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In this study, we assessed the growth patterns and population characteristics of

the Odontobutis potamophila in Nansi Lake to inform evidence-based

management recommendations for the sustainable development of fisheries in

the region. A collection of O. potamophila was taken from Nansi Lake between

August 2017 and July 2018 (except February) to estimate the age structure,

growth pattern, and mortality of the population. Edge-type analysis of sagittal

otoliths indicated that a single annulus was formed from March to May. The

results revealed that the age structure of O. potamophila consisted of four age

groups (0-3 ages), with 0-1 year-old fish comprising about 85.11% of the harvest.

An isometric growth pattern was observed, with the Logistic growth function

providing the best fit for combined sexes. SLt = 172:94=(1 + e−0:458(t−0:79))(n=591,

R2 = 0.622). Total mortality (Z), natural mortality (M), and fishingmortality (F) were

computed as 1.69, 0.53, and 1.16/year, respectively. Meanwhile, the exploitation

rate (E) was 0.69/year, in accordance with the rule of thumb (E>0.5, the fish stock

was undergoing overfishing), which indicated the stock has been overfished

slightly. These results showed that brief generation-time, dominance of juvenile

fish and relatively high natural mortality of the O. potamophila provide essential

information on the native fish species in Nansi Lake, which may be essential for

conservation strategies and artificial propagation. At the same time, these results

provide critical data for sustainable fisheries management in Nansi Lake and

similar ecosystems.
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1 Introduction

Determination of age is of fundamental importance in the fields

of fish biology and population management studies (de Santana

et al., 2020; Nazir and Khan, 2020). The age data thus obtained can

be used to calculate growth rates, mortality and productivity of fish

populations (Campana, 2001; Ma et al., 2011). Annuli are usually

formed in hard structures, e.g., scales, otoliths, fin rays and

vertebrae, reflecting seasonal growth patterns, particularly in

temperate waters (Nazir and Khan, 2020; Phelps et al., 2011; Ma

et al., 2011). In the context of age identification for this species,

although scales are a conventionally employed method, they are less

precise in distinguishing older individuals. Otoliths, or ear bones,

have been identified as a potential alternative, with studies

indicating the presence of clear annual rings. The development of

a method for age identification through the comparison of different

materials is a future research direction. Field surveys have revealed

that Nansi Lake has been significantly impacted by anthropogenic

activities, leading to miniaturization of fish. Individuals of O.

potamophila in the river are typically small in size, with large

specimens being rare. Among the hard structures used to

determine ages, otoliths are recommended in most of the

investigated species and researches with most distinguishable

annuli (Campana and Thorrold, 2001; Ferri and Brzica, 2022). In

order to use any hard structure to determine age, it is critical to

identify the annuli in the structure and validate its annual

periodicity before any applications (Nazir and Khan, 2020).

The dark sleeper, Odontobutis potamophila (Günther, 1861), is

a valuable aquaculture species due to its high-quality meat and

market demand. It is commonly found in floodplain lakes across

eastern China (Zhao et al., 2017; Wang et al., 2017). It is usually a

by-catch species of shrimp trap and occurs in the harvest mainly

during the spawning period from March to June. The O.

potamophila needs a specific nest to lay eggs during the spawning

period, with males guarding the nest and the fertilized eggs until the

eggs hatched (Hao, 1960). Populations of this species have declined

sharply in the last several decades in most of the lakes due to

multiple factors, specifically overfishing and habitat degradation

(Tang et al., 2015; Zhang et al., 2018).

However, the paucity of basic biological information regarding

this species is a matter of concern. A significant body of research has

recently been dedicated to O. potamophila, with studies focusing on

reproduction, husbandry, and larval rearing (Liu et al., 2008).

Phylogenetic analysis of the mitochondrial 12S rRNA sequence

was conducted to ascertain the taxonomic composition of Chinese

odontobutis. The analysis revealed the presence of four species: O.

potamophila, Odontobutis sinensis, Odontobutis haifengensis and

Odontobutis yaluensis. To date, no research has been conducted on

the age determination of this species, which consequently hinders

further biological study.

Previously, the maximum age of this species in Taihu Lake and

Chaohu Lake was determined through the analysis of otolith size,

with a maximum age of four years old confirmed (Li et al., 2007; Sun

et al., 1996). Meanwhile, the Odontobutis sinensis in Honghu Lake

was confirmed to be in the age range of 1-3 years old by using the

scale (Xiang et al., 2021). Nevertheless, the maximum age
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measurements for this species in Nansi Lake have yet to be

documented. The experimental results demonstrated that the age

inferred based on otolith mass was largely consistent with the actual

age, confirming that otolith mass is an accurate and rapid method of

age identification (Han et al., 2022). The significant positive

correlation between otolith weight and fish age suggests that

otoliths can be used as a valid indicator for estimating fish age,

especially in age groups where there is no overlap between otolith

weight and body length. This method can provide a high level of

accuracy. Nevertheless, it is important to note that the accuracy of

this method may be compromised in circumstances where there is

overlap between the parameters under consideration.

Consequently, further validation and refinement of the analysis is

required to ensure the optimal performance of this technique

(Britton and Blackburn, 2014; Khan et al., 2018).

In this study, Nansi Lake is a unique study site because it is a key

node of the South-to-North Water Diversion East Route Project,

which has important ecological protection and water resource

allocation roles. Therefore, we firstly analyzed the sectioned

sagittal otoliths to distinguish any potential marks of annuli in

Nansi Lake,. We then validated the annual periodicity of the marks,

and used the validated annuli to determine age structure and to

calculate growth patterns mortality of the population. The findings

of this study, which concern the age identification of the O.

potamophila and population parameters, may shed light on the

growth patterns and population dynamics of O. potamophila. They

may also provide critical data for assessing the reproductive

potential and structural stability of the population. Furthermore,

they may be essential for developing rational fishing strategies and

for assessing the health of fishery resources.
2 Material and methods

2.1 Fish sampling

Nansi Lake (34°27′-35°20′N; 116°34′-117°21′E) (Figure 1)

belongs to the Huai River watershed, on the border between

Shandong Province and Jiangsu Province, China. It is the largest

freshwater lake in northern China, with a total surface area of 1266

km2 and an average water depth of 1.40 m (Wang et al., 2019; Qin

et al., 2020). This lake is a part of the East Route of the South-to-

North Water Transfer Project, serving as both the route and a

storage water. A major part of the lake is included in a natural

reserve. As a result, water quality, habitat and fish resource are well

protected in this lake, and O. potamophila maintains a considerable

population abundance, and frequently occurred in the harvest of

fishermen. Sampling was conducted monthly from August 2017

through July 2018 (except for February 2018). No data from

February were available due to the failure to launch nets for

collection because of ice closure. Furthermore, the marked

differences in the seasonal distribution of fish communities, the

very low temperatures recorded in February and the low activity of

fish during the winter months meant that only a very small number

of samples could be collected. Benthic fyke nets are defined as nets

that are typically 15 meters in length and 0.6 meters in width, with a
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mesh size of 4 mm. Each net contains approximately 20 trap boxes,

each equipped with three entrances that permit entry for shrimp

and fish, but prevent exiting. O. potamophila is a bycatch species in

benthic fyke nets, predominantly encountered in nearshore areas

with water depths of approximately 1 meter during harvesting

operations (Qu et al., 2020; Guo et al., 2013). Therefore we used

benthic fyke nets. The nets were 15-m long and 0.6-m wide with a 4-

mm mesh size (Qin et al., 2020). The specimens were kept on ice

immediately after sampling and brought into the laboratory for

further analysis.
2.2 Otolith analysis

The fish was measured for standard length (SL, to 0.1mm) and

weighed for body weight (BW, to 0.1g). It was then dissected to open

its abdomen and determined of sex by visually checking the gonads.

Fish can only be determined of sex when developed to late-stage II,

but not earlier. Then both right and left sagittal otoliths were extracted

and usually only one of them was used for analysis. Preliminary

observations on whole sagittal otoliths polished slices (Cross-section

grinding) under a dissecting microscope with transmitted light

revealed identifiable opaque/translucent opaque. Using a dissecting

microscope, sagittal otoliths were analyzed under transmitted light to

identify opaque, which appeared as alternating opaque and tran. The

otoliths were polished to get the transverse section (Ding et al., 2016).

Periodic opaque/tran were visible in the otoliths when examined with

transmitted light. Each otolith was identified to one of two marginal
Frontiers in Marine Science 03
types, opaque or translucent. Monthly percentages of otoliths with

opaque and translucent edges were calculated to validate the

annual periodicity of the opaque to determine the months of

transitions from opaque growth to translucent growth (Panfili and

Morales-Nin, 2002; Soeth et al., 2019).
2.3 Determination of age and growth

Age was determined by identifying and counting the inner margin

of opaque that are assumed to form annually. Age was determined by

the first author alone. Three independent readings were made with a

minimum period of 2 weeks between each reading. We referred to He

et al. (2008) to define age class and to calculate precise age of each fish.

Each fish was assigned to an age class. When a fish was caught in the

calendar year of its birth, it was assigned to age 0; if it was caught in the

year following the calendar year of its birth, it was assigned to age 1, etc

(Devries and Frie, 1996). To construct the growth function, each fish

was also assigned a more precise age by fixing its birth date as 1 May,

the middle of the main spawning season (Hao, 1960), and considering

the date of capture (Stewart and Hughes, 2007; He et al., 2008). For a

fish caught during April through June with a translucent margin zone

outside of the last annulus, its age was calculated as A   =   (365(N −

1) + Dc)=365, where A is the age in years, N is the number of annuli

counted, andDc   is the number of days from its nominated birth date

to capture. Otherwise, age was calculated as A   =   (365N + Dc)=365

(He et al., 2008).

The SL-at-age data were described by the following three

growth models: 1) the von Bertalanffy growth function (VBGF) S

Lt = SL∞(1 − e−K(t−t0)), where SLt is the standard length at age t, SL∞
is the asymptotic length, K is the growth coefficient and t0 is the

hypothetical age at zero-length; 2) the logistic growth function

(LGF) SLt = SL∞=(1 + e−K(t−t0)) and 3) the Gompertz growth

function (GGF) SLt = SL∞e
−e−K(t−t0− ) . Parameter estimates were

obtained for the three models using nonlinear regression. Akaike

Information Criterion (AICc) was used to assess the best-fit model

based on goodness of fit and parsimony for males, females, and all

individuals pooled (Akaike, 1983). The model with the smallest

AICc value was selected as the best among the candidates. These

three models are frequently employed in the fitting of growth

equations, and it is important to note that there is no species that

is exclusively associated with a single equation. The age-growth data

were used to fit all three models simultaneously, and by using the

Akaike information criterion and the comparison of the R2 of the

equations, it was determined that the most suitable growth equation

type for O. potamophila in this study was Logistic model. Of course,

the most common one must be VB model, and the results showed

that the R2 of VB model and Logistic model were approximately

equal, but the AICc of Logistic was smaller and the estimated

limiting body length is more in line with the current reality. The

AICc difference (Di) was computed for candidate models to evaluate

relative model support. Models with Di <2 have substantial support,

while there is considerably less support for models with 4 <Di <7,

and models with Di >10 have essentially no support and might be
FIGURE 1

Sampling locations for Odontobutis potamophila in Nansi
Lake, China.
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omitted from further consideration (Anderson & Burnham, 2002).

The three growth functions for males and females were compared

using the analysis of residual sums of squares (RSS) method (Chen

et al., 1992). And the mean size of males and females was also

compared. The growth performance index (GPI) j 0 (phi-prime)

was calculated using the following formula (Pauly and Munro,

1984): j 0 = log10K + 2log10 SL∞.

The length-weight relationship (LWR) was described for each

sex by BW = aSLb, where a is the intercept of the regression or

shape coefficient and b is the allometric or slope parameter (Ricker,

1975). Analysis of covariance (ANCOVA) was used to compare

(log-transformed) LWR relationships for males and females (length

and weight as dependent and independent variables, respectively,

and sex as a covariate). The difference between b and isometric

growth value (b = 3) was tested by t-test (Froese, 2006).
2.4 Mortality

To obtain the total mortality (Z), the catch curve analysis was

applied (Ricker, 1975). The natural mortality (M) were obtained

from Pauly (1980) empirical equation: log10M = -0.0066 –

0.279log10 SL∞+ 0.6543log10K + 0.4634log10T, where T is the

average annual water temperature (in the present study, T =

17.31°C from (Qu et al., 2020). Fishing mortality (F) was

estimated from the equation F = Z – M (Gulland, 1965), and

exploitation rate (E) was estimated using the equation of (Elliott,

1983): E = F/Z. We used nonparametric statistics to analyze when

data was non-normality and non-homogeneous. Statistical tests

were conducted using SPSS 19.0 software and R 3.5.3 (R Project for

Statistical Computing, http://www.r-project.org/).
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3 Results

A total of 591 individuals were analyzed of otoliths, of which 294

males (SL: 54.18-145.58 mm; BW: 3.75-88.52g) and 297 females (SL:

55.97-135.96 mm; BW: 4.34-85.32g) could be identified (Table 1).

The mean SL was not statistically different between males (92.21 ±

17.73mm) and females (91.03 ± 14.9 mm; p=0.926>0.05).

There were inner margin of the translucent zone in the plane of

the whole sagittal otoliths (Figure 2). The edge type was translucent

during the months August-November. In December, the otolith

margin of some fish was opaque, and then this proportion increased

to its maximum in March of the following year, and afterwards

decreased during March and May. In June, 100% of the otolith

edges were translucent. Thus, the shift in growth pattern from

translucent to opaque occurred in March and May (Figure 3).

Additionally, estimated age ranged from 0 to 3 years, i.e. 4 age

classes. Individuals of age 0 and 1 accounted for 85.11% of the

harvest (Figure 4).

The RSS showed no significant difference in SL-at-age

relationships between males and females (F < F0.05, 3, 2= 19.1643,

p > 0.05, Table 2). We therefore combined data from both sexes to

fit growth function. The LGF had the lowest AICc and Di (Table 3),

thus, was the best function fitting the SL-at-age relationship SLt =

172:94=(1 + e−0:46(t−0:79))(n=591, R2 = 0.622; Figure 5). The GPI (j 0)
of the population was 4.14.

The slope (b-values) of the SL-to-BW regressions for both males

and females did not differ from the value of 3 (Male: t = 1.13<t0.05,

p>0.05; Female: t = 1.10<t0.05, p>0.05). The LWRs were also not

significantly different between males and females (ANCOVA,

F = 3.382, p = 0.066). The LWR for pooled sexes was BW =

0:00003SL3:00 (n = 591, R2 = 0.949) (Figure 6).
TABLE 1 Sampling date, n, SL and BW of Odontobutis potamophila collected from Nansi Lake.

Sampling
date

n

Male

n

Female

SL (mm) BW (g) SL (mm) BW (g)

Mean
± SD

Range Mean
± SD

Range Mean
± SD

Range Mean
± SD

Range

2017-8 19 76.01 ± 4.36 69.34-84.36 11.52 ± 1.56 9.68-14.85 14 73.28 ± 3.44 68.96-80.84 10.22 ± 1.46 8.29-13.24

2017-9 29 99.02 ± 19.20 67.81-136.95 27.00 ± 15.34 10.01-65.02 17 96.74 ± 15.43 74.88-126.74 23.89 ± 11.61 11.71-51.33

2017-10 18 101.81 ± 16.66 65.90-126.84 27.23 ± 12.39 6.39-52.87 28 101.48 ± 12.29 75.82-123.51 25.44 ± 9.21 9.43-42.99

2017-11 48 85.21 ± 11.25 67.60-118.26 18.13 ± 9.00 7.82-47.66 33 84.73 ± 11.66 61.87-116.58 17.17 ± 7.39 5.90-38.04

2017-12 38 89.72 ± 14.84 60.41-127.06 18.93 ± 10.48 5.66-53.75 42 87.05 ± 12.11 62.60-118.10 16.94 ± 7.95 5.27-50.50

2018-1 15 89.04 ± 18.31 58.00-130.14 22.01 ± 17.51 4.34-67.97 22 88.47 ± 17.66 59.93-122.95 20.98 ± 13.23 5.97-55.41

2018-3 28 95.74 ± 23.63 54.18-138.57 29.14 ± 21.47 3.75-77.21 30 88.74 ± 16.20 55.97-135.96 21.89 ± 15.16 4.34-85.32

2018-4 15 89.95 ± 21.10 66.56-128.18 24.53 ± 17.39 7.96-58.59 34 99.18 ± 14.99 71.41-130.46 28.78 ± 12.45 9.55-61.84

2018-5 30 91.43 ± 17.47 70.90-140.15 25.93 ± 17.23 9.71-87.34 21 92.30 ± 14.01 73.63-123.66 22.94 ± 9.03 12.09-40.45

2018-6 38 97.43 ± 13.85 78.68-135.11 26.26 ± 11.68 13.21-61.88 29 85.02 ± 11.02 69.11-112.54 16.96 ± 6.59 8.65-34.71

2018-7 16 103.28 ± 20.80 78.74-145.58 37.73 ± 25.02 12.81-88.52 27 99.48 ± 11.48 81.92-130.18 28.88 ± 10.46 15.08-58.81

Total 294 92.21 ± 17.73 54.18-145.58 23.72 ± 15.60 3.75-88.52 297 91.03 ± 14.97 55.97-135.96 21.51 ± 11.28 4.34-85.32
n, number of fish; SL, standard length; BW, body weight.
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The total mortality rates (Z) obtained via the age structure catch

curve was 1.69/year (n=591, R2 = 0.97; Figure 7). The natural

mortality (M) estimated was 0.53/year, the fishing mortality rate (F)

was 1.16/year, and the exploitation rate (E) was 0.69/year.
4 Discussion

This is the first study to provide age-verified information on the

sagittal otoliths, growth, and mortality of O. potamophila from Nansi
Frontiers in Marine Science 05
Lake. Annuli in otoliths of fish are typically identified by successive

opaque/translucent growth zones (Yoneda et al., 2007; Uehara et al.,

2020), and such growth zones were also observed in our study. The

otolith edge-type analyses revealed an annual pattern of opaque zone

deposition. The opaque zone deposition in otoliths occurred from

December 2017 to May 2018 appears to be associated with increased

water temperatures in the study area. The translucent zone was laid

down when water temperatures increased, whereas the decrease in

water temperature was accompanied by the laying down of the

opaque zone. This temperature-dependent seasonal growth pattern

in otoliths has been observed in many fish species, including Coilia

mystus (He et al., 2008), Pelates octolineatus (Veale et al., 2015),

Siniperca kneri (Zhao et al., 2018), and Pseudorhombus jenynsii

(Coulson et al., 2020). The results of the present study show

that the transition from the opaque zone to the translucent zone

occurs in March and May (Figure 3), at the during the spawning

season, similar to that previously reported for this species in Taihu

Lake (Sun and Guo, 1996).

Information about the age structure and growth parameters of

the fish population would be used for fish stock assessment

(Hollyman, 2017).These parameters can be utilized to modify

fishing strategies, thereby promoting ecosystem restoration and

regeneration. This can be achieved by reducing fishing effort,

implementing selective fishing, establishing marine protected

areas and rebuilding depleted stocks, among other measures. The

aforementioned measures are intended to reduce pressures on

marine ecosystems, conserve biodiversity and achieve the long-

term sustainability of fisheries resources. Otolith analysis

demonstrated that the maximum age of this species caught in

Nansi Lake was 3 years in both sexes (Figure 4), indicating that

this species is short-lived. The maximum age that we estimated is

likely to be close to the maximum age (4-year in Taihu Lake and

Chaohu Lake respectively) for this species. Individuals of age-0 and

-1 accounted for 85.11% of the harvest, suggesting that younger fish

dominated Nansi Lake population (Figure 4). Given the short

lifespan of the O. potamophila, which is similar to that of

Neogobius melanostomus, a highly successful invasive species in

North America and Europe (Kornis et al., 2017). it is intriguing to

consider the potential parallels in sexual maturation and

reproduction. However, given the absence of direct examination

of maturity-at-age and measurement of gonad development in the

O. potamophila, it remains unfeasible to make conclusive inferences

regarding its reproductive capacity. Consequently, future research

should concentrate on these aspects to facilitate a more

comprehensive understanding of the reproductive patterns of the

O. potamophila. This would facilitate a more informed comparison

with N. melanostomus and could provide valuable insights into the

ecological and evolutionary strategies of the O. potamophila

(Cerwenka et al., 2023). This study shows that small dataset

variations significantly affect the selection of the best-fit growth

model. The ARSS showed no significant difference in the SL-at-age

relationship between males and females (Table 2). Data from both

sexes were then combined to fit growth functions and subsequently,

the Logistic GF was concluded to be the best model to describe the

growth pattern of Nansi Lake population based on the AICc and Di
FIGURE 2

Photomicrograph from the sagittal otolith of a 0-3 years
Odontobutis potamophila. Yellow arrow shows otolith core; black
dot shows the position of opaque bands (scale bar = 1mm).
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selection. Smaller values of AICc and DI are more appropriate, and

larger R2 (Huang et al., 2022). This study is also the first to estimate

growth parameters for this species worldwide. The Logistic GF

parameters obtained from the pooled dataset (SL∞=172.94 mm,

K=0.46 year-1, t0 = 0.79 year, j 0=4.14) were much larger than the

values reported by Zhu et al. (1999) of the same genus O.

potamophila in Bao’an Lake, China (Female: SL∞=152.90 mm,

K=0.41 year-1, t0 = 0.16 year, j 0=1.41; Male: SL∞=167.10 mm,

K=0.37 year-1, t0 = 0.11 year, j 0=1.36).
Frontiers in Marine Science 06
Sexual growth dimorphism was not evident in length-weight

relationships (Afrooz et al., 2014). There were no statistical

differences in the LWRs between sexes and demonstrated

isometric growth patterns. The b-values exhibits differences in

waters from different regions (Sun and Guo, 1996; Liu, 2001;

Tang et al., 2015), while the observed differences in this value

may be attributed to differences in habitat, sample size used for

disease, and genetic diversity (Wootton, 1998; Dong et al.,

2019) (Table 4).
FIGURE 3

Monthly edge-type analysis expressed as percentages of opaque (black bars) or translucent (blank bars) edges for fish collected from Nansi Lake
during August 2017 to through July 2018.
FIGURE 4

Age compositions of Odontobutis potamophila collected from the Nansi Lake during August 2017 through July 2018.
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Although our results showed no statistical difference in the

mean SL between sexes, males tended to be larger than females by

mRNA-seq and miRNA-seq analysis (Zhao et al., 2017; Zhang et al.,

2018). This indicated some trade-off between growth and

reproduction. Because male displays parental care behavior which

consumes a lot of energy during the spawning period (Hao, 1960).

Prior to sexual maturity, males invest more energy into somatic

growth while females put energy into gonads, which induces males

tended to be larger. Additionally, large individuals gain an

advantage during courtship and obtain more chances to mate

(Ahti et al., 2020). The observed lack of difference in size between

males and females may be due to the fact that the samples were

collected randomly and did not differentiate between males and

females at the same time of the year. In addition, the samples were
Frontiers in Marine Science 07
grown in the same environment, which could have affected

the observations.

In this study, the total mortality (Z), natural mortality (M),

fishing mortality (F) and exploitation rate (E) were evaluated for

the first time in the Nansi Lakes, which is essential for the

implementation of sustainable fisheries management strategies

(Ogle, 2016). It was determined that the Z value of 1.69 per year

was less than the value for small but high-mortality species, which

may be attributed to varying fishing effort and the lake’s

heterogeneous habitat (Dong et al., 2019). The M/K ratio is a

pivotal metric in evaluating and overseeing the well-being of

fishery resources. It plays a pivotal role in formulating fisheries

management policies that are grounded in scientific principles.

The M/K ratio of 1.15 was within the 1.12-2 range. The M/K ratio
TABLE 2 Full spelt comparison of growth functions between males and females of Odontobutis potamophila collected from Nansi Lake during August
2017 through July 2018.

Growth function RSSP DFRSSP RSSS DFRSSS F p

Logistic GF 299.49 5 239.68 2 0.1664 p>0.05

Gompertz GF 306.48 5 249.79 2 0.1513 p>0.05

VBGF 314.31 5 268.46 2 0.1138 p>0.05
TABLE 3 Comparison of growth functions and model fit parameters for male and female populations of Odontobutis potamophila.

Growth function SL∞m) K (year-1) t0 (years) AICc Di R2

Logistic GF 172.94 0.46 0.79 4415.77 0.00 0.622

Gompertz GF 210.96 0.26 0.34 4717.38 1.61 0.621

VBGF 456.62 0.05 -3.20 4419.09 3.32 0.620
FIGURE 5

Logistic growth curve for Odontobutis potamophila collected from
Nansi Lake during August 2017 through July 2018. Open circles,

females; black triangles, males. The growth function is SLt =

172:94=(1 + e−0:458(t−0:79)), R2 = 0.622 (n = 591). The growth curve
demonstrates the pooled data for male and female dark sleepers
collected in Nansi Lake.
FIGURE 6

Relationship of standard length (SL) to body weight (BW) for
Odontobutis potamophila collected from Nansi Lake during August

2017 through July 2018.The function is BW = 0:00003SL3:0041

(n = 591, R2 = 0.949).
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of 1.15 fell within the 1.12-2.0 range, indicating that the M value

was reasonably well estimated (Pauly, 1980). The M value of 0.53/

year was higher than the 0.2-0.3/year value, suggesting that species

in the Nansi Lakes have a relatively short lifespan and relatively

high natural mortality rates among species (Pauly, 1980). The

fishing mortality rate (F) was found to be 1.17 per year, a figure

that is considerably lower than those previously reported. This

discrepancy may be attributed to the utilization of disparate

fishing gears (Ye et al., 2014; Dong et al., 2019). Based on the

estimates of F and Z, the exploitation rate E for the Nansi lakes

was 0.69/year. Either VBGF or logistic growth function, they are

used to estimate SL∞ and K. In accordance with the rule of thumb

(E > 0.5 indicates that the stock is experiencing overexploitation),

the study found that the findings suggest that the stock is
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slightly overexploited (Clovis and Simon, 2024), emphasizing

the need for stricter fisheries management policies. For

example, implementing seasonal restrictions or establishing

catch limits may help protect younger age classes. This study

represents the inaugural examination of specific pairs of O.

potamophila growth and mortality rates, which may be

considered in future research, commencing with other lakes

(e.g., Taihu Lake) for specific causes.

In conclusion, the results of this study indicate that opaque

areas in O. potamophila otoliths form annually and that the opaque

areas that form are a consequence of O. potamophila ageing.

Meanwhile, our results regarding the age structure, growth, and

mortality provided fundamental information for stock assessment

and sustainable management strategies for this important

commercial fishery resource. The relatively small maximum size,

low maximum age, predominance of younger fish and relatively

high natural mortality determined an opportunistic life-history

trait, This opportunistic life history may lead O. potamophila to

grow rapidly in the early stages of their life cycle in order to reach

reproductive conditions as soon as possible, and to reproduce

multiple times during their life cycle in order to increase their

reproductive opportunities. Based on our conclusions that the life

span of O. potamophila is concentrated in the 0-1 year age range, it

is possible that O. potamophila reach sexual maturity at a relatively

young age in order to start reproducing as early as possible and

produce a large number of surviving offspring, suggesting a relative

resilient to exploitation (Hitt et al., 2020). Furthermore, the

opportunistic and equilibrium traits of O. potamophila may

enhance its resilience to exploitation and adaptability to changing

environments. These findings are crucial for formulating

conservation policies and sustainable fishery practices, as in the

case of the invasive goby Tridentiger bifasciatus in Nansi Lake

(Mashiko, 1976; Qin et al., 2020). Consequently, future studies on

the reproductive biology, parental care behavior and feeding habits

of this species will contribute to management of fishery resources

and assessing reproductive biology or parental care behaviors.
FIGURE 7

Linear regression fitted to the descending limb of age structure
catch curve. Slope of the regression provided an estimate of the
total mortality rates (Z) for Odontobutis potamophila collected from
Nansi Lake.
TABLE 4 Standard length-body weight relationships of Odontobutis potamophila of different populations from literatures.

Study area (source)
Standard Length (mm) Parameters

n
Minimum Maximum a b r2

Taihu Lake (Sun and Guo, 1996) NA NA 0.02242 3.09 0.992 310

Taihu Lake (Tan, 1996) 41.00 160.00 0.4826 2.80 0.947 404

Shanghai market (Liu, 2001) 85.00 147.00 0.03461 2.95 0.937 60

Chaohu Lake (Li et al., 2007) 66.00 167.00 0.0327 2.95 0.960 175

Huai River (Qiao and Hong, 2007) 62.00 174.00 0.0454 2.80 0.970 40

Jiangsu Province (Tang
et al., 2015)

60.00 152.00 0.004 3.46 0.961 266

Nansi Lake (the present study) 54.18 145.58 0.00003 3.00 0.949 591
n, the number of specimen; a, intercept; b, regression slop; r2, coefficient of determination; NA, not available.
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