

self-attention and convolutional pooling layers, which enhance the

computational efficiency of the model and address the challenges

associated with high computational complexity and inefficiencies

resulting from excessively deep attention stacks. Furthermore, the

decoder generates predictions in a single step, significantly expediting

the long-sequence forecasting process while avoiding the error

accumulation that is typically associated with multi-step predictions.

ProbSparse self-attention is formulated utilizing the query

matrix Q, the key matrix K, and the value matrix V. In contrast

to the conventional self-attention mechanism, which requires a

quadratic complexityO(LQLK ) for the computation of dot products,

ProbSparse self-attention eliminates the need for this additional

calculation. This methodology improves computational efficiency

by focusing on dot products that exhibit high contribution rates

while disregarding those with low contribution rates. The

computation is executed as follows:

AttentionQ,K ,V=Sof tmax
�QKTffiffi

d
p

� �
V (2)

where �Q represents the sparsified matrix of Q, which includes

the sparsity measure M(Q,K); V represents the value matrix; KT

represents the transpose of the key matrix; d represents the input

matrix; and Softmax( � ) represents the activation function.

The distillation process reduces the length of the input sequence

or matrix by half, thereby emphasizing key features. This is achieved

through the utilization of pooling layers to extract these features,

which subsequently generates a self-attention feature map within a

more compact range. The distillation from the i-th to the (i+1)-th

self-attention layer is determined as follows:

Xt
i+1=MaxPool ELU(Conc1d½Xt

i �AB)ð Þ (3)

where ½Xt
i �AB represents the attention module; Conc1d(�)

represents the one-dimensional convolution operation along the

depth sequence; ELU represents the activation function; and Max
Pool(�) represents the max pooling layer.

The architecture of the decoder adheres to a conventional

configuration, comprising two identical multi-head attention

layers that are stacked in succession. This configuration generates

predictions via a single-step forward operation. The output vector

produced by the decoder is expressed as follows:
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Xf eedde=Concat(X
t
token,X

t
0)∈R(Ltoken+Ly)�dmodel (4)

where Xt
token represents the start token and Xt

0 represents a

placeholder for the label sequence, typically set to zero. The multi-

head attention mechanism in the decoder diverges from that in the

encoder, with the dot product filter set to −∞ for preventing

autoregressive effects in the prediction data.
2.3 Informer network based on group
dilated convolution

2.3.1 Group dilated convolution
Grouped convolution possesses the ability to improve the

computational efficiency while keeping the parameters unchanged.

Additionally, it necessitates a minimal duration to extract feature

information (Jeon and Kim, 2021; Chen et al., 2022; Zhu et al., 2023).

When the input size of standard convolution is G, the parameter

count for grouped convolution is reduced to 1/G, thereby

significantly decreasing the computational complexity of the

convolutional network model. The convolution operation for each

group is defined as follows:

xi=f (Wixi+b i),i=1⋯ɡ (5)

where x = x1 ∪ x2 ∪ ⋯ ∪ xg represents the output feature map;

Wi and bi represent the model parameters; and f(∙) represents the
activation function.

While group convolution effectively reduces the number of

parameters within a neural network, it concurrently limits the

exchange of information between groups, which can lead to a

decline in the network’s learning capacity and a weakened

representation of features. To mitigate the adverse effects on

learning capability, dilated convolution has been introduced. The

primary principle of dilated convolution involves the integration of

zero values (representing void information) into the standard

convolution kernel. This modification serves to expand the

receptive field of the convolutional network, thereby allowing the

output to capture a broader spectrum of information (Chen et al.,

2018; Lin et al., 2018; Xia et al., 2020). Importantly, dilation

enhances the spacing of the convolution kernel without increasing

the number of parameters, thereby extending the range of feature

information (Wang et al., 2021). Assuming the size of the dilated

convolution kernel is k and the dilation rate R, the effective kernel
size K1 can be calculated as follows:

K1=k+(k−1)*(R−1) (6)

The size of the convolution kernel significantly impacts feature

extraction. Different kernel sizes present varying receptive fields;

smaller kernels tend to concentrate on local information, whereas

larger kernels capture global information. Although there is no

universally accepted standard for selecting the kernel size, this

model follows the parameters developed by Jiang et al. (2019)

with the aim of enhancing the receptive field without altering the

number of parameters. This process is depicted in Figure 1, where

the value of 580 represents the spatial features of the input data

following convolution, and the value of 12 denotes the number of
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channels generated post-convolution. The subsequent steps to be

undertaken are as follows:

Step 1: The input feature map is partitioned into four feature

groups, each measuring 580×3. Subsequently, these groups are

processed through a convolutional layer characterized by a kernel

size of 4 and a stride of 1, resulting in an output feature map of

580×3 for each group.

Step 2: The feature maps are subsequently processed through

dilated convolution layers, utilizing kernel sizes of 8, a stride of 3,

and dilation rates of 1, 2, 4, and 8. This process results in an output

feature dimension of 580×3 for each group.

Step 3: The features obtained are concatenated across

dimensions, yielding an output feature map of dimensions 580×12.

To ensure the symmetry of the resulting output feature maps, the

convolution kernels employed in the group of dilated convolutions

are configured to be odd numbers. This configuration aids in the

subsequent data stitching process. Extensive experimentation has

shown that utilizing convolution kernels of odd numbers significantly

enhances the capability for feature extraction.

2.3.2 Group dilated convolution informer model
The integration of ProbSparse self-attention with a

convolutional module for feature map extraction, alongside the

stacking of self-attention and one-dimensional convolution

modules, is likely to lead to an increase in computational costs.

This increase arises from a reduction in the perceptual field, which

consequently results in redundant computations and a decrease in

computational efficiency. This issue is particularly pronounced

when handling long sequence data. To mitigate this challenge,
Frontiers in Marine Science 04
this study proposes the implementation of grouped extended

convolution as a substitute for the original convolution, with the

objective of enhancing the model’s ability to identify features across

a wider perceptual field.

Informer-GDC model consists of four primary components: the

input layer, the encoding layer, the decoding layer, and the output

layer. The input layer is primarily tasked with preprocessing SSP

data, which includes calculating sound speed, selecting relevant

sound speed feature quantities, and partitioning SSP dataset. The

encoding and decoding layers form the core of the model,

concentrating on the positional and temporal encoding of the

input training data. The output layer is responsible for linking the

model’s output, thereby facilitating the acquisition of inversion

results and the evaluation of their accuracy.

The dataset is input into the model’s encoder and decoder,

where the data undergoes an embedding process that produces

modal features, depth features, and SSP features. These features are

represented as follows:

X=xImf+xTSD+xHSSP+xLocation+xTime (7)

where xImf represents the encoding of input modal data; xTSD
represents the encoding of input temperature, salinity, and depth,

with consideration of temperature and salinity at different depths;

xHSSP represents the encoding of historical SSP; xLocation encodes the
geographical location of the SSP; and xTime represents the time at

which SSP was recorded. The subsequent section illustrates the

model workflow, as shown in Figure 2.

Step 1: Temperature, depth, and salinity data from a specific

regional dataset are extracted and employed alongside an empirical
FIGURE 1

Group dilated convolutions process..
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formula to produce the corresponding SSP. Subsequently, SSP

should be decomposed using EOF, with the resulting components

incorporated as part of the input dataset.

Step 2: The temperature data, depth data, salinity data, features

derived from EOF decomposition, geographical information

(including latitude and longitude), temporal data, and historical

SSP data must be integrated into a comprehensive input data

matrix. This matrix is subsequently partitioned into two sections.

Following this, the input sequence data is inverted to produce the

sound velocity data.

Step 3: The input sequence data is subsequently processed by

the encoder layer. Within this layer, the Multi-headed ProbSparse

Self-attention module effectively filters the features of the input

data. Additionally, the group dilated convolution, in conjunction

with pooling layers, produces feature maps that are utilized by the

Multi-headed self-attention mechanism in the decoder layer.

Step 4: The inverted sound velocity data is subsequently

processed by the multi-headed ProbSparse self-attention module,

after which it is further input into the multi-headed self-

attention module.
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Step 5: A one-step prediction is conducted to generate SSP data

for the specified location.
3 Data and evaluation metrics

3.1 Argo data

Hangzhou Global Ocean Argo Scientific Observation Research

Station (Li et al., 2017) provides global ocean temperature and

salinity profile data with a spatial resolution of 1°×1°. The dataset

includes different types of data files, such as annual averages,

monthly averages, and monthly data files over several years. The

vertical resolution spans 58 layers within the 0-2000 dbar

range.Argo gridded dataset, covering the period from January

2008 to December 2018, was utilized as the experimental dataset

(ftp://ftp.argo.org.cn/pub/ARGO/global/). The dataset from

January 2008 to December 2017 served as the training dataset,

while the dataset from 2018 was designated as the test dataset. SSP

was calculated in accordance with the Mackenzie formula
FIGURE 2

SSP Inversion Workflow with the Informer-GDC Model.
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(Mackenzie, 1981). The Mackenzie formula is another commonly

used empirical equation for sound speed calculation, applicable

under general oceanic conditions, particularly when temperature

and salinity variations are minimal (Mackenzie, 1966). The formula

is expressed as follows:

C = 1420:4 + 5:04T − 0:056T2 + 0:00029T3 +

(1:34 + 0:016T)(S − 35) + 0:016P

(8)

Where C is the sound speed (m/s); T is the temperature (°C); S
is the salinity (ppt); P is the pressure (dbar).

Four experimental regions were selected (Figure 3A). Region 1

corresponds to Bay of Bengal (84°-90°E, 10°-16°N), Region 2 pertains

to South China Sea (113°-118°E, 8°-14°N), Region 3 encompasses

Pacific Ocean (132°-138°E, 23°-29°N), and Region 4 is also located in

Pacific Ocean (157°-163°E, 33°-39°N). The red boxes labeled a, b, c, and

d indicate the locations of SSP inversion as determined by the model,

specifically at coordinates 85°E, 15°N; 115°E, 12°N; 135°E, 25°N; and
Frontiers in Marine Science 06
160°E, 35°N, respectively. Figures 3B, C illustrates the annual mean

temperature and salinity distributions across the longitudinal range of

85°E to 180°E and the latitudinal range of 0°N to 50°N.
3.2 EOF analysis

The historical SSP data from the training sample datasets across

the four experimental regions were analyzed using EOF

decomposition. The first five modes resulting from this analysis

are depicted in Figure 3. The characteristic values of the first

through fifth modes are predominantly concentrated within the

depth range of 0 m to -800 m, with variations below -800 m

approaching negligible levels. Figure 4A illustrates that sound speed

perturbations are primarily concentrated between 0 m and -600 m,

while (Figure 4B) indicates a concentration between 0 m and

-1000 m. Figure 4C demonstrates that these perturbations are

concentrated between 0 m and -1200 m, and (Figure 4D) further
FIGURE 3

Distribution of experimental area locations.
FIGURE 4

EOF modal features at each location.
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indicates a concentration between 0 m and -800 m. Table 1 presents

the contribution rates of the first five eigenvectors derived from the

EOF decomposition at various locations, revealing that the

cumulative contribution rate of these five modes exceeds 95%.

These initial five modal components are integrated into the

training sample data.
3.3 Evaluation metrics

To assess the accuracy of the model’s inversion of SSP, three

primary metrics have been established: mean absolute error (MAE),

root mean square error (RMSE), and mean absolute percentage

error (MAPE). These evaluation criteria have been specifically

designed for sound speed inversion (Liu and Li, 2021; Liu and

Qu, 2023; Qu et al., 2024). The corresponding equations are

expressed as follows:

MAE=on
i=1jytrue−yinver j
n

(9)

MSE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1
(ytrue−yinver )

2

n

q
(10)

MAPE= on
i=1

jytrue−yinver j
ytrue

� �
n �100% (11)

where ytrue represents the measured value of SSP; yinver
represents the inverted value of the SSP; and n represents the

number of data samples.
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4 Results and discussion

In accordance with the calculation formula for SSP, the magnitude

of SSP is influenced by both temperature and salinity. However, various

factors can impact the temperature and salinity of seawater (Zhang et al.,

2017). To ensure an accurate inversion of SSP at a specific location, it is

crucial to consider several additional factors, including the geographical

location of the inversion, temporal variations, oceanic activity, and the

marine environment. This study involved two experiments designed to

demonstrate the effectiveness and accuracy of Informer-GDC model in

performing inversions. Subsequently, the performance of Informer-

GDC model was compared with that of LSTM and Informer models to

establish the superiority of the proposed model.
4.1 SSP inversion across different depths

To assess the accuracy of SSP inversion executed by Informer-GDC

model, Region 2 was designated as the experimental site, and SSP

inversion was performed at Location b(115°E, 12°N). SSP inversion

results generated by the proposed model were subsequently compared

with the actual SSP data collected in March (Figure 5).

In Figure 5, SSP inverted by Informer-GDC model exhibits a strong

correlationwith themeasured SSP, with onlyminimal discrepancies in the

values. The analysis of the inversion sound speed error data in Table 2

indicates that the most significant sound speed error in the model

inversion occurs within the depth range of 0 m to 200 m, characterized

by mean squared error (MSE) of 0.575 m/s, MAE of 0.527 m/s, and
TABLE 1 Feature contribution rate and order.

Location
Contribution rate/Order

Eof1 Eof2 Eof3 Eof4 Eof5

85°E,15°N 68.2% 14.2% 8.1% 3.4% 2.6%

115°E,12°N 72.1% 13.7% 4.7% 2.9% 1.7%

130°E,25°N 73.8% 16.5% 3.0% 2.6% 1.3%

160°E,35°N 70.4% 13.5% 5.3% 3.7% 2.2%
FIGURE 5

SSP inversion using the Informer-GDC Model.
TABLE 2 Evaluation Metrics of Sound Speed Profiles Inverted by
Informer-GDC at Different Depths.

Depth MSE MAE MAPE

0~200m 0.575 0.527 0.034

200~400m 0.378 0.307 0.021

400~800m 0.206 0.164 0.011

800~2000m 0.073 0.056 0.004

0~2000m 0.387 0.284 0.019
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MAPE of 0.034%. The temperature at the inversion site displays marked

seasonal variations, with the lowest temperatures recorded during the

winter months, exhibiting minimal fluctuations. In contrast, a significant

increase in the daily average temperature is observed in March. The

temperature and salinity of the surface layer are notably affected by

monsoons, solar radiation, and disturbances in seawater, leading to more

pronounced variations. Additionally, the salinity at this location is

influenced by seawater intrusion from the Luzon Strait and Mindoro

Strait, resulting in a sustained increase in salinity levels (Zhang et al., 2016;

Yi et al., 2020; Yang et al., 2023). However, during this period, the effect of

rainfall on surface layer salinity is minimal, complicating the changes in

seawater salinity. As depth increases, the influence of seawater salinity and
Frontiers in Marine Science 08
temperature on sound speed inversion diminishes, leading to a reduction

in all error metrics. Within the depth range of 0 m to 2000 m, the overall

sound speed inversion errors of themodel are as follows:MSE of 0.387m/

s, MAE of 0.527 m/s, and MAPE of 0.019%. The consistently low error

rates in sound speed inversion indicate that the model is proficient in

accurately inverting SSP.
4.2 SSP inversion across different times

Region 3 was designated as the experimental area, and SSP at

Location C was inverted. The temperature and salinity at this
FIGURE 6

SSP inversion for different months.
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location exhibit considerable seasonal variations across different

time periods, which poses a challenge to the accuracy and stability

of the model’s inversion. Figure 6 presents a comparison of SSP

inversions generated by Informer-GDC model across four seasons

alongside the measured SSP, indicating that the inversion errors in

sound velocity predominantly fall within the range of 0 m to 400 m.

Table 3 demonstrates that, although the inversion metrics of the

model are relatively consistent in March and December, the sound

velocity error is most pronounced in September, followed by June.

In particular, the inversion error metrics for September are shown as

follows: MSE = 0.504 m/s, MAE = 0.345 m/s, and MAPE = 0.022%.

When compared to the results obtained in September, themetrics for the

other two months (March and December) exhibit average reductions of

10.91%, 5.56%, and 16.7% for MSE, MAE, and MAPE, respectively. In
FIGURE 7

SSP Inversion by different models (Region 1).
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both March and December, the concentration of sound velocity errors is

observed at depths ranging from 0m to 450m, with a notable increase in

the magnitude of errors occurring closer to the ocean surface. The

maximum recorded errors were -1.344 m/s and 0.878 m/s, respectively.
TABLE 3 Evaluation Metrics of Sound Velocity Profiles Inverted by
Informer-GDC in Different Months.

Mouth MSE MAE MAPE

March 0.442 0.318 0.022

June 0.454 0.336 0.024

September 0.504 0.345 0.026

December 0.448 0.327 0.021
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The larger errors in the surface layer may be attributed to the inversion

location being situated within the highly dynamic Kuroshio Current

region (Hsin et al., 2006), where intense oceanic mixing leads to

significant alterations in surface salinity. While temperature

fluctuations in March and December are relatively minor, the

substantial variations in salinity result in more pronounced inversion

errors. In June, sound velocity errors are concentrated between depths of

0 m and 820 m. During this period, solar radiation heats the seawater

more uniformly. However, seasonal rainfall introduces a considerable

volume of freshwater, leading to more significant changes in seawater

temperature and salinity (Hackert and Ballabrera-Poy, 2011).

Additionally, the region is affected by vortex transport. In September,

the larger sound velocity errors are influenced not only by the

aforementioned factors but also by seasonal rainfall, monsoons, and

diurnal variations, which contribute to more pronounced changes in
FIGURE 8

SSP Inversion by different models (Region 4).
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sound velocity. The results of Informer-GDC model across different

months demonstrate consistent evaluation metrics, indicating that the

model exhibits a high degree of accuracy.
4.3 Sound velocity profiles inverted across
different models and locations

To demonstrate the superiority of the proposed model for

inverting SSP, a comparative analysis was performed involving

SSP inverted by LSTM model, Informer model, and Informer-

GDC model, alongside the corresponding measured SSP. The

experimental datasets were selected from Regions 1 and 4, with

validation conducted at Locations A and D within these regions, as

shown in Figures 7 and 8. To maintain the integrity of the
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experimental design, all inversion models were trained on the same

dataset and employed identical parameters. The specific

configurations for the model parameters are outlined in Table 4.

SSP inversion in Region 1 is located in proximity to the equator,

where it experiences a relatively stable annual temperature range of 24°

C to 30°C. The temperature profile exhibits a bimodal structure,

characterized by minor fluctuations from June to November.

Notably, in September, a significant diurnal temperature variation is

observed, leading to considerable shifts in the surface layer

temperature. Seasonal variations in salinity are pronounced and are

primarily influenced by the equatorial current system, monsoons, and

precipitation patterns (Gao et al., 2024). For instance, during the

summer and autumn months, substantial runoff occurs from

Brahmaputra and Ganges rivers, with the region’s average annual

precipitation ranging from 1,000 mm to 3,000 mm. This influx of

freshwater results in a dilution of seawater salinity, while the effects of

the monsoon facilitate significant exchanges between seawater and the

Indian Ocean, leading to notable changes in salinity.

The variability of seawater in Region 4 demonstrates similarities

to that observed in Region 3. Therefore, it will not be examined in

further detail. It is noteworthy that the seasonal variations in Region
Frontiers in Marine Science 11
4 exert a more significant influence compared to those in Region 3.

Consequently, the inversion of sound velocity in the surface layer

becomes a more complex process, imposing greater demands on the

inversion model.

Tables 5, 6 demonstrate that Informer-GDC model exhibits

superior accuracy in comparison to the other two models for SSP

inversion at both locations. At Location A, all three models achieve

high accuracy in SSP inversion. Specifically, the sound velocity error

metrics for LSTM model over the four-month period are as follows:

MSE = 1.102 m/s, MAE = 0.908 m/s, and MAPE = 0.058%. SSP

inversion errors associated with Informer model show improvements

of 51.23%, 52.18%, and 49.57% across the three evaluation standards

when compared to LSTM model. Furthermore, Informer-GDC

model enhances these metrics by 31.76%, 43.08%, and 36.18%

relative to Informer model. At Location D, the accuracy of sound

velocity inversion achieved by Informer-GDC model reflects

improvements of 29.56%, 37.48%, and 37.98% when compared to

Informer model, and 41.78%, 52.12%, and 52.85% when compared to

LSTM model. The results of the experimental analysis conducted

across four seasons at both locations indicate that SSP inversion

utilizing the proposed Informer-GDC model is more closely aligned

with the measured SSP values, thereby substantiating the superiority

of the proposed method.
5 Conclusion

The complexity and dynamics of the oceanic environment lead to

significant variations in SSP, particularly within the surface layer.

Accurate and rapid acquisition of SSP data is crucial for marine

research and engineering. While traditional machine learning

approaches to SSP inversion have demonstrated sufficient accuracy

for research purposes, the demand for higher precision SSP inversion

is particularly relevant to the field of ocean engineering.
TABLE 4 Model parameter settings.

Hyperparameters LSTM Informer Informer-GDC

Input step size
580

Encoder:580
Decoder:290

Encoder:580
Decoder:290

Inversion step size 58 58 58

Dropout rate 0.001 0.001 0.001

Optimizer Adam Adam Adam

Learning rate 0.001 0.001 0.001

Loss function MSE MSE MSE
TABLE 5 Comparison of sound velocity profile errors inverted by different modes.

Model LSTM Informer Informer-GDC

Month MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

March 1.072 0.871 0.058 0.516 0.446 0.029 0.323 0.231 0.023

June 1.021 0.845 0.056 0.498 0.395 0.026 0.355 0.269 0.018

September 0.994 0.765 0.044 0.501 0.397 0.027 0.399 0.255 0.017

December 1.323 1.154 0.077 0.579 0.478 0.032 0.344 0.208 0.014
TABLE 6 Comparison of sound velocity profile errors inverted by different modes.

Model LSTM Informer Informer-GDC

Month MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

March 1.019 0.828 0.054 0.981 0.764 0.049 0.593 0.391 0.025

June 1.073 0.849 0.056 0.933 0.649 0.043 0.578 0.379 0.025

September 0.868 0.622 0.041 0.789 0.552 0.036 0.615 0.402 0.026

December 1.323 1.154 0.076 0.812 0.597 0.039 0.661 0.404 0.026
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This study proposes a novel GDC optimization within the

Informer model for SSP inversion. The model was trained using a

comprehensive dataset from the Argo project, which included

temperature, salinity, depth, EOF-decomposed eigenvectors, latitude,

longitude, time, and historical SSP data from 2008 to 2017. The

Informer-GDCmodel was validated through preliminary experiments

conducted in the South China Sea, where it demonstrated high

accuracy with an MSE of 0.387 m/s, MAE of 0.527 m/s, and MAPE

of 0.019%. Additional validation using data from different months in

the Pacific Ocean confirmed the model’s robustness, with an average

MSE of 0.48 m/s, MAE of 0.31 m/s, and MAPE of 0.02%.

A comparative analysis was conducted to evaluate the inversion

performance of the Informer-GDCmodel against the LSTMmodel and

the standard Informer model across different regions and time periods.

The results indicate that the Informer-GDC model significantly

outperforms both models in SSP inversion accuracy. Specifically, the

Informer-GDC model improved the MSE, MAE, and MAPE by an

average of 46.51%, 29.66%, and 51.65%, respectively, compared to the

LSTM model, and by 39.28% and 51.25% compared to the standard

Informer model. These findings validate the Informer-GDC model as a

robust and superior approach for SSP inversion.

Looking forward, future research will focus on incorporating

additional factors that influence sound speed, such as meteorological

conditions, monsoon patterns, and ocean currents. Integrating these

variables is expected to enhance the model’s precision and applicability,

ultimately contributing to advancements in oceanographic research

while reducing associated costs and workloads.
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