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sulfide deposit on axial volcanic
ridges: a case study of the
Duanqiao hydrothermal field,
Southwest Indian Ridge
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Chuanwei Zhu4, Wei Li1, Guoyin Zhang1, Xuefeng Wang5

and Lisheng Wang5

1Key Laboratory of Submarine Geosciences, Second Institute of Oceanography, Ministry of Natural
Resources, Hangzhou, China, 2School of Oceanography, Shanghai Jiaotong University,
Shanghai, China, 3Institute of Marine Geology, College of Oceanography, Hohai University,
Nanjing, China, 4State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry,
Chinese Academy of Sciences, Guiyang, China, 5Key Laboratory of Cenozoic Geology and
Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
The mineralization process below the surface of the seafloor in a hydrothermal

field has an important influence on the distribution and enrichment of elements.

The Duanqiao hydrothermal field (DHF) is located on the new axial volcanic ridge

of the ultraslow-spreading Southwest Indian Ridge. Owing to the limited surface

sulfide samples, the metallogenic processes occurring below the seafloor

surface such as the element enrichment mechanism and the temporal

evolution of the sulfide deposits remain unclear. In this study, we conducted

mineral texture, geochemical, 230Th/U dating, and laser ablation inductively

coupled plasma mass spectrometer analyses of a drill core containing shallow

sulfide deposits to study their evolution process. The results revealed that pyrite is

enriched in Mn, Co, As, Mo, Ag, Cd, Sb, Tl, and Pb, chalcopyrite is characterized by

high concentrations of Se, Sn, In, As, Ag and Pb, and sphalerite is enriched in Co,

Ga, Ge, As, Ag, Cd, Sb, and Pb. The 230Th/U dating data suggested five different

mineralization periods during 4,552–2,297 years. Apart from the top and bottom,

the core exhibited obvious characteristics of gradual accumulation of

mineralization. Results revealed that the variations in the elemental contents of

different layers and different types of pyrite were controlled by the interaction of

seawater and hydrothermal fluids within the sulfide mound over five different

mineralization periods. Compared with other hydrothermal fields on other mid-

ocean ridges, DHF pyrite is generally enriched in Zn, Pb, As, Ag, Cd, Mo, and Sb,

which might reflect shallow subsurface mixing during different periods of

hydrothermal activity.
KEYWORDS

sulfide drill core, trace metal geochemistry, 230Th/U dating, evolution process,
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1 Introduction

Submarine hydrothermal sulfide deposits have been discovered

in different tectonic settings, including mid-ocean ridges, back-arc

spreading centers and volcanic arcs (Hannington et al., 2005).

Approximately 57% of such hydrothermal sulfide deposits are

formed in mid-ocean ridge environments (https://vents-

data.interridge.org). The scale of the distribution of hydrothermal

sulfide deposits is greater on the slow and ultraslow spreading ridges

because of the longer duration of hydrothermal activity, deeper

magma chambers, and development of detachment faults (Fouquet

et al., 1997; Hannington et al., 2011; Petersen and Hein, 2013; Tao

et al., 2020). Since 2011, a series of cruises have been conducted by

the China Ocean Mineral Resources Research & Development

Association to collect samples and data from the Southwest

Indian Ridge (SWIR). The geochemical characteristics of ore-

forming elements, sources of ore-forming materials, forms of

occurrence of precious metals, precipitation mechanisms, and

physicochemical conditions of ore formation have been studied

using surface sulfide samples obtained from the SWIR (Münch

et al., 2001; Tao et al., 2011; Nayak et al., 2014; Zeng et al., 2017; Liao

et al., 2018; Cao et al., 2021; Yuan et al., 2018a, Yuan et al., 2018b).

The Duanqiao hydrothermal field (DHF) is located on the new

axial volcanic ridges of the ultraslow spreading SWIR. Hydrothermal

fields on axial volcanic ridges generally contain only small-scale

sulfide deposits, but preliminary exploration of the DHF has

revealed that its scale of distribution is larger than that of most

hydrothermal fields on either fast- or slow- spreading ridge axis

(Hannington et al., 2011; German et al., 2016; Yang et al., 2023).

However, its potential mineral resources are lower than those of some

ore deposits developed on the northern Mid-Atlantic Ridge, e.g., s

Puy des Folles, and Krasnov hydrothermal fields (Cherkashov et al.,

2023). Previous studies have demonstrated that a sufficient heat

source, stable channels, and alternating intensity of magma supply

on a ridge axis might explain the large-scale mineralization in the

DHF (Li et al., 2015; Jian et al., 2017; Tao et al., 2020; Chen et al.,

2021). Earlier analyses revealed that the contents of Pb (263-2630

ppm), As (234-726 ppm), Sb (7.32-44.3 ppm), and Ag (35.2 to >100

ppm) in the DHF surface sulfides are relatively high, and substantially

higher than those of the Longqi, Yuhuang, and Tianzuo

hydrothermal fields on the SWIR and those of most magmatic

hydrothermal fields on slow- spreading ridge axis (Fouquet et al.,

2010; Yang et al., 2023). The current understanding of sulfide

mineralization associated with the SWIR is based on the analysis of

surface samples, but the metallogenic processes occurring below the

seafloor surface have yet to be investigated.

Through analysis of sulfide drilling samples collected by the

International Ocean Discovery Program and Blue Mining

programs, the three-dimensional structure and composition of

sulfide deposits can be obtained. The mineralization process

occurring below the surface of the seafloor in a hydrothermal

field has an important influence on the distribution and

enrichment of elements. Current research on drilling samples is

limited to the TAG and Snake Pit hydrothermal fields of the Mid-

Atlantic Ridge, and the Bent Hill hydrothermal zone of the Middle

Valley (Petersen et al., 1998, Petersen et al., 2000; You and Bickle,
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1998;Zierenberg et al., 1998). The internal structure of the

Semenov-5 hydrothermal field has also been studied through

mineralogical and chemical analyses of different parts of the

sulfide deposits (Firstova et al., 2022). The formation of

submarine hydrothermal sulfide proceeded via periodic

mineralization, and its accumulation process included chimney

growth, collapse accumulation, and hydrothermal fluid filling and

metasomatism in open spaces (Humphris et al., 1995; Zierenberg

et al., 1998; Graber et al., 2020). In recent years, the application of in

situ and high-spatial-resolution mineral chemical analysis

techniques has led to important advances in both elucidation of

element migration and enrichment mechanisms, and determination

of the mode of occurrence of modern and ancient seafloor

hydrothermal sulfides (Butler and Nesbitt, 1999; Choi et al., 2023;

Cook et al., 2009; Keith et al., 2016a; Li et al., 2018, Li et al., 2024;

Ren et al., 2021; Wohlgemuth-Ueberwasser et al., 2015; Wang et al.,

2017; Yuan et al., 2018a, Yuan et al., 2018b). The study of

hydrothermal sulfide chronology is vitally important in

determining the history of the formation and evolution,

mineralization scale, accumulation rate, and hydrothermal activity

of sulfide deposits (Lalou and Brichet, 1982, Lalou and Brichet,

1987; Lalou et al., 1993, Lalou et al., 1996; Kuznetsov et al., 2015;

Cherkashov et al., 2017; Jamieson et al., 2014, Jamieson et al., 2023).

This study used drill cores of surface sulfide mounds collected

from the DHF to systematically analyze the sulfide mineralogy, bulk

geochemistry, and in situ geochemical compositions of pyrite,

chalcopyrite, and sphalerite and to perform 230Th/U dating. Based

on the results, the mineralization characteristics and the controlling

factors on trace elements were investigated. The findings of this

study support systematic comprehension of both the metallogenic

element enrichment mechanism and the evolution process of the

DHF from a spatiotemporal perspective.
2 Geological setting

The SWIR extends from the Bouvet Triple Junction in the South

Atlantic Ocean to the Rodrigues Triple Junction in the Indian

Ocean (Figure 1A). It is characterized by ultraslow spreading, with a

full spreading rate of 1.4−1.8 cm/yr (Dick et al., 2003). The DHF is

located between the Indomed and Gallina transfer faults, with the

central volcano at 50°28′ E in segment#27 (Figure 1B) (Cannat

et al., 1999). The SWIR is expanding symmetrically, and the oceanic

crust is 9.5−10.2 km thick, i.e., approximately 3 km thicker than the

average thickness of oceanic crust (Li et al., 2015; Jian et al., 2017;

Liu and Buck, 2018). The DHF is on the axial ridge high at a depth

of approximately 1,700 m (Tao et al., 2012). It is a typical magma-

supply type hydrothermal field, evidently different from the Longqi

and Yuhuang hydrothermal fields that have poor magma supply

and are controlled by detachment faults (Tao et al., 2012; Tao et al.,

2020; Yu et al., 2021). The sufficient magma supply, alternating

intensity of magmatic activity, and large numbers of normal faults

and tectonic fractures suggest that the DHF is well suited to the

development of sulfide deposits.

The DHF was discovered in 2009 during the DY20 cruise. Since

then, several subsequent cruises conducted in this area have
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collected abundant geological samples that include basalts, sulfides,

and opals (Tao et al., 2012). Preliminary studies of the DHF sulfide

distribution revealed that it consists of two main areas of

sulfide deposition.

Massive sulfides and relict chimney fragments are found on the

surface or adjacent to the mound. The host rocks are basalts and

basaltic breccias, whereas sediments are distributed along slopes or

in areas of low terrain (Yang et al., 2023). During the DY30, DY34,

DY43 and DY65 cruises, sulfide drilling sampling was performed

and eight drilling cores were obtained (Figure 1C). The maximum

drilling depth was 10 m, which initially revealed the mineralized

zonation characteristics of the sulfide in the area.
3 Samples and analytical methods

3.1 Sample collection and description

The representative DHF sulfide samples (from drill core 43-

MDD07) used in this study were collected from the sulfide mound

using shallow drilling equipment during the DY43 cruise of R/V

Xiayanghong 10 in 2017. The entire core used in this study

comprises Fe-rich sulfides. The drilling depth was 2 m, but the

obtained sample length was 99 cm, the core recovery was 49.5%.

Owing to core collapse, only an 8-cm sample of sulfide breccia was

obtained from the top 1m. And 91-cm sample of sulfides was

obtained from the bottom 1m (Figure 2A). Of the bottom 1 m, the

uppermost part of the drill core comprises sulfide breccias of pyrite,

marcasite, sphalerite, amorphous silica and chalcopyrite. The

underlying mineralized sulfide comprises zones of massive pyrite

– marcasite – sphalerite – silica (108-117 cm), massive pyrite –

chalcopyrite – sphalerite – marcasite – silica (117-151 cm), massive

pyrite – chalcopyrite – sphalerite – silica (151-173 cm), massive
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pyrite – sphalerite – marcasite – silica (173-193 cm), massive pyrite

– silica – marcasite (193-199 cm) (Figures 2B–F).
3.2 Analytical methods

Mineral and textural analyses were conducted at the Key

Laboratory of Submarine Geosciences (Ministry of Natural

Resources, Hangzhou, China). All samples were examined as

polished thin sections using a reflected and transmitted light

polarizing microscope (Zeiss AXIO Scope A1).

Micro-drilling was also conducted at the Key Laboratory of

Submarine Geosciences using Proxxon MICROMOT drilling

equipment to obtain geochemical and chronological subsamples.

Thirteen micro-drilled subsamples were selected for determination

of bulk geochemical concentrations at the ALS Laboratory in

Guangzhou (China). Trace elements were analyzed using an

inductively coupled plasma mass spectrometer (ICP-MS; POEMS

III ICP-MS, Thermo Jarrell Ash Ltd., USA). The analytical error of

the trace elements data was <0.05%.

Trace element concentrations of pyrite, sphalerite and

chalcopyrite from the DHF were determined with a laser ablation

(LA)-ICP-MS at Nanjing FocuMS Technology (China), using a

Teledyne Cetac Technologies Analyte Excite LA system (Bozeman,

Montana, USA) coupled to an Agilent Technologies 7700x

quadrupole ICP-MS (Hachioji, Tokyo, Japan). A 193 nm ArF

excimer laser, homogenized by a set of beam delivery systems,

was focused on mineral surface with a fluence of 6.06J/cm2. The

ablation protocol employed a spot diameter of 40 mm at a 6-Hz

repetition rate for 40 s (equating to 280 pulses). Further details of

the operating conditions and methods used can be found in Hou

et al. (2009) and Gao et al. (2013). The United States Geological

Survey polymetallic sulfide pressed pellet MASS-1 and synthetic
FIGURE 1

Geological setting and bathymetry of the study area. (A) Geotectonic setting and topography of the SWIR. (B) Shipboard bathymetric map of the
segment #27 of the SWIR (Revised form Yang et al., 2023). (C) The sulfide drilling locations. The black and red dots represent all the drilling
locations. The red dot represents the sample station discussed in this paper. All the normal fault line and the age of ocean crust in panel (B) are from
Chen et al. (2021). The red stars in panel (A) represent the hydrothermal fields along the SWIR. Abbreviations: BTJ, Bouvet Triple Junction; RTJ,
Ridge Triple junction, AVR, Axial volcano ridge.
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basaltic glasses GSE-1G were used as standards to calibrate the

elements contents of the sulfides. Raw data reduction was

performed offline by ICPMSDataCal software using a 100%-

normalization strategy without applying an internal standard (Liu

et al., 2008). Precision and accuracy were better than ± 10%.

Seven micro-drilled subsamples were selected for 230Th/U

dating. The chemical separation of U and Th, together with the

MS analysis, were performed at the Uranium Series Chronology

Laboratory of the Institute of Geology and Geophysics, Chinese

Academy of Sciences. The chemical separation procedures and MS

analysis adopted were similar to those described in Yang et al.

(2017) and Wang et al. (2021). A standard (GBW04412) was

analyzed to verify the accuracy and precision of the 230Th/U

dating, providing precision better than 95%. The best age
Frontiers in Marine Science 04
accuracy can be better than 5‰ (Cheng et al., 2013). All the

results were within 2s uncertainty, unless indicated otherwise.
4 Results

4.1 Mineralogy and paragenesis of sulfides

From the microscopically observed characteristics of the drilling

core in different mineralized zones, it was determined that the core

comprised mainly Fe-rich sulfide, and that the mineral assemblage

was pyrite, sphalerite, chalcopyrite, marcasite, and amorphous

silica. Among those minerals, pyrite was most abundant, although

sphalerite and chalcopyrite were also common.
FIGURE 2

Photographs of cross sections of drill core (43-MDD07) from the DHF and original samples used for analysis. (A) the lithological column of the core
(unit: cm); (B) massive pyrite – marcasite – sphalerite – silica; (C) massive pyrite – chalcopyrite – sphalerite – marcasite – silica; (D) massive pyrite –

chalcopyrite – sphalerite – marcasite – silica and massive pyrite – chalcopyrite – sphalerite – silica; (E) massive pyrite – sphalerite – marcasite –
silica; (F) massive pyrite – silica – marcasite. bsf: below seafloor. The red arrow in Figure a represents the sampling location for bulk chemistry and
chronology analysis. T and B in Figure b-f represents top and bottom respectively. Mineral abbreviations: Py, pyrite; Ccp, chalcopyrite; Sp, sphalerite;
Mar, Marcasite; Si, silica.
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Pyrite was found present throughout the core. Four paragenetic

types with distinct textures were recognized: granular pyrite (Py1),

late overgrowths of coarse granular pyrite (Py2), colloform and/or

dendritic pyrite (Py3), and euhedral pyrite (Py4). Granular Py1 and

colloform Py3 were common through the core. Granular Py1,

coarse-grained Py2 and chalcopyrite particles were found in the

inner wall of the hydrothermal channel, and the pyrite shows

obvious growth zoning (Figure 3A). Colloform Py3 and marcasite

were also common in the top and the bottom parts of the core.

Colloform Py3 was often associated with marcasite (Figure 3G).

Colloform Py3 also often surrounded by

Sphalerite in the massive Py-Sp layer of the core (129–151

cmbsf) (Figure 3E). Dendritic pyrite, which generally occurred

because of sphalerite intergrowth, was common in the silicified Py

layer (173–193 cmbsf) (Figure 3G). Early granular Py1 was replaced

by late recrystallized coarse granular Py2 and disseminated with

globular Py3 in amorphous silica (173–193 cmbsf) (Figure 3H).

Euhedral Py4 exhibited sharp, well-defined crystal boundaries and

discrete well-formed euhedral shapes, and it was commonly
Frontiers in Marine Science 05
replaced by chalcopyrite in the massive Py-Sp layer of the core

(162–173 cmbsf) (Figure 3F).

Sphalerite often occurred withmassive textures in most samples of

the core. In the upper part and the lower-middle part of the core, the

content of sphalerite was obviously higher than that in the central part.

Sphalerite (Sp2) surrounding pyrite indicates a precipitation after

pyrite and can occur as laminated colloform textures in the inner wall

of the fluid conduit in the middle part of the core (151–162 cmbsf)

(Figure 3E). In the top of the core (108–117 cmbsf), massive sphalerite

(Sp1) is commonly associated with colloform Py3 (Figure 3C).

Massive sphalerite often replaced chalcopyrite and pyrite (Figure 3I)

and was found to have a mutual replacement relationship with pyrite

(Figure 3G) in the middle and bottom of the core.

Chalcopyrite was often found with granular textures, and it

occurred mainly as a replacement of sphalerite and pyrite

(Figures 3D, E, I). Chalcopyrite was also often found in the inner

wall of the fluid conduit in the top of the core (Figure 3A). In the

central part of the core, the content of chalcopyrite was higher than

that in the in the upper and lower parts of the core.
FIGURE 3

Representative photomicrographs of the sulfide core samples of the DHF. (A) The coarse-grained pyrite and chalcopyrite particles were found in the
inner wall of the hydrothermal channel, the pyrite multiple generations of grained Py1 and Py2 (108– 117 cmbsf); (B) Marcasite was often associated
with grained Py1 and Py2 (108–117 cmbsf); (C) Massive sphalerite (108–117 cmbsf); (D) Chalcopyrite was dispersed in massive sphalerite (Sp1) and
pyrite (129–151 cmbsf); (E) Sphalerite was distributed around the hydrothermal channel and associated with pyrite 3 (151–162 cmbsf). (F)
Chalcopyrite was filled in the gap of colloform pyrite (Py3) and replaced euhedral pyrite (Py4) (162–173cmbsf); (G) Dendritic pyrite (Py3) generally
occurred as colloform sphalerite (Sp2) replacement structure (173–193 cmbsf); (H) Early colloform pyrite was replaced by late recrystallized pyrite
and disseminated with globular pyrite in amorphous silica (173–193 cmbsf); (I) Massive sphalerite (Sp1) replaced chalcopyrite and recrystallized pyrite
replaced early colloform pyrite (Py3) (173–193 cmbsf). Mineral abbreviations: Py, pyrite; Ccp, chalcopyrite; Sp, sphalerite; Mar, marcasite; Am,
amorphous silica.
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Marcasite was often associated with grained Py1, Py2 and colloform

Py3 in the upper and bottom layer of the core (Figures 3B, G).
4.2 Bulk chemistry

The geochemical compositions of the samples, presented in

Table 1, were found characterized by high Fe content (19.31-41.75

wt.%, avg. 26.23 wt.%, n=13) and variable Zn content (0.47−19.54

wt.%, avg. 5.17 wt.%). The Zn content in the 126- and 186-cm layers

was evidently higher than that in other layers. Compared with Fe

and Zn, the content of Cu was low (0.11−8.69 wt.%, avg. 2.02 wt.%,

n=13). The Pb, As, and Cd contents were 142.45–755.24 ppm (avg.

235.17 ppm), 150.13–797.20 ppm (avg. 314.38 ppm), and 25.17–

920.01 ppm (avg. 212.09 ppm), respectively. The Co, Mo, and Mn

contents were 21.25–213.68 ppm (avg. 87.06 ppm), 37.53–161.24

ppm (avg. 79.77 ppm), and 25.17–124.76 ppm (avg. 65.03 ppm),

respectively. In contrast, the contents of Ag (1.83–50.35 ppm, avg.

18.73 ppm, n = 9), Sb (17.00–85.36 ppm, avg. 34.46, n = 8), Ni

(4.71–14.25 ppm, avg. 8.10 ppm, n =11), and Se (20.85–43.08 ppm,

avg. 30.14 ppm, n = 5) were relatively low compared with those of

Pb, As, and Cd. The contents of trace elements showed considerable

variation with depth. It is evident from Figure 4 that the variations

trend in the contents of Cu and Co were similar. And the Fe, Pb, Ag,

and As presented the same variations trend. However, it is notable

that at the bottom of the core, the Fe content exhibited a maximum,

the Cu and Co contents were markedly reduced, and the Pb, Ag, and

As contents were particularly high (Table 1).
4.3 LA-ICP-MS data

4.3.1 Pyrite
A total of 144 spot analyses were performed on different types of

pyrite at different depths within the core. The range of trace element

concentrations was found to fall into five main groups: <1, 1–10,

10–100, 100–1000, and >1000 ppm (Table 2). Elements found to

have the highest concentration were Cu (avg. 1,237 ppm) and Zn

(avg. 4,486 ppm). The average contents of Co, As, and Pb (i.e., 151,

417, and 992 ppm, respectively) were in the range 100–1,000 ppm

with notable outliers (up to 1,669 ppm Co, 3,998 ppm As, and 6,862

ppm Pb). The average contents of Mn, Mo, Ag, Cd, Sb, and Tl were

in the range 10–100 ppm with notable outliers (up to 1027 ppmMn,

572 ppm Mo, 474 ppm Ag, 1283 ppm Cd and 884 ppm Tl). The

average contents of V, Cr, Ni, Ga, Ge, Se and In were in the range 1–

10 ppm (up to 257 ppm Ga, 376 ppm Ge and 144 ppm Se). The

average contents of Ti, Te, Ba, W, Au and Bi were all <1 ppm.

The contents and compositions of the trace elements in

different types of pyrite at different depths within the core were

evidently different (Supplementary Table S1). The downhole

distribution of selected trace elements is shown in Figure 5. The

average values of Co, Se, As, Pb, and Cd of pyrite showed a trend of

gradual decline. However, the contents of Co and Se were relatively

high in the 162–173 cmbsf layer, whereas the content of Cd was

relatively high in the 173–193 cmbsf layer. The average values of Ag

in the pyrite showed a trend of gradual increase, whereas those of

Mo and Au showed a tendency to first increase and then decline.
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4.3.2 Chalcopyrite
Twenty-three spot analyses were conducted on the granular

chalcopyrite selected from different depths within the core

(Supplementary Table S2). The element with the highest

concentration was Zn (avg. 840 ppm). The average contents of

Ag (avg. 149 ppm, up to 258 ppm) and Cd (avg. 129 ppm, up to

2,055 ppm) were in the range 100–1000 ppm. The average contents

of Ga, Ge, As, Se, In, Sb, and Pb were in the range 10–100 ppm. The

Pb content was mostly low, ranging from below the detection limit

to 74.1 ppm, however, some individual points showed that Pb

enrichments to 172 and 698 ppm. The average contents of Ti, Cr,

Mn, Co, Mo, Sn, and W were in the range 1–10. The average

contents of V, Ni, Te, Ba, Au, Tl, and Bi were all <1 ppm (Table 2).

4.3.3 Sphalerite
Thirty-six sphalerite grains (including 4 colloform sphalerite

and 32 massive sphalerite) were analyzed to identity the trace

elements (Supplementary Table S3, Table 2). Elements with the

highest concentrations were Cu (avg. 5,494 ppm) and Fe (24,461

ppm). Additionally, sphalerite was highly enriched in Cd (avg. 2,961

ppm, up to 13,272 ppm) and Pb (avg. 1,221 ppm, up to 13,272

ppm). The average contents of Ga (avg. 303 ppm, up to 1317 ppm),

Ge (avg. 201 ppm, up to 596 ppm), As (avg.162 ppm, up to 890

ppm), Ag (avg. 219 ppm, up to 1044 ppm), Sb (avg. 241 ppm, up to

1006 ppm) were in the range 100–1000 ppm. The average contents

of Mn and Co were in the range 10–100 ppm, and the average

contents of Se, Mo, and In were in the range 1–10 ppm. The average

contents of V, Cr, Ni, Sn, Te, Ba, W, Au, Tl, and Bi were all <1 ppm.

Compared with pyrite and chalcopyrite, sphalerite was found more

enriched in Ga, Ge, Cd, Ag, Sb, and Pb (Table 2).
4.4 U-Th isotope ratios and U-Th ages

The U–Th isotope systematics of the samples are presented in

Table 3. The U concentrations ranged from 237 to 1871 ppb, with

an average of 723.9 ppb. The Th concentrations ranged from 300 to

5795 ppt, with an average of 1732.4 ppt. The U content was

extremely high in 186cm layer of the core (1841 ± 4.2 ppb). The

measured d234U values ranged between 86.6 ± 2.0 and 142.4 ± 2.4

and the corrected d234Uinitial ranged between 108 ± 3 and 144 ± 2

(Table 3). The formation age of the whole core was found to be

relatively young. The corrected 230Th age varied from 2297 ± 52 to

4552 ± 60 yrs. The metallogenic age of the core exhibited a trend of

gradual increase from the surface to the bottom (Figure 6A). The

age distribution bar chart is presented in Figure 6B.
5 Discussion

5.1 Paragenesis and spatial variation
of mineralization

The microscope observations and mineralization zonation

sequence of the core revealed substantial differences in the
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TABLE 1 Bulk chemistry of sulfide drilling samples from the DHF.

As Cd Mo Mn Sb Ni Se Tl V Ga Hg

ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm

0.01 0.01 0.01 0.01 0.04 0.01 0.05 0.1 0.01 0.05 0.02

296.27 168.25 120.70 102.41 21.95 7.32 – 73.15 7.32 25.60 7.32

259.37 393.85 57.64 62.44 33.62 9.61 – 48.03 – 62.44 –

226.28 502.85 45.26 50.28 35.20 – – 50.28 – 30.17 10.06

402.34 28.40 52.07 42.60 – 4.73 33.13 47.33 23.67 – –

218.42 33.24 71.23 33.24 – 14.25 28.49 – 47.48 – –

151.05 25.17 142.66 25.17 20.98 12.59 25.17 – 58.74 – –

573.82 29.75 72.26 51.01 17.00 8.50 – 42.50 46.76 – –

148.75 62.38 47.98 124.76 – 4.80 – 95.97 4.80 – –

150.13 112.59 37.53 100.08 – 8.34 20.85 83.40 4.17 – –

360.42 920.01 161.24 37.94 85.36 4.74 – – 61.65 109.07 9.48

273.16 390.89 127.16 42.39 37.68 4.71 – – 47.10 61.22 9.42

229.74 47.86 38.29 110.08 23.93 9.57 43.08 47.86 14.36 – –

797.20 41.96 62.94 62.94 – – – – – – –
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Elements Fe Cu Zn S Pb Co Ag

Unit % % % % ppm ppm ppm

Detection
limit

0.01 0.01 0.01 0.01 0.02 0.01 0.004

Sample depth (cmbsf)

115 32.52 0.31 4.50 36.21 197.51 69.50 1.83

116 25.31 0.15 7.66 27.76 134.49 134.49 –

126 23.53 0.11 16.29 25.70 145.83 40.23 –

135 28.21 1.29 1.02 31.95 170.40 85.20 29.35

141 27.26 8.69 0.47 29.30 142.45 213.68 2.85

150 25.22 5.03 0.61 28.03 163.64 155.24 2.94

158 30.52 1.34 0.95 34.47 170.02 21.25 5.95

166 21.40 0.93 2.26 25.82 259.12 76.78 27.35

181 19.31 0.79 3.01 22.02 191.83 66.72 5.84

186 20.25 2.75 19.54 22.05 218.15 – –

191 22.28 3.96 8.38 24.58 221.35 – –

196 23.45 0.61 1.28 26.32 287.17 52.65 42.12

199 41.75 0.34 1.29 46.57 755.24 41.96 50.35

cmbsf. cm below seafloor.
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FIGURE 4

The element contents distribution of the drill core of 43-MDD07 (cmbsf: below seafloor).
TABLE 2 Summary of LA-ICP-MS data (in ppm) for samples in this study.

All data
in ppm

Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se

Pyrite

Minimum 0.001 0.118 0.013 0.074 na 0.090 0.005 11.6 0.799 0.001 0.767 6.22 0.002

Maximum 10.4 28.5 23.4 1027 na 1670 15.4 10814 25302 257 376 3998 144

N 141 144 123 143 na 143 140 139 141 142 144 144 144

Mean 0.932 3.67 1.89 94.4 na 151 3.30 1237 4486 4.89 8.615 417 9.71

Median 0.621 1.75 1.07 63.0 na 42.6 2.87 649 2309 0.71 3.574 257 1.45

Chalcopyrite

Minimum 0.114 0.019 0.087 0.162 na 1.981 0.128 na 71.4 0.133 0.071 0.375 5.01

Maximum 24.1 0.686 4.61 16.5 na 53.588 2.929 na 5857 363.446 118.487 296.014 111

N 19 19 14 19 23 13 20 23 22 17 23

Mean 2.43 0.167 2.18 2.77 na 8.823 0.669 na 840 27.597 13.741 48.476 37.2

Median 1.20 0.141 1.87 1.184 na 7.104 0.425 na 146 2.631 2.394 13.535 30.1

Sphalerite

Minimum 0.017 0.002 0.047 3.39 3598 0.003 0.004 192 na 0.002 5.86 2.71 0.014

Maximum 1.40 0.687 1.518 140 131063 294 0.707 57202 na 1317 569 890 7.23

N 35 33 21 36 36 31 25 36 36 36 36 36

Mean 0.548 0.106 0.528 31.8 24461 22.7 0.148 5494 na 304 201 162 1.85

Median 0.497 0.859 0.480 17.4 10168 0.201 0.079 3126 na 133 171 73.9 1.53

Mo Ag Cd In Sn Sb Te Ba W Au Tl Bi Pb

Pyrite

Minimum 0.231 0.008 0.006 0.001 0.006 0.045 0.005 0.003 0.002 0.004 0.001 0.001 0.049

(Continued)
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TABLE 2 Continued

All data
in ppm

Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se

Pyrite

Maximum 572 474 1283 38.9 24.4 121 0.437 12.4 9.77 4.60 884 0.253 6862

N 144 144 138 136 128 143 73 131 141 136 134 81 144

Mean 64.1 91.3 34.3 1.25 1.31 14.9 0.102 0.373 0.607 0.572 98.2 0.010 992

Median 57.1 51.0 5.956 0.09 0.314 4.36 0.082 0.126 0.233 0.222 60.7 0.004 657

Chalcopyrite

Minimum 0.001 30.9 0.256 5.16 0.815 0.001 0.127 0.014 0.027 0.001 0.009 0.001 0.007

Maximum 29.0 258 2055 53.5 20.7 116 0.969 1.00 16.6 0.128 2.94 0.116 689

N 20 23 23 23 23 18 9 13 21 18 14 15 20

Mean 2.46 149 129 16.6 5.84 13.1 0.520 0.31 1.21 0.052 0.39 0.023 58.0

Median 0.516 147 1.334 11.4 4.01 1.30 0.503 0.148 0.206 0.042 0.061 0.020 11.1

Sphalerite

Minimum 0.005 12.3 152 0.001 0.056 1.55 0.016 0.004 0.004 0.008 0.003 0.001 26.5

Maximum 16.2 1044 13272 19.4 3.56 1007 0.999 0.351 1.58 1.52 14.0 0.051 5918

N 32 36 36 33 33 36 20 27 34 32 34 25 36

Mean 1.45 220 2961 1.76 0.701 241 0.120 0.059 0.149 0.197 0.689 0.009 1221

Median 0.132 138 2700 0.052 0.263 179 0.079 0.023 0.047 0.061 0.043 0.004 607
F
rontiers in Marin
e Science
 09
 front
‘na’ indicates data is not applicable. Data are in ppm.
FIGURE 5

Downhole plots of the average concentrations of selected trace elements in all types of pyrite from the core.
iersin.org
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mineralization features between the upper, middle, and bottom

parts of the core (Figure 7). The upper part of the core (layer I) is

dominated by granular pyrite, containing a small amount of

colloform pyrite and late granular pyrite. The central part of the

core (layer III) is dominated by euhedral pyrite, although the lower

part is dominated by granular pyrite. The bottom of the core (layer

V) is dominated by colloform pyrite. The marcasite content is

relatively high, whereas the sphalerite content is low at the bottom

of the core (layer V). The following paragenetic associations are

apparent through the core: chalcopyrite + euhedral pyrite (Py4) →

chalcopyrite + granular pyrite (Py1) + massive sphalerite (Sp1) →

marcasite + coarse-grained pyrite (Py2) + massive sphalerite (Sp1)

→ later recrystallized pyrite (Py2) + colloform sphalerite (Sp2) →

colloform pyrite (Py3) + marcasite → amorphous silica. Compared

with the lower-middle part of the core, the upper-middle part of the

core is notably enriched copper-rich minerals such as chalcopyrite,

which might suggest a sustained influence by high-temperature

hydrothermal activity (Hannington et al., 1995).

In the early stage, large quantities of high-temperature minerals

formed, which included chalcopyrite and associated euhedral pyrite

and euhedral sphalerite. The second stage and the low-temperature

stage comprised the main ore-forming period of the core, when a

large quantity of massive pyrite formed. The late stage is

characterized by silicification caused by cooling of the

hydrothermal fluids, resulting in precipitation of high quantities

of amorphous silica.
5.2 Controlling factors on trace elements

5.2.1 Controls on trace elements in pyrite
Time-resolved LA-ICP-MS analytical signals revealed a

uniform distribution of most elements such as Pb, Zn, Cu, Co,

As, Sb, Mo, and Ag (Figures 8A, B) in the granular and colloform

pyrite, indicating that these elements are present mainly in lattice

substitutions rather than as inclusions of other sulfides. However,

in the euhedral pyrite, the distribution trend of Cu revealed by

the analytical signals was different from that of most other

elements, suggesting that chalcopyrite inclusions might be

present (Figure 8C).

Pyrite is widely distributed within hydrothermal deposits (Cook

et al., 2009; Deditius et al., 2014; Keith et al., 2016a); it is the most

common sulfide phase in seafloor massive sulfides and its

precipitation can effectively control the distribution of many trace

elements (Hannington, 2014; Keith et al., 2016a; Large et al., 2009;

Maslennikov et al., 2009).Previous studies suggested that pyrites

have crystallized at low temperatures are rich in Pb, As, Mn, Tl, Ag

and Cd (Metz and Trefry, 2000; Maslennikov et al., 2009). Pyrites

have crystallized at high temperatures are rich in Co, Se, Sn and Ni

(Keith et al., 2016a; Maslennikov et al., 2009; Meng et al., 2020).

Pyrite in the studied core is characterized by high contents of Mn,

Co, As, Mo, Ag, Cd, Sb, Tl and Pb, and low contents of Ti, Ga, In,

Sn, Ni, Se, Ba, W and Au (Table 2). This might suggest that the

formation of the sulfide mound underwent a combined process of

low-temperature and high-temperature mineralization.
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The source of the relatively enriched As in pyrite is primarily

the hydrothermal fluids, and a low-temperature environment is

favorable for its occurrence (Huston et al., 1995; Metz and Trefry,

2000; Maslennikov et al., 2009; Wohlgemuth-Ueberwasser et al.,

2015). The As contents in the granular pyrites in layer I are higher

than other layers and there are no significant differences in As

content among the pyrite types. The positive correlation found

between As and Sb in the pyrite is possibly because metals such As

and Sb are derived via sphalerite reactivation and might be

influenced by zonal refining (Keith et al., 2016a). Thus, zone

refining was likely a key factor controlling As and Sb behavior. At

medium–high temperatures and in a reducing hydrothermal fluid,

Mn has high solubility (Large et al., 2007; Maslennikov et al., 2009;

Grant et al., 2018), the high concentrations of Mn in the granular

pyrite of layer IV might reflect low fluid temperature and a relatively

oxidized seawater environment. Although the low-temperature

mineral galena was not detected in the DHF, the highest Pb

content observed in granular pyrite replaced by sphalerite

suggests the potential presence of Pb-mineral inclusions (Figure 8;

Smith and Huston, 1992). This is because Pb is unlikely to substitute

directly into the sulfide lattice due to its large ionic radius (George

et al., 2018; Grant et al., 2018).

The range of concentration of Tl is large (0.001−884 ppm) with

the maximum content found in the granular pyrite of the bottom

layer of the core (Supplementary Table S1). Usually, Tl is

preferentially enriched in sulfide under low-temperature

conditions (approximately 100–250°C) and it has high solubility

in high-temperature hydrothermal fluids (Huston et al., 1995;

Wang et al., 2017; Maslennikov et al., 2009). Mo is mainly

derived from seawater and its solubility in high-temperature fluid

decreases sharply (Von Damm, 1995; Douville et al., 2002; Metz and

Trefry, 2000). The solubility of Mo derived mainly from seawater is

markedly reduced in a high-temperature fluid (Keith et al., 2016a).

The range of concentration of Mo is very wide with the maximum

content (572ppm) found in the granular pyrite in layer I
Frontiers in Marine Science 11
(Supplementary Table S1) which suggests that this layer is formed

under strong hydrothermal-fluid-seawater mixing conditions.

The Ag content is enriched in the colloform pyrite at the bottom

of the core, whereas it is relatively low in the euhedral pyrite

(Supplementary Table S1). The distribution of Ag might be

related to seawater–hydrothermal fluid mixing front as Ag

solubility decreases with increasing pH and decreasing

temperature (Butler and Nesbitt, 1999; Wang et al., 2017). The Ni

contents are very low in all types of pyrite. The depletion of Ni may

also reflect the influence of fluid-seawater mixing (i.e., sub-seafloor

mixing) (Gini et al., 2024). Consequently, the pronounced variation

in the concentrations of Pb, Tl, Mn, As, Se, Ag, Sb, and Ni in pyrite

throughout the core indicates that seawater mixing may have played

a crucial role in fluctuating the physicochemical conditions of the

hydrothermal fluid during the mineralization process.

5.2.2 Controls on trace elements in chalcopyrite
The ablation profiles of Cr, Mn, Co, Zn, Ge, As, Se, In, Sn, and

Pb were relatively uniform (Figure 8D), indicating that these

elements are present mainly as substitutions in the mineral lattice

(e.g., In for Cu; Co and Sn for Fe, Huston et al., 1995). The ablation

profile of Ag was different from that of other elements, and the

appearance of sharp peaks might indicate that the effect of mineral

inclusions containing the element of Ag (Huston et al., 1995; Grant

et al., 2015; George et al., 2016).

Previous studies revealed that chalcopyrite is generally a

relatively poor carrier of trace elements (Cook et al., 2011; George

et al., 2016; Keith et al., 2016b). Compared with the contents of Sb,

Co, Au, and Sn in chalcopyrite, those of Ag, Pb, Cd, and Se are

relatively high. The Au content exhibits no correlations with Ag, Pb

and Sb (Figures 9A–C). Typically, Au is common in medium-

temperature associations, whereas Pb is common in lower-

temperature associations (Halbach et al., 2003). The precipitation

of Ag in chalcopyrite is sensitive to increasing pH (Tivey et al.,

1999), and lower-temperature and stronger oxidation conditions
FIGURE 6

Age distribution of hydrothermal sulfide samples from the DHF, (A) The age distribution of the drill core of 43-MDD07 (cmbsf: below seafloor) (B)
Age error bar chart frequency-age diagram.
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are conducive to Ag precipitation in micro- inclusions; conversely,

high-temperature reducing conditions are conducive to Ag entering

chalcopyrite in the form of lattice substitution (Huston et al., 1995;

Grant et al., 2015).

The maximum content of Zn in the chalcopyrite reached 0.33

wt.%, and no Zn-bearing inclusions were observed (Shalaby et al.,

2004; Helmy et al., 2014). Therefore, we conclude that Zn in the

chalcopyrite exists mainly in solid solution. This is supported by the

fact that Cd, a typical element in sphalerite, shows a positive
Frontiers in Marine Science 12
correlation with Zn (Figure 9D). Meanwhile, Co and Se are

indicators of fluid with high temperatures (Herzig et al., 1998;

Grant et al., 2018). The Co contents are much lower than the

average contents of seafloor sulfides (236 ppm, Hannington et al.,

2005) and ferromanganese nodules on their surfaces (Ren et al.,

2022, Ren et al., 2024). The Se content has no correlation with both

Co and Sn (Figures 9E, F). Previous studies suggested that the

content of Se can be controlled by the temperature of precipitation,

with Se-rich and Se-poor chalcopyrite precipitating at high and
FIGURE 7

Paragenetic sequences of mineralization in sulfides from the DHF.
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medium-low temperatures, respectively (Auclair et al., 1987; Rouxel

et al., 2004). The wide range of Se contents (5.81−112 ppm) can be

interpreted as reflecting variable degrees of fluid-seawater mixing.

Owing to the structure of stannite (Cu2FeSnS4) being very similar to

that of CuFeS2, chalcopyrite can incorporate Sn at high

temperatures (300−500°C) (Maslennikov et al., 2009). The

chalcopyrite in our study area has a relatively low Sn content

which indicate that a complex mineralization process

indeed occurred.

5.2.3 Controls on trace elements in sphalerite
The ablation profiles of Pb, Ag, Sb, Mn, Co, and Cd in both the

granular and the colloform sphalerite were relatively smooth,

indicating that these elements might occur as lattice substitution

in minerals (Figures 8E, F). Lack of correlation between Fe and Cu

indicated that submicroscopic chalcopyrite inclusions were not

involved in the analyses. However, Pb, Ag, Ga, and Sn in the

colloform sphalerite occasionally exhibited irregular undulating

spectral lines, suggesting that these elements might be present as

nanoscale inclusions (Figure 8F).
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The concentrations of Cd, Pb, Ag, Cr, Mn, As, Sn, Ga, and Ge in

sphalerite are higher than those in pyrite and chalcopyrite.

Sphalerite precipitates under a range of temperature, pressure,

sulfur fugacity, and oxygen fugacity conditions (e.g., Keith et al.,

2014). When the ore-forming fluid is at or below 250 °C, Zn is

preferentially precipitated in the form of sphalerite (Metz and

Trefry, 2000; Hannington et al., 2005; Hannington, 2014). A high

concentration of Pb (avg. 1,221 ppm) was found in all samples of

sphalerite, likely indicating the presence of Pb-bearing mineral

inclusions formed under medium–low temperature and

moderately reducing conditions (Grant et al., 2018). Positive

correlation (coefficient of determination R2 = 0.73) between As

and Pb can best be interpreted in terms of nanoscale inclusions of

galena or sulfosalts (Figure 10A).

High Cd concentrations (up to 13,272 ppm) are also found in all

the studied samples. The most common mineral of Cd is sphalerite,

and the high concentrations of Cd are caused by the replacement of

Cd2+ for Zn2+ (Cook et al., 2009). Variations in the Cd and Sn

contents of sphalerite might reflect fluctuating fluid chemistry and

deposition temperature (Scott and Barnes, 1972). In high-
FIGURE 8

Examples of LA-ICP-MS profiles (time-resolved) for sulfides in the DHF field. (A) Ablation profile for granular Py of 129-151cmbsf; (B) Ablation profile
for colloform Py of 193-199cmbsf; (C) Ablation profile for euhedral Py replaced by Ccp of 162-173 cmbsf; (D) Ablation profile for granular Ccp of
162-173 cmbsf; (E) Ablation profile for grained Sph of 151-162 cmbsf; (F) Ablation profile for colloform Sph of 108-117 cmbsf. Mineral abbreviations:
Py, pyrite; Ccp, chalcopyrite; Sp, sphalerite.
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temperature, acidic, reducing hydrothermal solutions, Sn can be

transported as the Sn(II) aqueous complex, such as SnCl2 (Heinrich

and Eadington, 1986). Given the low Sn content and its lack of

correlation with Cd in this study, the substitution of Sn2+ for Zn2+

in ZnS can be expected (Figure 10B; Maslennikov et al., 2009).

The high Ag concentration in sphalerite might be caused by

periodic reduction in temperature and rapid precipitation of Ag

from the original high temperature, strongly reducing fluid

(Maslennikov et al., 2009). The sphalerite samples contain high

concentrations of Sb (up to 1,006 ppm). The weak correlation

between Ag and Sb (R2 = 0.23) (Figure 10C) suggests a limited

degree of 2Zn2+ ↔ Ag+ + Sb3+ substitution and the inclusion of Ag

—Sb bearing minerals (Cook et al., 2009). These trace elements

commonly precipitate under lower temperature conditions. All the

samples show enrichment in Ga and Ge but there is no evident

correlation between Ga and Ge (Figure 10D). The transport of Ga in

sphalerite is dominated by neutral to weakly charged hydroxyl

complexes, even in a hydrothermal solution containing reduced

sulfur (Wood and Samson, 2006). Consequently, the high contents

of Ga and Ge in the sphalerite might explained by coupled
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substitution rather than direct substitution for Zn (II) (Cook

et al., 2009).
5.3 Distribution of trace elements in pyrite
with depth below the seafloor

The distribution of ages within the surface of the DHF sulfide

mound indicates a complex evolution process. The relatively intense

hydrothermal activity over the past 4,552 years can be broadly

divided into five different mineralization periods: 2,949 years (108–

117 cmbsf), 2,307–2,297 years (117–151 cmbsf), 3,523–3,253 years

(151–173 cmbsf), 4,552 years (173–193 cmbsf), and 2,558 years

(193–199 cmbsf) (Table 3, Figure 6A). Apart from the top and the

bottom, the core has obvious characteristics of gradual

accumulation of mineralization. At the bottom and top, it is

considered that hydrothermal seepage and metasomatic

mineralization occurred continuously in the interior of the mound.

The distributions of Co, Ag, As, Au, Cd, Mo, Pb, Sb, and Se in the

pyrite with depth below the seafloor are shown in Figures 11A–I.
FIGURE 9

Correlation plots of (A) Au-Ag; (B) Au-Pb; (C) Au-Sb; (D) Zn-Cd; (E) Se-Co; (F) Se-Sn in chalcopyrite from the DHF.
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Pyrite in the DHF is generally enriched in Pb, As, Ag, Cd, Mo, and

Sb and relatively depleted in Co, Se, and Au. The Se content is

relatively low in most of the pyrites except the euhedral pyrites in

the central part of the core. The As content of the granular pyrite

was higher than that of the colloform pyrite, which might reflect

direct precipitation from As-rich hydrothermal fluids (Huston

et al., 1995; Kristall et al., 2006). The granular pyrite at layer I is

enriched in Ag, As, Mo, Pb, and Sb compared with other types of

pyrite at other layers. The granular pyrite and late recrystallized

pyrite at layer II are enriched in Ag, Mo, Pb, and Se. The euhedral

pyrite at layer III is enriched in Co, As, Se, Sb and Pb. The

enrichment of Co and Se in euhedral pyrite suggests high-

temperature mineralization (Metz and Trefry, 2000; Martin et al.,

2023). This is in reasonable agreement with the mineralogical

observations that euhedral pyrite is often associated with

chalcopyrite or distributed in the inner wall of the hydrothermal

channel. The granular pyrite at layer IV is enriched in Cd, Ag, Au

and Pb. The colloform pyrite at layer V is enriched in Ag, Pb and

depleted in Co and Se.

According to the chronological model, the shallow sulfide

mound reflects a superposition process. Pyrites of different layers

and different periods show obvious metasomatism. The variation in

the elemental contents in different layers and types of pyrite is

controlled by the evolution of physicochemical conditions of the

hydrothermal fluid attributable to the interaction of seawater and

hydrothermal fluids within the sulfide mound. The shallow sulfide

mound underwent a mineralization process of precipitation

followed by multiple metasomatic precipitation episodes over a

short period. Owing to the limitations of the current domestic
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drilling rig used in the collection of the sulfide samples, further

technological advances are required to enable deeper sulfide

sampling. It is also necessary to refine the chronological evolution

to the point where individual episodes can be resolved

with confidence.
5.4 Comparison with trace elements in
pyrites from other hydrothermal fields
along the mid-ocean ridges

Compared with other hydrothermal fields along the mid-ocean

ridges (e.g., Longqi, Tianzuo, and East Longjing on the SWIR,

Wocan on the Northwest Indian Ridge, Edmond, Meso zone, and

Kairei on the Central Indian Ridge, and TAG, 5°S and Logatchev on

the Mid-Atlantic Ridge) (Yuan et al., 2018b; Liao et al., 2021; Ding

et al., 2022; Wang et al., 2017; Zhang et al., 2023; Keith et al., 2016a),

all types of pyrite in the DHF are generally enriched in Zn, Pb, As,

Ag, Cd, Mo and Sb and relatively depleted in Co and Se (Figure 12).

Pb shows positive correlations with Zn, Ag, Cd, Mo, and Sb with

coefficients of determination of 0.87, 0.80, 0.79, 0.41, and 0.62,

respectively (Figures 12A, C, D, F, H). Correlations between Pb and

As, Pb and Co, and Pb and Se, are weak (Figures 12B, E, G). This

contrasts with the enrichment of Zn, Pb, Ag, Cd, Mo, and Sb in

back-arc basin deposits, which is partly attributed to the influence of

felsic rocks and/or thick terrigenous sediments (Herzig et al., 1993;

Keith et al., 2016a; Yeats et al., 2017). Moreover, some pyrite grains

from the sediment-starved mid-ocean ridges such as 5°S and the

Meso zone also show enrichment in Zn and Cd, which in some
FIGURE 10

Correlation plots of (A) As vs. Pb, (B) Sn vs. Cd, (C) Ag vs. Sb, and (D) Ga vs. Ge in sphalerite from DHF. The dots and the boxes represent the grained
sphalerite and colloform sphalerite respectively.
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cases might reflect the precipitation processes rather than a

sediment related metal source (Keith et al., 2016a).

Previous studies suggested that fluid boiling can enhance the

enrichment of As, Cu, Pb, Ag, and Au while depleting Co and Ni in

pyrite from various active seafloor and continental hydrothermal

systems (Román et al., 2019; Wang et al., 2022; Dang et al., 2023).

This is primarily because fluid boiling significantly impacts the

physicochemical conditions of hydrothermal fluids, including

temperature, chloride concentration, pH, and oxygen fugacity

which consequently causes abrupt alterations in the solubility and

distribution of these elements (Keith et al., 2014, Keith et al., 2016a;

Tivey et al., 1999). In contrast, the concentrations of As, Cu, and Pb

in DHF pyrite are significantly lower compared to those

precipitated in association with the aforementioned fluid boiling

(Table 2; Román et al., 2019; Wang et al., 2022; Dang et al., 2023).

This can be attributed to the absence of fluid boiling in DHF, as

confirmed by results from phase-separation simulations conducted

using the salt-water (NaCl-H2O) Equation of State software

(https://www.xthermal.info/en/index.html).

The enrichment of As, Sb, Ag, Pb and lower contents of Co and

Se in the pyrite of the Brothers hydrothermal system can be

explained by seawater mixing during shallow recharge (Martin

et al., 2023). Additionally, these elements have the common

characteristic that they tend to precipitate at low temperatures;
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consequently, the unique mineralization process of particular

deposits might play an important role in the enrichment of such

elements. Bulk geochemical results of massive sulfide collected by

TV grabs in this area showed that these sulfides have high contents

of Pb, As, Cd, and Ag. Because of the frequent magma activities,

extremely low spreading rate at the DHF, long duration

hydrothermal activity, multi-stage mineralization, early

precipitated Ag, Sb, Pb, As and Cd in subseafloor sulfide would

be remobilized in the following episode of hydrothermal activity

(Yang et al., 2023). The bulk chemistry of the core analyzed in this

study exhibits the same feature. Therefore, the DHF, as a typical

axial volcanic ridge sediment-starved hydrothermal field, exhibits

trace element compositions that have obvious particularity

compared with other mid-ocean ridge hydrothermal fields. This is

further supported by multistage mineralization, as evidenced by

varying ages determined through 230Th/U dating (Figure 6). The

chalcopyrite and sphalerite in the DHF are also enriched in As, Sb,

Ag, and Pb. Ascending hydrothermal fluid undergoes mixing and

cooling within seawater, causing pronounced change in the fluid

temperature and deposition of pyrite, chalcopyrite and sphalerite

with high contents of As, Sb, Ag, and Pb. The enrichment of As, Sb,

Ag, and Pb and the lower contents of Co and Se in the pyrite are best

explained by shallow subsurface mixing during different periods of

hydrothermal activity.
FIGURE 11

The distribution of trace elements in pyrite from different layers in the DHF. (A-I) represent the distribution of Co, Ag, As, Au, Cd, Mo, Pb, Sb, and Se
respectively. All layers are calculated at intermediate depth. Py1: granular pyrite, Py2: late overgrowths coarse granular pyrite, Py3: colloform pyrite,
Py4: euhedral pyrite. Layer I to V corresponds to 2,949 years (108–117 cmbsf), 2,307–2,297 years (117–151 cmbsf), 3,523-3253 years (151–173
cmbsf), 4,552 years (173–193 cmbsf) and 2,558 years (193–199 cmbsf) respectively.
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6 Conclusion

A sulfide drill core recovered from the DHF on the ultraslow

spreading SWIR was studied in detail to understand the

mineralization conditions, enrichment mechanism of metallogenic

elements, and the associated evolution process. Analysis revealed

that granular pyrite dominated the upper part of the core, euhedral

pyrite dominated the central part of the core and colloform pyrite

dominated the bottom of the core.
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Pyrite is characterized by high Mn, Co, As, Mo, Ag, Cd, Sb, Tl and

Pb contents, and is characterized by low Ti, Ga, In, Sn, Ni, Se, Ba, W

and Au contents. Chalcopyrite is characterized by high concentrations

of Se, Sn, In, As, Ag and Pb and sphalerite is characterized by high

concentrations of Co, Ga, Ge, As, Ag, Cd, Sb and Pb. The 230Th/U

dating data suggests five different mineralization periods, and the core

has obvious characteristics of gradual accumulation of mineralization

during 4,552–2,297 years. The variations in the elemental contents of

the different layers and the different types of pyrite were controlled by
FIGURE 12

Concentrations of (A) Zn, (B) As, (C) Ag, (D) Cd, (E) Co, (F) Mo, (G) Se and (H) Sb vs. Pb in pyrite from various hydrothermal fields along the mid-
ocean ridges. Longqi (Yuan et al., 2018b), East Longjing (Liao et al., 2021), Tianzuo (Ding et al., 2022), Wocan (Wang et al., 2017), Edmond (Zhang
et al., 2023), Karei, Meso, TAG, Logatchev and 5°S (Keith et al., 2016a). Filled symbols and empty symbols represent the basalts-hosted and
ultramafic-hosted hydrothermal fields respectively.
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the evolution of the physicochemical conditions of the hydrothermal

fluid caused by the interaction of seawater and hydrothermal fluids

within the sulfide mound.

Compared with other hydrothermal fields along other mid-

ocean ridges, the pyrite in the DHF is generally enriched in Zn, Pb,

As, Ag, Cd, Mo, and Sb, which might be attributed to shallow

subsurface mixing during different periods of hydrothermal activity.

This work provides the first documentation of the evolution process

of a shallow sulfide mound on the SWIR.
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