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Sea fog is a severe marine environmental disaster that significantly threatens the

safety of maritime transportation. It is a major environmental factor contributing to

ship collisions. The Himawari-8 satellite’s remote sensing capabilities effectively

bridge the spatial and temporal gaps in data from traditional meteorological

stations for sea fog detection. Therefore, the study of the influence of sea fog

on ship collisions becomes feasible and is highly significant. To investigate the

spatial and temporal effects of sea fog on vessel near-miss collisions, this paper

proposes a general-purpose framework for analyzing the spatial and temporal

correlations between satellite-derived large-scale sea fog using amachine learning

model and the near-miss collisions detected by the automatic identification

system through the Vessel Conflict Ranking Operator. First, sea fog-sensitive

bands from the Himawari-8 satellite, combined with the Normalized Difference

Snow Index (NDSI), are chosen as features, and an SVMmodel is employed for sea

fog detection. Second, the geographically weighted regression model investigates

spatial variations in the correlation between sea fog and near-miss collisions. Third,

we perform the analysis for monthly time series data to investigate the within-year

seasonal dynamics and fluctuations. The proposed framework is implemented in a

case study using the Bohai Sea as an example. It shows that in large harbor areas

with high ship density (such as Tangshan Port and Tianjin Port), sea fog contributes

significantly to near-miss collisions, with local regression coefficients greater than

0.4. While its impact is less severe in the central Bohai Sea due to the open waters.

Temporally, the contribution of sea fog to near-miss collisions is more

pronounced in fall and winter, while it is lowest in summer. This study sheds

light on how the spatial and temporal patterns of sea fog, derived from satellite

remote sensing data, contribute to the risk of near-miss collisions, which may help

in navigational decisions to reduce the risk of ship collisions.
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1 Introduction

Sea fog is a frequent and dangerous meteorological

phenomenon, significantly threatening marine activity safety. This

phenomenon drastically reduces the horizontal visibility of the sea

surface to less than one kilometer (Gultepe et al., 2007). Unlike

land-based scenarios, reduced visibility at sea poses a heightened

risk due to the intricate nature of maritime navigation (Sim and Im,

2023), substantially increasing the likelihood of ship collisions and

thus endangering lives, property, and the environment. Ship

collisions, as one of the primary maritime accidents, can inflict

substantial eco-nomic losses and adverse social impacts. Using non-

accident information to understand maritime transportation safety

is an effective strategy. This often involves identifying near-miss

collision events from Automatic Identification System (AIS) data.

Since near-miss collisions occur more frequently than actual

accidents, near-miss collisions can provide richer insights for

maritime traffic risk analysis than actual accident data (Zhou

et al., 2021). Due to sea fog on 22 May 1922, the Peninsular &

Oriental Steam Navigation Company’s Egypt collided with the

French cargo ship Seine en route from London to Bombay, India.

The ship sank, killing 86 passengers and crew members. Because sea

fog occurs geographically heterogeneously and temporally

seasonally, it is crucial to analyze how it affects near-miss

collisions over time and space.

In 2000, the International Maritime Organization (IMO)

adopted a new requirement for all ships to carry an Automatic

Identification System (AIS) that automatically communicates

information among ships and coastal authorities. The AIS system

transmits the ship’s static, dynamic, and voyage information to the

surrounding ships and AIS base stations via a specific Very High

Frequency (VHF). Because of the rich positional and temporal

information provided by AIS, it has become a valuable tool in

maritime studies, including maritime traffic (Harun-Al-Rashid

et al., 2022; Yang et al., 2024; Zhang et al., 2019), marine
Frontiers in Marine Science 02
observing (Almunia et al., 2021; Wright et al., 2019), and ship

collisions (Cai et al., 2021; Liu et al., 2023; Zhang et al., 2016), etc.

The AIS is popular because of its ability to conduct in-depth studies

of ship near-miss collisions.

Nowadays, water traffic safety studies are focusing on incidents

narrowly susceptible to collisions, often termed “near-miss

collisions”. In the maritime sector, a near-miss collision refers to

a scenario where two vessels pass each other in close proximity (Du

et al., 2020). A prevalent method for detecting near-miss collisions

involves using navigation information from AIS data (Zhang et al.,

2015, 2016). The few maritime accidents so far limit the possibility

of conducting large-scale collision studies. However, near-miss

collisions studies can help overcome this limitation (Prastyasari

and Shinoda, 2020). To prevent ship collisions more effectively,

numerous studies have been conducted on the spatial geographic

distribution of near-miss collisions to identify high-risk areas (Du

et al., 2021; Zhixiang et al., 2019; Zhou et al., 2021). However,

previous studies have primarily focused on visualizing the spatial

distribution of near-miss collisions without delving deeply into the

relevant influencing factors. From the maritime traffic safety

perspective, the factors contributing to collisions can be

categorized into human, vessel, and environment domains.

Among these, environmental factors are the primary causes of

accidents (Zhang and Hu, 2009). Variations in environmental

conditions can significantly increase collision risks. Given that

marine environmental factors exhibit stability, regularity, and

spatial heterogeneity, it is crucial to optimally use the rich

geographic information associated with near-miss collisions.

Integrating these marine environmental factors into the research

framework for near-miss collisions would enable more

comprehensive and insightful studies.

Among various marine environmental factors, sea fog is a

frequently occurring catastrophic weather. Studies have shown

that poor visibility, often associated with fog, exerts the most

significant impact on maritime traffic safety, predisposing vessels
FIGURE 1

Overview of the study area.
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to collision accidents (Bye and Aalberg, 2018; Gultepe et al., 2006).

Approximately 70% of ship collisions are attributed to foggy

conditions (Wu et al., 2015). Moreover, the consequences of ship

collisions are most severe during the foggy season (Zhang and Hu,

2009). Investigating the influence of sea fog on near-miss collision

risk is essential for enhancing the supervision and management of

critical maritime areas and periods to ensure secured

marine navigation.

Traditional sea fog detection methods rely on meteorological

stations and buoys, which are sparse in spatial and temporal

distributions (Kim et al., 2020). In recent years, remote sensing

technology has been widely applied in ocean environment

monitoring (Ullah et al., 2024; Khan et al., 2023). And, the advent

of satellite remote sensing technology enables long-term and large-

scale sea fog detection results. Using remote sensing for sea fog

detection started in the 1970s when Hunt (Hunt, 1973) discovered

significant differences in brightness temperatures between the mid-

infrared (MIR) channel of 3.7 mm and the thermal infrared (TIR)

channel of 11 mm for low clouds or fog with small particle size. Based

on this theory, several studies have explored sea fog detection

techniques, leveraging the difference between mid-infrared and

thermal infrared channels (Cermak, 2012; Eyre et al., 1984; Wu

and Li, 2014; Yibo et al., 2016; Zhang and Yi, 2013). Also, the sea fog

detection accuracy can be enhanced with spectral indices, such as

Normalized Snow Deposition Index, NDSI (Ryu and Hong, 2020),

Normalized Difference Water Index, NDWI (Wu and Li, 2014),

and Normalized Difference Flow Index, NDFI (Shi et al., 2023) and

environmental factors such as air–sea temperature difference (Han

et al., 2022). Due to the challenges of determining optimal thresholds
Frontiers in Marine Science 03
with traditional methods, various machine-learning techniques are

also widely employed in sea fog detection. With its unique vertically

resolved measurement capability that provides accurate sea surface

cloud information, the Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observation (Calipso) has been widely used for sea fog

detection (Badarinath et al., 2009; Cermak, 2012; Wu et al., 2015;

Xiao et al., 2023; Xiaofei et al., 2021). Sea fog based on remote sensing

satellites can conduct spatial analyses of ship near-miss collisions.

Many studies have examined ship near-miss collisions to

achieve a safe and reliable maritime transportation system (Chai

et al., 2017; Rawson and Brito, 2021; Szlapczynski and Szlapczynska,

2016). Most recent studies infer that sea fog positively affects

collisions (Heo et al., 2014; Rømer et al., 1995). However, sea fog

occurrences are spatially heterogeneous and temporally seasonal.

Therefore, it is necessary to explore the impact of sea fog on near

miss-collision risk in time and space. Conventional global

regression analysis methods, such as least squares regression,

assume independence and identical distribution of observations,

rendering them unsuitable for analyzing spatially unevenly

distributed data. Geographically weighted regression (GWR), a

local linear regression method based on spatial variation

relationships, is widely applied in various fields, such as

meteorology (Li et al., 2024; Wahiduzzaman et al., 2022), ecology

(Wang et al., 2021; Xiao et al., 2023), and economics (Cellmer et al.,

2020; Shang and Niu, 2023). The model generates a regression

equation at each local location, enabling spatial analysis of sea fog’s

impact on near-miss collisions (Yongtian et al., 2023).

However, few studies have focused on the spatial and temporal

variations in the relationship between ship near-miss collisions and
TABLE 1 AHI observation bands details on Himawari-8 satellite.

Channel
Spatial resolution

(mm)
Central wavelength

(mm)
Main detection category

1 1 0.47 Vegetation, aerosol

2 1 0.51 Vegetation, aerosol

3 0.5 0.64 Low cloud (fog)

4 1 0.86 Vegetation, aerosol

5 2 1.6 Cloud phase recognition

6 2 2.3 Cloud droplet effective radius

7 2 3.9 Low cloud (fog), natural disaster

8 2 6.2
Water vapor density from troposphere to

mesosphere

9 2 6.9 Water vapor density in the mesosphere

10 2 7.3 Water vapor density in the mesosphere

11 2 8.6 Cloud phase discrimination, sulfur dioxide

12 2 9.6 Ozone content

13 2 10.1 Cloud image, cloud top

14 2 11.2 Cloud image, sea surface temperature

15 2 12.4 Cloud image, sea surface temperature

16 2 13.3 Cloud height
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sea fog because traditional ocean observation data are usually in

point form, which limits studying the relationship between sea fog

and ship near-miss collisions in terms of spatial and temporal

variations. To address the issue, this paper presents a novel

approach of exploring the spatial and temporal variations in the

relationship between ship near-miss collisions and sea fog. The

primary contribution of the paper lies in proposing a framework for

measuring spatial and temporal variation in the correlations

between large-scale sea fog, which is detected using satellite
Frontiers in Marine Science 04
remote sensing data instead of traditional point-based data from

meteorological stations, and near-miss collisions which are derived

from AIS data by the VCRO model. The GWR model measures the

spatial variation of near-miss collisions influenced by sea fog while

an average coefficient analysis of monthly data is used to describe

the temporal variation of those collisions. The Bohai Sea is chosen

as a case study to illustrate the approach. This study provides

insights into the spatial heterogeneity and intra-annual seasonal

variations of near-miss collisions influenced by sea fog. The
FIGURE 3

Himawari-8-image NDSI index distribution chart (A) Original image of Himawari-8 (B) NDSI calculation results shown in graded classes.
FIGURE 2

Workflow of the analytical procedure.
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approach can support decision-making for navigation and enhance

maritime safety.
2 Study area and datasets

2.1 Study area

This study selected the Bohai Sea area (37°07′~41°00′N117°35′
~121°10′E) as the study area (Figure 1). This region represents the

northernmost offshore area of China, surrounded by land on three

sides, characterized as an almost enclosed inland sea. The Bohai Sea is

particularly susceptible to sea fog. Sea fog in the Bohai Sea primarily

occurs during spring and less frequently in summer. Renowned for its

abundance of fisheries and mineral resources and its dense

concentration of ports and harbors, the Bohai Sea emerges as one

of the busiest maritime regions for shipping activities.

In 2018, the major ports in the Bohai Sea (including Tangshan,

Tianjin, Dalian, Yantai, Yingkou, and Huanghua) ranked among the

world’s top 20 ports in terms of cargo throughput. The total port

throughput size reflects a port’s transport capacity. According to the

2018 port data from the China Port Yearbook, the annual throughput

(in million tons) of Tianjin, Tangshan, Huanghua, Qinhuangdao,

Dalian, Yantai, Yingkou, Jinzhou, Huludao, Panjin, Binzhou,

Dongying, Weifang, and Laizhou Ports was 507, 637, 288, 231, 468,

443, 370, 110, 31.9, 40.91, 12, 58.25, 46.57, and 22.7, respectively. The

total throughput of each port is categorized into large, medium, and

small sizes based on mean and standard deviation breakpoints. Large

ports include Tangshan, Tianjin, Dalian, and Yantai Ports; medium

ports include Yingkou, Huanghua, and Qinhuangdao Ports; and

small ports include Jinzhou, Huludao, Panjin, Dongying, Binzhou,

Weifang, and Laizhou Ports.
2.2 Data

2.2.1 Himawari-8
This study’s remote sensing satellite data were obtained from

the Himawari-8 satellite, a third-generation geostationary

meteorological satellite operated by the Japanese Meteorological

Office and equipped with Advanced Himawari Imager (AHI). It

covered sixteen spectral bands, including three visible light

channels, three near-infrared channels, and ten infrared channels

(Table 1). Its quality of cloud imagery, number of spectral bands,

and clarity were substantially improved over those of previous

generations. Additionally, its full-disk observation frequency of

every 10 min provided excellent time resolution, thereby

facilitating the study of time-series sea fog events.

2.2.2 The AIS data
The Automatic Identification System (AIS) is a shipboard

monitoring system that provides vital information about a ship’s

position, speed, heading, and other relevant data. Being less

impacted by meteorological conditions, sea surface states, and

other environmental factors, AIS has gradually become a

mainstream data source for ship trajectory research. The primary
Frontiers in Marine Science 05
data used in this study is the ship’s position, timestamp, direction

toward the earth, and sailing speed.

This paper used the 42.6 GB of 2018 Bohai Sea area AIS data,

containing a substantial data volume. To ensure the usability of the data,

we initially performed preliminary cleaning to remove records with

abnormal critical information, such as speed, heading, longitude, and

latitude. Since analyzing the encounter process is unpractical when the

shipping speed is low or in amoored state, we filtered out low-speed data

and data indicating a moored sailing state. The remaining trajectory data

were then divided into several sub-trajectories for detailed analysis.
3 Methodologies

Figure 2 provides the study workflow. We explored the effect of

sea fog on collision risk and the key factors influencing the collision

risk as explanatory variables, such as ship density. As shown in

Figure 2, the main steps include identifying sea fog, calculating

collision risk, dividing the sea area to be studied into grids, counting

the monthly frequency of sea fog and the total collision risk, and

performing spatial analyses. The main steps are further described

in detail.
3.1 Sea fog detection

The advantages of remote sensing satellite data include wide

coverage and continuous observation, enabling constant

monitoring of sea fog over a wide range and an extended period.

In this study, we used Himawari-8 satellite data, which is equipped

with the Advanced Himawari Imager (AHI), a next-generation

sensor with 16 spectral bands ranging from visible to infrared

wavelengths. The spectral characterization of Himawari-8 data

identified the bands B1, B2, B3, and B14 as the most suitable for

the task. To enhance the differentiation between sea fog and other

features, the Normalized Snow Deposition Index (NDSI) was

constructed as follows:

NDSI =
B3 − B5

B3 + B5
(1)

where B3 is the third-band reflectance and B5 is the fifth-band

reflectance. Figure 3 shows the spatial distribution of NDSI index,

and it can be found that most of the sea fog pixels in the Bohai Sea

and Yellow Sea can be distinguished according to the NDSI index.

The selected feature bands are normalized to address the varied data

magnitudes in each band, which could induce low accuracy and

slow computation.

In this study, only sea fog is dichotomized, i.e., into fog and

non-fog categories. In sea fog remote sensing detection, visual

interpretation is the conventional approach to sample selection. It

involves analyzing the texture or spectral characteristics of features

on satellite remote sensing images to identify those that meet the

pre-defined interpretation criteria. Among the visual interpretation

criteria for sea fog, the following features are essential: uniform,

smooth, and delicate texture, milky white color, darker and less

variable brightness, and more apparent and precise boundaries.
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Nevertheless, low-altitude stratocumulus clouds and sea fog are

essentially clouds, with no significant difference in their physical

properties. Therefore, selecting sea fog samples solely based on

visual interpretation of satellite remote sensing images is subjective.

Vertical Feature Mask (VFM) data, a secondary product of

CALIOP data, can differentiate among several feature types,

including cloud, sea surface, subsurface, stratosphere, aerosol, and

no-signal data, within the range of satellite subsurface points. The

data is widely used in cloud and fog detection research. Based on the

CALIOP VFM data, those connected to the sea surface were

considered sea fog. The synchronized transit of CALIOP VFM data

and Himawari-8 satellite images are taken. Here, synchronization is a

transit time difference between the two data sets of no more than 10

minutes. Samples of sea fog and non-fog conditions have been

identified through visual interpretation and are further

corroborated with CALIOP Vertical Feature Mask (VFM) data.

Four types of feature samples, sea fog, medium-high clouds, low

clouds, and sea surface, were selected through visual interpretation

and in combination with CALIOP VFM data. The samples were

selected by the following cases: 1) Sea fog samples are clouds in

contact with the sea surface or anomalous sea surface above sea level

in the VFM data. 2) Low cloud samples are clouds with cloud base

heights lower than 2 km in the VFM. 3) Medium-high cloud samples

are clouds with cloud base heights greater than 2 km in the VFM. The
Frontiers in Marine Science 06
sample selection process resulted in the following types and

corresponding pixel counts: 6725 pixels for sea fog, 7267 pixels for

sea surface, 6961 pixels for low-level clouds, and 9367 pixels for mid-

high level clouds.

The classification model in the study is the Support Vector

Machine (SVM), a novel pattern recognition method initially

proposed by Vapnik and Cortes in 1995 (Vapnik, 1995). The SVM

is widely used in numerous domains, including feature extraction,

pattern recognition, and regression analysis. Additionally, the SVM

exhibits several advantageous characteristics, such as its suitability for

small-sample training, robustness, stability, and automation. It has

been extensively adopted, demonstrating high efficacy in remote

sensing image classifications. The system randomly generates a

hyperplane in the binary classification of linearly divisible data. It

moves it until the points belonging to different categories in the

training set are precisely on both sides of the hyperplane, thus

achieving the optimal classification with the minimum difference

between similar categories and vice versa. In the case of nonlinear

problems, it is necessary to map the input samples to a high-

dimensional feature space and construct the optimal classification

surface in this feature space. As the dimensionality of the feature

space increases exponentially, computing the optimal classification

plane directly in this high-dimensional space becomes challenging.

The SVM addresses this issue by defining a kernel function, which
FIGURE 4

Spatial distribution of near-miss collisions in 2018.
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translates the problem to the input space. SVM can effectively divide

sea fog and non-sea fog regions in high-dimensional feature space,

especially suitable for complex data features in sea fog detection. SVM

can accurately capture the distribution features of different regions by

constructing the decision hyperplane to improve the classification

accuracy. Unlike deep learning methods that usually rely on a large

amount of labeled data, SVM can still provide good classification

performance with limited sample size. In view of the difficulty and

high cost of acquiring sea spray labeled data, CALIPSO data is used

for labeling in this study, and SVM is able to give full play to its

classification advantages with limited labeled samples. SVM has

strong robustness to noise and outliers, which effectively improves

the stability of the detection of sea spray, and reduces the

classification error of the traditional methods in complex

environments. Therefore, the SVM method can realize efficient

processing while ensuring accuracy, and is an ideal choice for the

sea fog detection task in this study.

This study selected the radial basis function (RBF) as the kernel

function, with 70% of the samples used as training data and 30% as

test data.

k(x, x0) = f(x)Tf(x0) =oM
i=1f i(x)f i(x

0) (2)
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3.2 Near miss collisions

There are two main approaches for calculating collision risk

based on historical AIS data. The first method utilizes Distance at

Closest Point of Approach (DCPA) and Time to Closest Point of

Approach (TCPA). The technique identifies near-miss collisions by

establishing criteria for DCPA and TCPA within a defined vessel

domain (Fukuto and Imazu, 2013; Langard et al., 2015; Yoo, 2018).

Nevertheless, collision risk assessment, solely based on DCPA/TCPA,

ignores the heading information between ship pairs and thus cannot

detect the collision risk during head-on encounters. The second

method involves constructing a model to calculate the near-miss

collisions based on factors that directly influence ship collisions.

The Vessel Conflict Ranking Operator (VCRO) model assessed

the collision risks between ships, with the input variables including

distance, relative speed, and phase difference between the two ships

(Zhang et al., 2015). The equation is as follows:

VCRO(x, y, z) = ((kx−1y)(m · sin (z) + n · sin (2z)) (3)

where x is the distance between the two ships, y is the relative speed,

z is the phase, k,  m, n are the model parameters. The parameter values

used in this study are based on Zhang, with k;=3.87,m=1, and n=0.386.
FIGURE 5

Spatial distribution of vessel density in 2018.
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The relative distance between ships is calculated using Equation

4, where (x1, y1) represents the coordinates of ship A, (x2, y2) is the

coordinates of ship B, and d is the distance between the centers of

the two ships.

d =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x2 − x1)

2 + (y2 − y1)
2

q
(4)

The relative velocity between ships is calculated using Equation

5, where Va and Vb represent the speed of ship A and ship B,

respectively, HDGa and HDGb represent the heading of ship A and

ship B, and a   represents the heading angle of the ship.

y(a,b) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

a + V2
b − 2VaVb cosa

q
(5)

The phase describes the relative position of the ships, denoted

by angle and direction. The phase range is [-p, p], where a negative
value indicates a concluded encounter and the two ships move away

from each other, posing no collision risk. Conversely, a positive

value indicates that the ships are approaching each other,

heightening their collision risks.

To analyze the law governing ship collision risk on spatial and

temporal scales, the study area must be gridded. Considering its

size, the Bohai Sea is divided into grid cells of 0.125°, and the sum of

near-miss collisions of each grid cell is counted as the value of this

grid near-miss collisions:

Risksum =o VCROn (6)
3.3 Global Moran’s I

Global Moran’s I is the most frequently employed statistic in

global correlation analysis. It is a comprehensive measure of spatial

autocorrelation across the study area (Moran, 1948). It is expressed

as Equation 7, where wij represents the weight between observations

i and j, and S0 denotes the total sum of wij, given as Equation 8

I =
n
S0

�o
n
i=1on

j=1wij(yi − �y)(yj − �y)

on
i=1(yi − �y)2

(7)

S0 =on
i=1on

j=1wij (8)

A Moran’s I > 0 indicates a positive spatial correlation,

described as a “high-high, low-low” aggregation trend between

neighboring elements. The larger the value, the more pronounced

the spatial correlation. Conversely, Moran’s I< 0 signifies a negative

spatial correlation, characterized as a “high-low, low-high”

distribution trend among neighboring elements. However, there is

a random distribution when Moran’s I = 0, indicating spatial

randomness. After calculating Moran’s I index, it is impossible to

judge the spatial correlation directly based on its positive or negative

value. The significance of the index must be assessed in

combination with the p-value and Z-score.
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3.4 Geographically weighted regression

According to the first law of geography, anything is spatially

correlated. Geographically weighted regression is a local linear

regression method that involves modeling spatially varying

relationships to solve spatial heterogeneity of the variables by

assigning weights to different locations (Brunsdon et al., 1996). Its

Equation 9 is as follows:

yi = b0(mi, vi) +okbk(mi, vi)xik + e i (9)

where (mi, vi) denotes the position of grid cell i, b0(mi, vi)   is the

intercept term, bk(mi, vi) is the regression coefficient of the

parameter k on the grid cell, and ei is the model random error.

The parameter vector at location i is estimated using the weighted

least square approach as follows Equation 10:

b̂ (ui, vi) = (XTW(ui, vi)X)
−1XTW(ui, vi)y (10)

The GWR model is adjusted using a distance decay weighted

function modified by a bandwidth. The three most commonly used

weighting functions are Gaussian-based, bi-square, and tri-cube

kernels. Bandwidth includes fixed and adaptive types. We used a

geographically weighted regression model with the dependent

variable as near-miss collisions, while the explanatory variables

were the frequency of sea fog, ship density. We employed a

Gaussian kernel spatial weight matrix, where the weight between

observation points i and j is calculated as Equation 11, where dij
represents the geographical distance between the two points and b is

the bandwidth parameter. We used the adaptive bandwidth

specified by the Akaike information criterion (AICc) due to the

uneven distribution of the near-miss collision data.

wij = exp −
d2ij
2b2

 !
(11)

Further, the AICc and R2 values evaluated the performance of

the developed models. Higher R2 indicates a better fit, while lower

AICc indicates a poorer fit. The GWR model has significant

advantages over the OLS model in its ability to optimize the

global model on a local scale and to visualize the spatial

distribution of the local regression coefficients. It enables the

analyses of each factor’s local contribution and non-stationarity

characteristics through local coefficient variations, which are

unavailable in the OLS model.
4 Result and discussion

4.1 Spatial and temporal differences in
near-miss collision

Figure 4 displays the grid statistics for near-miss collisions in

2018. The value for each grid represents the total values for all near-
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miss collisions occurring within that grid as calculated using Eq (6).

Areas of high near-miss collision are concentrated around ports

because of the confined navigable space and the high density of

ships in these areas (Figure 5), while fewer near miss collisions were

observed in the central waters of Bohai Sea. Notably, the Laotieshan

Channel, located at the northernmost end of the Bohai Strait, is a

major maritime transport hub in the Bohai Sea. It experiences
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substantial maritime traffic, resulting in a heightened risk of near-

miss collision risks in the area.

In addition, Figure 6 shows the spatial distribution of near-miss

collisions from January to December 2018. We observed that the

fishing moratorium in the Bohai Sea, lasting from May to August,

results in fewer near-miss collisions during this period. The number

of near collisions starts to increase in September. By January, vessel
FIGURE 6

Spatial distribution of near-miss collisions, (A–I) represent the spatial distribution of near-miss collisions for each month from January to December
2018 respectively.
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activity decreases as the temperature drops and the icing period

begins, leading to a corresponding decline in near collisions.
4.2 Spatial and temporal differences in
sea fog

The spatial distribution of sea fog in the Bohai Sea is

significantly heterogeneous, with most occurrences concentrated

in the southwestern and northern regions (Figure 7).

Figure 8 illustrates the monthly distribution of sea fog frequency

in the Bohai Sea in 2018. The data indicate that sea fog is

significantly higher in winter and spring. Despite this seasonal

peak, the overall frequency of sea fog remained relatively low,

with almost no occurrences in summer.

In summary, the sea fog in the Bohai Sea in 2018 has obvious

spatial and temporal distribution differences, showing the

characteristics of “high in spring, low in summer, high along the

coast, and low in the distant sea”. Spring is the high incidence of sea

fog, with a wide spatial distribution; while in summer, sea fog is

significantly reduced and concentrated in local coastal areas.

Understanding the spatial and temporal variability in the

distribution of sea fog is critical to maritime safety and the

development of effective navigation strategies.
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4.3 Spatial autocorrelation

Before performing the GWR model, a spatial autocorrelation

analysis of sea fog occurrence was conducted using the Moran’s I

index, along with z-scores (indicating the distance from the mean in

standard deviations) and p-values (assessing the statistical

significance of the index). Table 2 presents these results for each

month of 2018, as well as for the entire year. All the Moran’ I index

values (bounded by 1.0 and 1.0) are positive and high (> 0.25),

indicating a high degree of spatial positive autocorrelation. Also, the

p-values are all less than 0.01 (reaching 99% confidence level), and

the z-scores are significantly higher than 2.58, indicating that the

spatial autocorrelation results are statistically significant.

Consequently, the linear regression model is inadequate for

analyzing the impact of sea fog on collision risk. In contrast, the

GWR model is well-suited to address these spatial dependencies.

Using the GWR model enables an in-depth analysis, better

capturing the spatial impact of sea fog on near-miss collision

risks across the region.
4.4 GWR model diagnosis

The GWR models were constructed for 2018 and each month

therein, with near-miss collisions as the dependent variable, while sea
FIGURE 7

Spatial distribution of sea fog occurrence days in 2018.
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fog frequency and ship density were explanatory variables. Prior to

constructing the GWR models, all values were normalized to ensure

consistent scale and improve model accuracy. To assess the

effectiveness of the GWR model, an OLS model was also established

for comparison. The model results (Table 3) showed that the R2 values

of the OLS model are generally lower than 0.6, indicating that it

explains less than 60% of the variance in near-miss collision incidents.

For instance, in January, February, and March, the OLS R2 values are

low at 0.10, 0.21, and 0.19, respectively, suggesting limited explanatory
Frontiers in Marine Science 11
power. In contrast, the GWRmodel significantly outperforms the OLS

model with R2 values above 0.7 for most months, indicating that its

effectiveness in dealing with spatially heterogeneous data. Similarly, the

Akaike Information Criterion corrected (AICc) values further validate

the GWR model’s superiority. AICc is a measure of model quality

where lower values indicate better fit. The AICc values of the GWR

model are lower than those of the OLS model. These results indicate

that the GWR model, which accounts for spatial heterogeneity, fits the

data more effectively and provides more accurate regression analyses.
FIGURE 8

Spatial distribution of the frequency of sea fog occurrence, (A–I) represent the spatial distribution of the frequency of sea fog occurrence in each
month from January to December 2018, respectively.
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TABLE 2 The spatial autocorrelation test results obtained using moran’ I
index combined with the z-score and p-value of sea fog (as GWR-
independent variables).

Month Moran’ I Z P

1 0.307 11.4 0.00

2 0.314 11.67 0.00

3 0.444 16.46 0.00

4 0.524 19.28 0.00

5 0.419 15.44 0.00

6 0.271 10.03 0.00

7 0.284 10.45 0.00

8 0.264 9.74 0.00

9 0.258 9.52 0.00

10 0.358 13.25 0.00

11 0.314 11.62 0.00

12 0.303 10.98 0.00
F
rontiers in Marine S
cience
Year Moran’ I Z P

2018 0.406 14.98 0
12
TABLE 3 Performance evaluation of the GWR and OLS model.

Month
OLS GWR

R2 AICC R2 AICC

1 0.10 -760.77 0.81 -1141.87

2 0.21 -651.09 0.87 -1035.79

3 0.19 -1415.51 0.93 -2378.54

4 0.15 -1493.52 0.84 -2198.11

5 0.76 -1730.34 0.95 -2278.35

6 0.12 -1515.95 0.82 -2197.67

7 0.68 -1847.73 0.94 -2590.70

8 0.47 -1642.87 0.74 -1918.78

9 0.60 -4550.58 0.78 -4689.05

10 0.30 -1399.03 0.71 -1702.76

11 0.59 -1903.69 0.84 -2302.02

12 0.57 -1596.99 0.86 -1970.90

Year
OLS GWR

R2 AICC R2 AICC

2018 0.265 -2084.45 0.82 -2729.98
FIGURE 9

Spatial distribution of the local R2 values by GWR model in 2018.
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The seasonal patterns also suggest that the GWR model performs

especially well in winter and spring, when sea fog occurrences are more

frequent. For example, in February through May, when sea fog events

are prevalent, the GWR model R2 values range from 0.87 to 0.95. This

result reinforces that sea fog, as an environmental factor, has a

significant spatially variable impact on near-miss collisions during

these months.
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Figure 9 shows the spatial distribution of local R2 values of

GWR for the 2018 annual data. The values generally exceed 0.4,

indicating that the sea fog and ship density can fit the GWR model

well. Notably, the areas with higher R2 (> 0.8) are concentrated in

large port areas, such as Tianjin Port, Tangshan Port, Yantai Port,

and Dalian Port. In contrast, the rest of the medium ports, such as

Qinhuangdao and Yingkou Port, also have R2 between 0.6 and 0.8.
FIGURE 10

Spatial distribution of the local R2 values by GWR model, (A–I) represent the spatial distribution of the local R2 values in each month from January
to December 2018, respectively.
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Suggests that sea fog and ship density are more strongly correlated

with ship near-miss collisions in ports areas.

Figure 10 displays the local R2 values for different locations in

the GWR model over the 12 months of 2018, highlighting temporal

variation in the model’s performance across different locations. The

GWR model performs well in essentially all months, with local R2

values generally exceeding 0.6, although it varies monthly for

different locations. This temporal variability suggests that the

influence of sea fog and ship density on collision risks may shift

over time, potentially due to seasonal changes in weather

conditions, maritime traffic, or operational patterns in these

port areas.

Overall, the R2 values are consistently high for most regions of

the Bohai Sea. This deduction indicates that the driving factors used

in the model effectively explain the spatial heterogeneity in near-

miss collision risk.
4.5 Spatial relationship between sea fog
and collision

The local regression coefficients of the GWR model (Figure 11)

highlight the spatial variation in the effect of sea fog on near-miss

collisions. The regression coefficients are generally greater than 0,

indicating that sea fog positively affects near-miss collisions, thus
Frontiers in Marine Science 14
the occurrence of sea fog contributing to collision risk. Generally,

the impact of sea fog on near-miss collisions shows significant

spatial inhomogeneity. The areas with the highest impact by sea fog

are predominantly near the ports in the western part of the Bohai

Sea, mainly concentrated around Tianjin Port and Tangshan Port.

The high density of ships and heavy traffic in these harbors increase

the likelihood of collision accidents when encountering sea fog due

to reduced visibility and increased difficulty in ship handling.

Further from these large ports, the coefficients decrease,

indicating a relatively lower but still positive effect of sea fog on

near-miss incidents. The areas with moderate coefficients (0.3 to

0.5) include regions around medium ports, where the collision risk

remains elevated during fog but to a lesser extent than in the large

ports. Therefore, near-miss collisions at key shipping nodes, such as

ports, significantly increase during sea fog scenarios. Consequently,

port authorities in large ports, such as Tianjin and Tangshan,

should enhance navigation monitoring and optimize ship

scheduling during foggy conditions to mitigate the increased risk

of collisions. Implementing real-time navigation assistance and

optimizing traffic flow in these key nodes can further reduce the

risk of incidents under low-visibility conditions.

Figure 12 illustrates the monthly spatial distribution of local

regression coefficients from the GWR model. Throughout the year,

sea fog consistently shows a positive effect on near-miss collision risk,

but the intensity and spatial distribution of this impact fluctuate
FIGURE 11

Spatial distribution of regression coefficient values of sea fog in 2018 using GWR models.
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significantly. Specifically, the contributions of sea fog were more

significant in January, February, March, April, and June, with high-

impact areas concentrated near the large, medium-sized ports in the

western Bohai Sea, such as Tianjin and Yingkou Port. In contrast, May,

July, and September display a more even distribution of lower local

coefficients, with values generally below 0.1. This pattern suggests that

during these months, the effect of sea fog on near-miss collisions is less

severe across the region. In August, some changes occurred in the
Frontiers in Marine Science 15
geographical distribution of the contribution of sea fog, with Dongying

and Huludao harbors being more affected in localized areas. The effect

of sea fog in the Bohai Sea intensified again fromOctober to December,

with several high-impact zones. Particularly in October, the effect was

more significant, affecting the ports of Tianjin, Qinhuangdao, Laizhou,

and Dongying. In November, Tianjin and Qinhuangdao ports were

more affected, while in December, the port of Tianjin experienced the

most significant impact.
FIGURE 12

Spatial distribution of regression coefficient values of sea fog by GWR models, (A–I) represent the spatial distribution of regression coefficient values
of sea fog in each month from January to December 2018, respectively.
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4.6 Temporal relationship between sea fog
and collision

Here, we present line plots of the average regression coefficients for

each month in Figure 13, providing a visual comparative time-series

analysis of how much the Bohai Sea area is affected by sea fog in

different months. The results demonstrate that sea fog in autumn and

winter most significantly impacts ships’ near-miss collisions, while

spring has the second-highest impact. In contrast, the effect of sea fog

on near misses is minimal in summer. The seasonal difference can be

explained in two ways. First, sea fog is less frequent in summer, which

directly reduces the adverse effects of sea fog on navigational

conditions. Secondly, the fishing moratorium in the Bohai Sea area

coincides with summer, and the reduced activity offishing vessels leads

to a relative decrease in the number of vessels, thus reducing the risk of

collision due to sea fog. Nevertheless, it is crucial to note that, although

May and June also fall within the fishing moratorium period,

commercial vessel activity is higher at this time than from January to

April. This increased activity can still contribute to collision risks, even

with the reduced traffic of fishing vessels.
Specifically, May to August is the closed season for fishing in the

Bohai Sea, so the mean regression coefficient increases from September

(Figure 13 red line), indicating that sea fog has started to affect ship

collisions significantly. However, as winter approaches (December-

March), the number of active ships decreases due to the lowering of

temperatures and the freezing period, and the mean regression

coefficient starts to decrease, indicating less impact by sea fog

(Figure 13 green line). The regression coefficients remain smoother

but slowly increase in spring and summer (March-August) (Figure 13

yellow line). In July, sea fog had almost no effect on collision risk because

it hardly occurred, and the number of vessels was low during the fishing

moratorium in the Bohai Sea. Collisions are more significantly affected

by sea fog when vessel traffic is high. This observation suggests that

navigation safety strategies should focus on periods with high vessel

traffic and frequent sea fog to mitigate collision risks effectively.
5 Conclusions

This paper presents a new framework for analyzing the spatial

and temporal effects of sea fog on ship near-miss collisions. Data from
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the Himawari-8 satellite is used to detect sea fog, with a Support

Vector Machine (SVM) model applied for identification. Near-miss

collisions between vessels are analyzed using the Vessel Conflict

Ranking Operator (VCRO) model, which is based on Automatic

Identification System (AIS) data. Spatial autocorrelation analysis by

Moran ‘s I index reveals significant spatial heterogeneity in the

distribution of sea fog. To account for this variability, a

geographically weighted regression model (GWR) is employed,

which enables measuring the spatial variation of sea fog’s effect on

ship near-miss collisions through local regression coefficients.

Additionally, further conduct regression analysis on the monthly

time series data to investigate the intra-annual seasonal dynamics and

variations by calculating the mean regression coefficients. This

temporal analysis can help us understand how the sea fog factor

influences ship near-miss collisions over time. The proposed

framework is implemented in a case study focused on the Bohai

Sea, and the results are as follows.

According to the performance metrics (AICc and R2), the GWR

model performs much better than the OLS model. The R2 of the

GWR model ranges from 0.70 to 0.95, suggesting that GWR is more

suitable for data where spatial non-stationarity exists. Regression

coefficients generally greater than 0 indicate a positive influence of sea

fog on ship near-miss collisions. Visualizing the local regression

coefficients can intuitively reveal the spatial differences in the

contribution of sea fog to ship near-miss collisions. Overall, sea

areas near large and medium ports along the coast of the Bohai Sea

with high ship densities, such as Tangshan Port and Tianjin Port, are

more susceptible to sea fog. However, the impact on the central Bohai

Sea is minimal due to the vast expanse of the water area. We estimate

the mean regression coefficients for each month to explore temporal

differences. It reveals that the contribution of sea fog intensifies in the

autumn after the end of the fishing moratorium. In winter, the

contribution of sea fog decreases due to the low number of vessel

activities. However, the contribution rises steadily by spring, while it

is lowest in summer due to its low occurrence frequency. Future

studies should explore the spatial and temporal correlation between

sea fog and ship near-miss collisions in more detail in response to

multi-year data analysis. This research demonstrates that sea fog data

derived from remote sensing satellite observations allows for a more

comprehensive understanding of relationships and patterns in space

and time.
FIGURE 13

Average regression coefficients for January-December 2018.
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