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With an estimated global prevalence of 32.4%, non-alcoholic fatty liver disease

(NAFLD) is currently the most prevalent chronic liver condition. The marine

ecosystem, distinguished by its distinctive environmental characteristics, is a

treasure trove of novel lead compounds possessing unique chemical structures,

offering promising avenues for the development of new therapeutic agents or

dietary supplement targeting NAFLD. Marine bioactive substances from natural

products, such as polysaccharides, polyphenols, polyunsaturated fatty acids, and

peptides, have been shown to benefit liver health by alleviating metabolic

dysfunction through multiple mechanisms. This paper reviews the effects of

marine bioactive substances from various marine entities, including marine

fauna, flora, and microorganisms, on the regulation of NAFLD. A brief overview

of the predominant pathogenic mechanisms underlying the disease is also

provided, thereby establishing a critical link between the therapeutic potential

of marine bioactive substances and the management of NAFLD.
KEYWORDS
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1 Introduction

1.1 Chronic liver disease

The liver is the body’s largest metabolic organ, and it plays essential roles in regulating

glucose and lipid metabolism (Wang et al., 2021a). It has been reported that liver disease

causes more than 2 million deaths per year (including but not limited to cirrhosis, viral

hepatitis, liver cancer, and their medical complications), which accounts for 4% of all

deaths worldwide (Devarbhavi et al., 2023). Liver diseases encompass a broad spectrum of
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conditions, including genetic, autoimmune, infectious, neoplastic,

vascular, and metabolic diseases. Chronic liver disease, in particular,

is a significant public health challenge, with over 1 billion cases

reported globally (Devarbhavi et al., 2023; Effandie and Gupte,

2023). Chronic injury to the liver and the progressive accumulation

of fibrous extracellular matrix proteins cause fibrosis of the liver,

which may subsequently progress to hepatocellular carcinoma

(Gutierrez-Reyes et al., 2007). If left untreated, this leads to

irreversible consequences. Historically, viral hepatitis was the

leading cause of chronic liver disease. However, improvements in

prevention strategies, such as hepatitis B vaccination and

advancements in treatment options for hepatitis C, have marked

a positive shift in managing chronic liver conditions (Cheemerla

and Balakrishnan, 2021). Currently, non-alcoholic fatty liver disease

(NAFLD) has become the leading chronic liver disease worldwide

(Wang et al., 2014; Loomba et al., 2021; Zhai et al., 2021), according

to its alarming prevalence obtained from epidemiological studies

(Le et al., 2022) and its interweaving with other liver diseases or

complications. In the past 2 years, there have been some debates

among scientists regarding the ambiguity of NAFLD’s naming, and

relevant scholars have jointly issued a consensus on a new naming:

metabolic dysfunction-associated fatty liver disease (MAFLD)/

metabolic dysfunction-associated steatotic liver disease (MASLD)

(Eslam et al., 2020; Rinella et al., 2023). In this paper, we still refer to

it as NAFLD despite the change of name, as MAFLD/MASLD has

not yet obtained an International Classification of Diseases code,

not to mention its impact on the clinical trials currently underway

(Hsu and Loomba, 2024).

NAFLD, characterized by the abnormal accumulation of fat

within liver cells, is a condition that is primarily linked to metabolic

factors and is distinct from alcohol-related liver diseases or injury

caused by agents. It is currently the most serious non-

communicable liver disease, with a global prevalence of 25.2% in

2015 (Younossi et al., 2016), which further escalated to a combined

rate of 32.4% by 2021 (Le et al., 2022).

Currently, potential drugs for the treatment of NAFLD have

different targets, including those that inhibit de novo lipogenesis

(DNL); relieve oxidative stress, inflammation, and regulatory-

related pathways; activate peroxisome proliferator-activated

receptors (PPARs); and modulate the farnesoid X receptor (FXR)

axis. Additionally, anti-obesity, hypoglycemic, and hypolipidemic

drugs such as orlistat, biguanides, and statins are also part of the

treatment mix. However, the side effects of these drugs are also

significant, including nausea, vomiting, diminished appetite, and

gastrointestinal complications (Rotman and Sanyal, 2017). As of

May 2024, only one medicine, Rezdiffra—a thyroid hormone

receptor-beta (THR-b) agonist—has been approved by the US

Food and Drug Administration (FDA) to be marketed for the

treatment of non-alcoholic steatohepatitis (NASH), intended to

be used in conjunction with lifestyle modifications, such as diet and

exercise (The Lancet Gastroenterology Hepatology, 2024).

NAFLD’s close relationship with obesity and type 2 diabetes is

well-documented, reinforcing the criticality of weight loss as a

primary and effective intervention strategy (Andersen et al.,
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1991). However, the reality of maintaining a healthy lifestyle

through exercise and dietary restrictions, while ideal, is often

easier said than done. This reality underscores the necessity for

supportive pharmacological interventions and dietary supplements

to aid in weight management.

These challenges highlight the pressing need for the development

of novel therapeutic programs that can more effectively and safely

address the multifaceted challenges posed by NAFLD.
1.2 Marine bioactive substances

The ocean covers more than 70% of the earth’s surface and

consists of a huge diversity of species. After terrestrial flora and

non-marine microorganisms, marine organisms are an emerging

treasure trove of bioactive natural products, with an average of more

than 1,000 new compounds of marine origin being discovered each

year in recent years (Carroll et al., 2022, 2023, 2024), making marine

natural products a likely source of bioactive substances with

hepatoprotective effects. The term “natural product” is generally

used to refer to the chemical entities derived from nature (Newman

et al., 2000; Rasul et al., 2013). Commonly, it is considered the other

name for secondary metabolites (Abegaz and Kinfe, 2019).

Botanical (plant-based) natural product is defined as the

substance produced by a variety of natural sources, which can be

either a complex mixture extracted from raw material or a single

compound (Kellogg et al., 2019). Therefore, in this paper, we refer

to the botanical (plant-based) natural product definition to describe

marine natural products (MNPs) from a certain perspective. MNPs

mentioned in this paper may contain certain mixtures, not only

compounds. Marine-derived peptides (by hydrolysate, water

extraction, or other methods) are also widely used in NAFLD

research; we have also mentioned them in this article.

Marine biodiversity encompasses a wide taxonomic range,

including organisms such as fish, mollusks, crustaceans, and algae

(Costa et al., 2019; Masoudian Khouzani et al., 2019; Wu et al.,

2023b), and fungi (Song et al., 2013) and bacteria that reside in

sediments or other biotic environments (Sowunmi et al., 2018;

Santos et al., 2019). This rich diversity serves as a fertile ground for

the exploration and discovery of bioactive substances with

significant pharmacological potential. Due to their special living

environments, such as high pressure and high salt, they produce

compounds with unique structural features and exhibit various

types of biological activities: anti-aging (Vladkova et al., 2022), anti-

tumor, anti-cancer, and amelioration of neurodegenerative diseases

(Zhao et al., 2018), and more.

Several marine-derived agents have been approved as

medications in earlier years including saccharides and glycosides

(Kramer et al., 2021), peptides (Williams et al., 2008),

phenylpropanoids, quinones, flavonoids, terpenoids, steroids,

alkaloids (Larsen et al., 2016), phenolics (D’Incalci and Zambelli,

2016), acids, and aldehydes. These drugs, which are derived from a

variety of marine organisms, each play a distinct role in the

treatment of different conditions, as detailed in Table 1. Given the
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varied and specialized functions of these marine-derived

medications, there is a growing anticipation and urgent demand

for the identification of new therapeutic agents that can effectively

target chronic liver diseases.

Because of its special taste, marine food has always been loved

by most people, such as sea fish and marine algae. Combined with

its active ingredients to alleviate chronic liver disease, it will be a

new direction for the alleviation or prevention of chronic liver

disease with functional food prepared from marine products in a

special way. This is also to alleviate the adverse consequences caused

by dietary restriction or drug intervention.

In this review, we will discuss the relationship between marine

bioactive substances and their association with NAFLD or its more

severe form, NASH, exploring their potential as novel treatment or

compensation options for these increasingly prevalent liver conditions.
Frontiers in Marine Science 03
2 NAFLD pathogenesis

2.1 Disease spectrum of NAFLD

NAFLD encompasses a broad range of conditions, from the

relatively benign simple steatosis, also known as non-alcoholic fatty

liver (NAFL), to more severe stages such as NASH, liver fibrosis,

cirrhosis, and ultimately hepatocellular carcinoma (HCC). These

conditions represent a progressive disease spectrum that evolves

through a continuous process. The disease progression of NAFLD is

briefly illustrated in Figure 1.

Several studies have shed light on the factors contributing to the

progression of NAFLD. For instance, some studies have identified

an increase in mortality factor 4-like protein 1 (MORF4L1, also

called MRG15) level (Wei et al., 2020; Tian et al., 2022), a lower level
TABLE 1 Some well-known marine-derived medications that have been approved for marketing or are in different clinical phases.

Trade/
generic name

Active
ingredients

Source Type Indications Year Reference

Cytosar-U® Cytarabine
Sponge
(Crypthoteca
crypta)

Nucleoside Leukemia 1969 (Baker et al., 1991)

Vira-A® Vidarabine Sponge (C. crypta) Nucleoside Antiviral 1976 (Wang et al., 2021c)

Omacor® n-3 PUFAs Fish PUFA HTG 1996 (Bhatnagar and Hussain, 2007)

Prialt® Ziconotide
Conus
magus Linnaeus

Peptide Chronic pain 2004 (Williams et al., 2008)

Yondelis®
Trabectedin
(ET-743)

Ecteinascidia
turbinata

Alkaloids STS, BC 2007
(D’Incalci and Zambelli, 2016; Larsen
et al., 2016)

Halaven® Eribulin
Halichondria
okadai Kadota

Macrolide BC 2010 (Sowunmi et al., 2018)

Adcetris® Auristatin E
Dolabela
auricularia

ADC HL, ALCL 2011 (Senter and Sievers, 2012; Gravanis et al., 2016)

Vascepa® n-3 PUFAs Fish PUFA IR, HTG 2012 (Al Rijjal et al., 2021)

Carragelose® Iota-carrageenan Carrageenans Polysaccharide Antiviral 2013
(Eccles et al., 2010; Ludwig et al., 2013; Mehta
and Dhapte-Pawar, 2021)

Marizomib
Salinosporamide A
(NPI-0052)

Salinispora tropica
Pyrrolidone and
b-lactones

BC, MM 2015 (Ma and Diao, 2015; Boccellato et al., 2021)

Rrydapt® Midostaurin
Streptomyces
staurosporeus

Alkaloids AML, SM 2017 (Stone et al., 2018; Zhou et al., 2019)

Aplidin® Plitidepsin
Dolabela
auricularia

Cyclic
depsipeptide

MM 2018 (Alonso-Álvarez et al., 2017)

Zepzelca®/
Zepsyre®

Lurbinectedin
Ecteinascidia
turbinata

Alkaloids SCLC 2020 (Markham, 2020; Allavena et al., 2022)

Blenrep™ Auristatin F
Dolabela
auricularia

ADC MM 2020 (Baines et al., 2022)

Clinical phase

Depatux-m Mafodotin Caldora penicillata ADC GBM
Phase
III

(Van Den Bent et al., 2020)

PM060184 Plocabulin
Lithoplocamia
lithistoides

Polyketide GIST
Phase
II

(Martıńez-Dıéz et al., 2014; Wang et al., 2020b)
HTG, hypertriglyceridemia; STS, soft tissue sarcoma; BC, breast cancer; HL, Hodgkin’s lymphoma; ALCL, anaplastic large cell lymphoma; IR, insulin resistance; MM, multiple myeloma; SCLC,
small cell lung cancer; PUFAs, polyunsaturated fatty acids; AML, acute myeloid leukemia; SM, systemic mastocytosis; ADC, antibody–drug conjugate; GBM, glioblastoma multiforme; GIST,
gastrointestinal stromal tumors.
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of Myc interacting zinc finger protein 1 (Miz-1) (Jin et al., 2023),

and the upregulation of X-box binding protein-1 (XBP-1) (Wang

et al., 2022), and a decrease in CASP8 and FADD-like apoptosis

regulator (CFLAR) level (Wang et al., 2017b) promotes the

progression of NAFLD.

Among them, MRG15 is considered to be an epigenetic

regulatory factor localized in the nucleus. During NASH

development, inflammatory factors enhance the protein stability

of MRG15, and MRG15 promotes the degradation of Tu

translation elongation factor, mitochondrial (TUFM) by

mitochondrial ClpXP proteasome. The decrease in TUFM in the

liver leads to inhibition of mitochondrial autophagy, increased

oxidative stress, and activation of NOD-like receptor family pyrin

domain containing 3 (NLRP3), which aggravates inflammation

and fibrosis (Wei et al., 2020; Tian et al., 2022). Miz1 is a

transcription factor that can limit inflammation of the liver cells

drive (Zhang et al., 2021b) and promote mitochondrial autophagy

(Jin et al., 2023), thus inhibiting the development of NASH, the

precursor of HCC. The transcription factor XBP1 is abnormally

elevated in NASH patients. Specifically, the knockdown of XBP1

inhibits the expression of NLRP3 and secretion of pro-

inflammatory factors, which alleviates steatohepatitis by

mediating the polarization of M2 macrophages. CFLAR is an

apoptotic regulatory protein involved in innate immune

regulation, which has a key inhibitory effect on inflammation,

fibrosis, insulin resistance (IR), and lipid accumulation in the liver

of NASH. CFLAR also blocks the activation of apoptosis signal-

regulating kinase 1 (ASK1) by inhibiting the formation of N-

terminal dimerization of ASK1 to improve and reverse the course

of NASH (Wang et al., 2017c).

Not only are the proteins listed above important targets

involved in the progression of NAFLD, but so are many other

proteins, such as nuclear pore protein 85 (NUP85) (Wu et al.,

2024b) and ring finger protein 13 (RNF13) (Lin et al., 2023). The

spectrum of NAFLD is complex and multi-factorial, and more

targets and mechanisms need to be further investigated.
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2.2 Etiological factor of NAFLD

The overall pathogenesis and course of NAFLD can be

described as a “multiple-hit” process (Buzzetti et al., 2016), which

encompasses not only IR and oxidative stress but also hormones

secreted by adipose tissues; nutrient factors, the influence from the

gut microbiota (GM), and the interplay of genetic and epigenetic

factors also play key roles in the pathogenesis of NAFLD (Buzzetti

et al., 2016; Juanola et al., 2021).

There is a well-established link between NAFLD and IR

(Bugianesi et al., 2010; Hurjui et al., 2012). IR is a key contributor

to postprandial hyperglycemia and elevated insulin levels, which in

turn stimulates the breakdown of lipids in the adipose tissue,

releasing free fatty acids (FFAs). These fatty acids are taken up by

hepatocytes through various fatty acid transport proteins, such as

the fatty acid translocase/cluster of differentiation 36 (FAT/CD36)

family, fatty acid transport protein (FATP) family, and liver fatty

acid-binding protein (L-FABP), and are converted into triglycerides

(TG), leading to lipid accumulation and degeneration (Loomba

et al., 2021). The mechanism of hepatic insulin resistance (HIR) has

also been tentatively explained (Lyu et al., 2020). TANK binding

kinase 1 (TBK1) is another crucial player in the regulation of

hepatic lipid metabolism. TBK1 is necessary for the catabolism of

fatty acids and can be induced in the liver, thereby modulating fatty

acid oxidation. The activity of acyl-coenzyme A synthetases (ACS),

including long-chain acyl-coenzyme A synthetase 1 (ACSL1), is

often diminished in insulin-resistant states (Poppelreuther et al.,

2023). TBK1 serves as a scaffolding protein that interacts with

ACSL1, influencing the mitochondrial localization of ACSL1 and,

consequently, the regulation of fatty acid oxidation in hepatocytes

(Huh et al., 2020). Therefore, HIR is intricately connected to the

pathogenesis of NAFLD through its impact on lipid metabolism,

glucose homeostasis, and the interplay of various proteins and

enzymes involved in these processes.

The excessive influx of FFAs into the liver leads to hepatocyte

mitochondria impairment and subsequent dysfunction. The
FIGURE 1

Disease progression of NAFLD. NASH, non-alcoholic steatohepatitis; HCC, hepatocellular carcinoma; HSC, hepatic stellate cell; KC, Kupffer cell;
LPS, lipopolysaccharide.
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compromised mitochondria trigger an upsurge in the generation of

reactive oxygen species and reactive nitrogen species. When these

reactive species exceed the cell’s antioxidant defenses, they inflict

damage upon vital cellular constituents, including lipids, proteins,

and critically, nucleic acids, particularly mitochondrial DNA. This

damage culminates in a state of oxidative stress and ultimately

propels the cell toward apoptosis (Nassir and Ibdah, 2014).

Oxidative stress is a pivotal contributor to the pathogenesis of

hepatic lipid peroxidation, a hallmark of deteriorating liver health

(Huang et al., 2018a). Moreover, the interplay between oxidative

stress and endoplasmic reticulum stress (ERS) has been implicated

in the complex mechanisms underlying NAFLD. ERS, triggered by

the accumulation of misfolded proteins in the endoplasmic

reticulum, further exacerbates the oxidative environment and

contributes to the inflammatory response and cellular damage

observed in NAFLD (Wang et al., 2020a). These interconnected

biochemical reactions create a vicious cycle that synergistically

drives the progression of NAFLD.

Interactions between the environment and a susceptible

polygenic host background determine the phenotype and

influences the progression of NAFLD. Notably, the patatin-like

phospholipase domain-containing protein 3 (PNPLA3) gene

variant has been identified as the major common genetic

determinant of NAFLD (Romeo et al., 2008). A possible

beneficial effect of downregulation of the PNPLA3 I148M

mutated form in individuals at risk of NAFLD (Valenti and

Dongiovanni, 2017). Variants with moderate effect size in

transmembrane 6 superfamily member 2 (TM6SF2), membrane-

bound O-acyltransferase domain-containing 7 (MBOAT7), and

glucokinase regulator (GCKR) gene have also been shown to

have a significant contribution (Eslam et al., 2018). The same

gene may act differently in different environments; for example,

GCKR-rs1260326-T allele elevates disease severity only under

diabetic states but protects from fibrosis under non-diabetic

states (Kimura et al., 2022). Additional large candidate gene

studies are required to enrich our understanding of the genetic

basis and determine the more genome-wide associations

of NAFLD.

NAFLD development and progression are also modulated by

epigenetic factors, including alterations in DNA methylation,

modifications to histone proteins, and the remodeling of

chromatin, and RNA-based mechanisms, such as non-coding

RNAs. Micro-RNAs (miRNA), in particular, control many

complementary target mRNAs at the post-transcriptional level

and whose dysregulation has been shown to have high prognostic

and predictive value in NAFLD (Dongiovanni et al., 2018). Among

those that have been demonstrated are miR-21 (Calo et al., 2016),

miR-34a (Xu et al., 2015b), and especially miR-122 (Cheung

et al., 2008).

In addition to the exploration of NAFLD mechanisms from the

genetic and epigenetic level, the relationship between metabolic

disorders, the gut microbiome, and immunity are also something

we need to continue to focus on (Tilg et al., 2021). Unhealthy eating

and lifestyle habit choices will cause various metabolic disorders,

establishing changes in the gut microbiome, which then activates

the human immune response, including innate immunity and
Frontiers in Marine Science 05
adaptive immunity to promote liver inflammation, resulting in

further liver damage.

The study of gut microbes is also a popular topic of interest in

recent years. Marshall proposed the concept of the “gut–liver axis”

in 1998 (Marshall, 1998), which describes the mutual regulation and

influence of substances and cytokines between the liver and the

intestine through the portal system (Pabst et al., 2023). Intestinal

microorganisms affect the homeostasis of hepatic triglyceride

metabolism by increasing endotoxin levels, affecting nutrient

absorption, and changing the types and contents of metabolites

such as amino acids, fatty acids, and bile acids in the body (Loomba

et al., 2021). In recent years, there has been a burgeoning interest in

the intestinal dimension of liver disease management (Ni et al.,

2023; Yang et al., 2023). Research into pharmaceuticals and

functional food components that bolster the stability of the gut

microecosystem and contribute to the amelioration of hepatic

steatosis is increasingly prevalent (Cheng et al., 2022). These

studies underscore the potential of modulating the GM as a novel

therapeutic strategy for NAFLD. Subsequently, it is imperative that

research explores the complex interconnection between key gut

microbial species and their metabolites and the pathogenesis of

NAFLD they involved (Llorente and Schnabl, 2015; Saini and

Keum, 2018).
3 Methods

In this narrative review study, an electronic search was

performed using the Web of Science and PubMed databases to

identify relevant studies published between January 2000 and May

2024. Keywords in this review include the following: “non-alcoholic

fatty liver disease,” “marine unsaturated fatty acid,” “marine

polysaccharide,” “marine polyphenol,” “marine polypeptide,”

“terpenoid,” and “marine vitamin and mineral.” During the

search, we combined marine bioactive substances with NAFLD.

Searches were limited to English language studies.
4 NAFLD and marine
bioactive substances

4.1 Unsaturated fatty acids

Unsaturated fatty acids (UFAs) are essential components of

body fat and play crucial roles in various physiological processes.

For example, it maintains the fluidity of cell membranes; regulates

blood lipids, blood pressure, and hormone synthesis; and promotes

neurodevelopment (Tvrzicka et al., 2011). These fatty acids are

classified based on the number of double bonds present in their

molecular structure into monounsaturated fatty acids (MUFAs)

and polyunsaturated fatty acids (PUFAs) and further categorized

into n-6 and n-3 series according to the position of the initial double

bond from the methyl end of the carbon chain. The n-3 series of

fatty acids, represented by docosahexaenoic acid (DHA) and

eicosapentaenoic acid (EPA), have received great attention, as

they are associated with anti-tumor activities and regulation of
frontiersin.org
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lipid metabolism (Della Corte et al., 2016), glucose metabolism

(Zhang et al., 2019), and promotion of neurodevelopment (Guxens

et al., 2011).

DHA and EPA are predominantly found in deep-sea marine

fish and in phytoplankton and zooplankton, with comparatively

lower concentrations in terrestrial organisms. These PUFAs

predominantly exist in the form of TG, with phospholipids (PLs;

such as lecithin), diglycerides, cholesteryl esters, and fat-soluble

vitamin esters (for example, retinyl palmitate and tocopherol

acetate) also present. Among these forms, PLs are recognized for

their superior bioavailability (Zhang et al., 2019). DHA-PL and

EPA-PL can effectively mitigate obesity-related metabolic disorders

(Liu et al., 2014), which have been shown to enhance insulin

sensitivity within the adipose tissue and suppress hepatic sterol

regulatory element-binding protein-1c (SREBP-1c)-mediated

adipogenesis in NAFLD mice. Furthermore, PLs have been found

to significantly activate PPAR-mediated fatty acid oxidation in the

liver. This is due to DHA being a natural endogenous ligand for

PPARs, which can potentially reduce the accumulation of lipids in

hepatocytes, thereby aiding in the management and improvement

of NAFLD symptoms.

The important effects of PUFAs on the liver have also been

demonstrated in clinical studies (Vell et al., 2023). DHA plus EPA

treatment for 15–18 months in patients with NAFLD would reduce

hepatic fat, and erythrocyte DHA enrichment with DHA plus EPA

treatment was linearly associated with decreased liver fat (Scorletti

et al., 2014; Hodson et al., 2017). Valerio Nobili extended this

research to pediatric populations, utilizing DHA supplementation

in 60 children diagnosed with NAFLD through liver biopsy (Nobili

et al., 2011). The findings indicated that DHA supplementation led

to improvements in hepatic steatosis and insulin sensitivity among

these children, further highlighting the therapeutic potential of

DHA in NAFLD.

In addition, DHA plays an important role in preventing

fructose-induced hepatic steatosis by activating deacetylase

Sirtuin 1 (SIRT1) (Luo et al., 2020) and alleviating endoplasmic

reticulum (ER) stress (Zheng et al., 2016) response. IR is

recognized as a key contributor to the development of NAFLD

(Krebs et al., 2002; Lyu et al., 2020; Shama and Liu, 2020). A

suggestion was proposed to appropriately increase the DHA ratio

(1.5:1) in DHA : EPA supplements to prevent IR in NAFLD (Yu

et al., 2023). This suggestion is supported by evidence indicating

that an increased intake of DHA, as compared to EPA, may be

more efficacious in alleviating the symptoms of NAFLD

(Kelley, 2016).

Although PUFAs from marine fish and shrimp have been

widely developed and utilized, due to pollution of marine

ecosystems, toxic dioxins, polychlorinated biphenyls (PCBs),

heavy metals, and organochlorine pesticides will accumulate in

fish in large quantities (Vandermeersch et al., 2015). It may be

solved by artificial cultivation of algal source DHA or using an

optimization model with constraints to calculate optimum seafood

cluster consumption levels (Sirot et al., 2012). This should also be

considered when preparing prebiotics or mixed crude extracts from

marine organisms.
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4.2 Polysaccharides

Polysaccharides represent a diverse class of carbohydrates

characterized by glycosidic linkages, with common types

including a-1,4, b-1,4, and a-1,6 glycosidic bonds (Gupta et al.,

2016). There is a wide distribution of polysaccharides in land and

marine life. Compared to polysaccharides from other sources, most

polysaccharides originating from marine foods contain modifying

groups such as sulfate, amide, and amino groups. These unique

structural features endow marine polysaccharides with a range of

physiological functions that are not commonly found in other

polysaccharides, including anticoagulant, lipid-lowering, immune-

enhancing, anti-aging, anti-tumor (Liu et al., 2022a), anti-cancer

(Jin et al., 2022a), anti-inflammatory, anti-osteoporosis, and

immunomodulatory effects (Yang et al., 2021b).

According to their sources, marine polysaccharides can be

categorized as algal (classified as brown, red, and green algae

according to pigment deposition, classified as microalgae and

macroalgae based on morphology and size), marine animal, and

marine microbial polysaccharides. Algal polysaccharides have been

extensively researched.

Both in vitro and in vivo studies have illuminated the beneficial

properties of algal polysaccharides, which include their impact on

satiety, caloric intake, fat absorption, and the regulation of GM. A

study has demonstrated that low molecular weight fucoidan

(LMWF) can mitigate the accumulation of hepatic TG and total

cholesterol (TC), alleviate hepatic oxidative stress and lipid

peroxidation, and exert significant anti-inflammatory effects

(Zheng et al., 2018). For example, soluble polysaccharides derived

from Laminaria japonica (Zhang et al., 2021c) alleviate NAFLD by

regulating GM.

The Ulva polysaccharides, sourced from the green seaweed Ulva

stramonium, have garnered attention for their potential anticancer

properties (Zhao et al., 2020; Jin et al., 2022a), with particular

implications for liver cancer (Xu et al., 2024). Ulva polysaccharides

containing highly sulfated derivatives reduced TC, TG, LDL-C, and

AST levels in mice with high-fat diet induced NAFLD. Additionally,

there was a decrease in lipid droplets within the liver and a

suppression of the abnormal enlargement of epididymal fat cells

(Wan et al., 2022). Porphyran-derived oligosaccharides from

Porphyra yezoensis (PYOs) activate the IRS-1/AKT/GSK-3b
signaling pathway and the AMP-activated protein kinase (AMPK)

pathway, resulting in the decrease in lipid accumulation within the

livers of mice with NAFLD (Wang et al., 2021b). Additionally, PYO

treatment downregulates TGF-b and its associated proteins and

alleviates dysbiosis of the cecal microbiota, oxidative stress,

inflammation, and lipid metabolism, providing a degree of liver

protection. Sulfated polysaccharides from Enteromorpha prolifera

(EP) suppress SREBP-2 and HMG-CoA reductase expression (Ren

et al., 2017) and increase hydrogen sulfide(H2S) production (Ren

et al., 2018) to alleviate NAFLD.

Such reassuring finds are not limited to seaweed-sourced

polysaccharides. Polysaccharides of marine animal origins such as

Tegillarca granosa polysaccharide (TGP) (Yang et al., 2024) and

Chitosan oligosaccharide (COS/COSM) (Qian et al., 2019; Feng
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et al., 2022) also alleviate NAFLD by regulating GM. However, only

a few studies have examined marine microbial polysaccharides’

ability to reduce lipids in the liver, which makes them a significant

area for future studies.
4.3 Polyphenols

Polyphenols are described as secondary metabolites that are

found abundantly in plants and small quantities in microorganisms.

Polyphenols contain multiple polyphenol hydroxyl structures and

therefore have powerful antioxidant activities (Wang et al., 2023).

Phenolics can be subdivided into two main groups: flavonoids (e.g.,

anthocyanins, flavanols, flavanones, flavanols, and isoflavones) and

non-flavonoid (e.g., phenolic acids, xanthones, stilbenes, lignans,

and tannins) polyphenols (Rathod et al., 2023). Relationships

between polyphenol intake and human health have been

progressively identified, particularly in conditions such as

cardiovascular disease, hypertension, diabetes, metabolic

syndrome, obesity, and cancer (Murray et al., 2018; Zheng

et al., 2022).

The antioxidant, anti-inflammatory, antifibrotic, and

antilipemic properties of polyphenols confer them great potential

as a strategy for preventing the progression of NAFLD (Pisonero-

Vaquero et al., 2015), and their ability to modulate the expression of

genes primarily involved in DNL and fatty acid oxidation

contributes to their lipid-lowering effects in the liver (Rodriguez-

Ramiro et al., 2016). A compilation of these findings, including the

specific effects of various polyphenols on hepatic health, has been

summarized in Table 2.
4.4 Polypeptides

Peptides are common active substances involved in various

biological reactions in the body. In recent years, the study of active

peptides in marine foods has attracted widespread attention due to

their antioxidant, anti-aging, anti-hypertensive, anti-diabetic, anti-

obesity, and many other health-benefiting effects. Many active

peptides with hypolipidemic physiological functions have been

obtained from marine foods by extraction or enzymatic methods.

Marine-derived bioactive peptides are a class of naturally occurring

polyphenolic peptide compounds. Mainly isolated from deep-sea

bacteria, fungi, microalgae, and marine mollusks, these active

peptides have complex and diverse structures involved in

important life activities of living organisms, and the available

evidence supports the use of bioactive peptides derived from

marine organisms to alleviate metabolic syndrome (Wang

et al., 2023).

Arthrospira platensis phycobiliprotein peptide extract (PPE)

supplementation intervention helps in ameliorating NAFLD

through the modulation of hepatic lipid profile and the

reinforcement of the fat mobilization of intestinal metabolites

(Liu et al., 2023b). Animal-derived polypeptide Alaska pollock

(Theragra chalcogramma) protein (APP) partially attenuated liver

steatosis in part through the enhancement and suppression of gene
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expression involved in liver fatty acid oxidation and synthesis while

increasing the abundance of beneficial GM and acetic acid content

in ob/ob mice (Maeda et al., 2020). At the same time, APP reduces

the excessive accumulation of lipids in rat liver by affecting the FXR/

small heterodimer chaperon-dependent pathway, activating liver

receptor homologous-1 (LRH-1), and increasing binding to

CYP7A1 promoter (Hosomi et al., 2009). The mitigation effects of

related peptides extracted from other marine organisms on NAFLD

have been listed in Table 2.

Some of the peptides currently used to treat obesity or type 2

diabetes such as the GLP-1 receptor agonist semaglutide (Niu et al.,

2022) and liraglutide (Moreira et al., 2018) have also been recently

discovered to have NAFLD-alleviating properties.

The powerful efficacy of marine peptides has been

demonstrated by Ziconotide for pain relief (Williams et al., 2008),

anti-tumor (Brodowicz, 2014), and more. Therefore, we are eagerly

looking forward to the discovery of other compounds with better

effects on the field of chronic liver diseases.
4.5 Terpenoids

Terpenoids are compounds derived from mevalonate having

the isoprene unit (C5 unit) as the basic structural unit of the

molecular skeleton. Terpenoids are widely found in nature,

especially in marine organisms such as algae, sponges, cnidarians,

and mollusks. Over 400 types of marine sesquiterpenoids have been

identified to date.

Marine terpenoids often contain unique functional groups, such

as halogens, isocyanides, and furan rings, which endow them with

special activities, including anticancer and antibacterial properties.

It is encouraging to note that a diterpenoid compound derived from

gorgonian corals has been identified, which exhibits an inhibitory

effect on the hepatitis B virus (Li et al., 2020). Therefore, there is

hope that more marine-derived terpenoids will be found to have

effects on hepatic diseases.

In this context, we introduce several carotenoid tetraterpenes

that are currently of research interest, primarily focusing on

compounds sourced from marine algae and crustaceans, such as

fucoxanthin and astaxanthin.

The main mechanisms of carotenoids, astaxanthin, and

fucoxanthin in the prevention and treatment of NASH are

antioxidative stress, inhibition of inflammation and fibrosis,

promotion of M2 macrophage polarization, and improvement of

mitochondrial oxidative respiration and IR (Ni et al., 2016). One

study has shown that 200 mM of astaxanthin can significantly

downregulate key lipogenic enzymes such as fatty acid synthetase

(FAS), SREGP-1C, and acetyl-CoA carboxylase (ACC) in oleic and

palmitic-acid-induced HepG2 cells and upregulate Nrf2 (nuclear

factor erythro2-related factor 2) and AMPK. Meanwhile, 60 mg/kg

of astaxanthin alleviates HFD-induced hepatic lipid metabolism

disorder and oxidative stress imbalance in mice. Overall,

astaxanthin alleviates NAFLD by regulating GM and targets the

AMPK/Nrf2 signaling axis (Li et al., 2022). It is demonstrated that

astaxanthin attenuates hepatic injury and mitochondrial

dysfunction in NAFLD mice by upregulating the FGF21/PGC-1a
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TABLE 2 Beneficial effect of MNPs on relative models with NAFLD.

Type Name Source Model Dose
Mechanism
of action

Reference

PUFAs

DHA – C57BL/6J
100 mg/kg, twice a week Lipid synthesis

(activate SIRT1)
(Luo et al., 2020)

DHA – C57BL/6J
HFD containing DHA-rich

Anti-inflammation
(Yang
et al., 2021a)

EPA-PC
Cucumaria
frondosa

Wistar
– Lipid synthesis,

b-oxidation
(Liu et al., 2016)

SNL Pyropia yezoensis db/db
Diet containing 2% of SNL Lipid synthesis,

Anti-inflammation
(Yanagita
et al., 2020)

Polysaccharide

LMWF
Laminaria
japonica
Areschoug

db/db
40, 80 mg/kg/d for 7 weeks Antioxidation, b-

oxidation (SIRT1/AMPK/
PGC-1a)

(Zheng
et al., 2018)

HU Ulva pertusa C57BL/6J
250 mg/kg/d for 14 weeks Inhibits hepatic

lipid deposition
(Wan et al., 2022)

PYOs
Porphyra
yezoensis

C57BL/6J
100, 300 mg/kg/d for 6 weeks Lipid Synthesis (IRS-1/

AKT/GSK-3b,
AMPK), GM

(Wang
et al., 2021b)

EP
Enteromorpha
prolifera

Sprague–Dawley rats
200 mg/kg/d for 5 weeks

Lipid Synthesis (Ren et al., 2017)

COS/COSM – C57BL/6J
425, 850, 1,700 mg/kg/d for
12 weeks

Anti-inflammation, GM (Feng et al., 2022)

Polyphenol

G-CA Ecklonia cava C57BL/6
300 mg/kg for 10 weeks Lipid Synthesis,

Anti-inflammation
(Park et al., 2015;
Rajan et al., 2021)

DPHC Ishige okamurae HepG2, Zebrafish
40 µM Anti-inflammation,

Antioxidation
(AMPK, SIRT1)

(Cha et al.,
2018, 2020)

DEE(Dieckol)
Laminaria
japonica

ICR
50 mg/kg/d for 4 weeks b-oxidation (PPAR-

a, AMPK)
(Liu et al., 2019)

Polypeptide

LPs Lophius litulon ICR
50, 100, 200 mg/kg/d for
4 weeks

Antioxidation (Ye et al., 2022a)

MSP2,8,10,13,18
Lophius litulon
swim bladders

HepG2
50, 100, 200 µM Antioxidation, b-

oxidation (AMPK/Nrf2)
(Wu et al., 2023a)

MMO Meretrix meretrix
Human Chang
liver cells

10, 20 mg/mL for 24 h Antioxidation,
anti-apoptotic

(Huang
et al., 2017)

MMO Meretrix meretrix Mice
50, 250 mg/kg for 4 weeks Antioxidation, anti-

apoptosis (NF-kB, Bcl-
2/Bax)

(Huang
et al., 2018b)

-Pro-Tyr
Callyspongia
fistularis

HepG2
42.98 mg/mL Cytotoxicity, anti-

apoptosis (HepG2)
(Karanam
et al., 2020)

Terpenoids

AST – HepG2, ICR
200 mM for 24h; 60 mg/kg for
10 weeks

Antioxidation (AMPK/
Nrf2), GM

(Li et al., 2022)

AST – LO2, C57BL/6J
30, 60, 90 mM; 10, 30, 60
mg/kg/2d for 10 weeks

Antioxidation (FGF21/
PGC-1a)

(Wu et al., 2020)

NLE Nitzschia laevis HepG2, C57BL/6J
10, 50, 100 mg/mL; 100 mg/
kg/d for 12 weeks

Lipid synthesis (Guo et al., 2021)

Vitamins
and minerals

D3 – Albino rats
1000 IU/kg/3d peer weeks for
10 weeks

SREBP-1c/PPARa-NF-
kB/IR-S2

(Reda
et al., 2023)

D3 – Human
–

Alleviate hepatic steatosis
(Geier
et al., 2018)

MDT(VE) Salmon roe 3T3-L1, RAW264.7
10–20 mM for 8d

Anti-inflammation
(Beppu
et al., 2020)

(Continued)
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pathway. Astaxanthin may be a promising drug candidate for the

treatment or alleviation of NAFLD, and its related therapeutic

targets and molecular mechanisms would need to be further

explored (Wu et al., 2020). Fucoxanthin, an orange-red

carotenoid, can be isolated from brown algae (Ye et al., 2022b),

and its association with NAFLD has also been reviewed (Sayuti

et al., 2023). Previous studies have shown that fucoxanthin-

containing microalgae extracts can alleviate NAFLD by alleviating

liver lipid and oxidative stress in mouse models and HepG2 cells

(Guo et al., 2021). Related signaling pathways have also been

studied, such as AMPK/Nrf2/TLR4 (Ye et al., 2022b). Different

delivery modes affect the efficiency of drug utilization, and it has

been shown that fucoidan loaded through extracellular vesicles had

a stronger effect on NAFLD alleviation than fucoidan delivery alone

(Wu et al., 2024a).
4.6 Vitamins and minerals

Adequate daily mineral intake is essential for the prevention of

chronic nutrition-related and degenerative diseases, including

cancer, cardiovascular disease, and obesity. Perturbations in

micronutrient homeostasis have also been found to be associated

with NAFLD (Clemente et al., 2016). Alexandra Feldman described

the critical role that iron and copper homeostasis play in the

progression of NAFLD (Feldman et al., 2015). Blood selenium

levels have also been linked to liver fibrosis (Liu et al., 2022c). A

large number of trace elements essential to human health are

present in the oceans. This is well represented in seaweeds, rich

in both macronutrients and micronutrients, with a mineral content

of at least 10 times that of terrestrial plants, amounting to 20%–50%

of their dry weight (Lozano Muñoz and Dıáz, 2022). Dietary

supplements of magnesium-rich marine mineral mixtures can

enhance the diversity of microbiota in the gastrointestinal tract to

promote digestive-health (Crowley et al., 2018). Additionally, a
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study has analyzed the micronutrient composition of 35 species of

edible fish from India and their significance in human nutrition,

emphasizing that fish are rich in all fat-soluble vitamins. Results

obtained in this study provide a basis for considering marine-

derived organisms as potential sources of essential minerals for

functional foods, dietary supplements, and nutraceuticals in the

future (Mohanty et al., 2016). It is suggested that future research

should elucidate the potential contribution of trace elements,

vitamins, and undesirable substances present in seafood (Liaset

et al., 2019).

Vitamin D is a group of structurally similar steroid-derived

compounds; well-known examples of vitamin D are vitamin D2 and

D3 (Bartolini et al., 2023). The human body synthesizes over 80% of

its vitamin D3 through sunlight exposure, with the remainder

obtained from dietary sources (Hernigou et al., 2019). Vitamin D3

is found in abundance in the livers of marine animals and certain

algal substances. In recent years, the close relationship between

vitamin D3 and NAFLD has been increasingly recognized (Pacifico

et al., 2019); Liu et al. have reviewed the research progress and

mechanisms of vitamin D3 action in NAFLD (Liu et al., 2022b).

Studies have also explored the use of vitamin D3 alone (Geier et al.,

2018) or in combination with other marine bioactive substances to

alleviate NAFLD (Guo et al., 2022; Reda et al., 2023). A study has

demonstrated that vitamin D3 alleviates non-alcoholic fatty liver

disease in rats by inhibiting liver oxidative stress and inflammation

through the SREBP-1c/PPARa-NF-kB/IR-S2 signaling pathway

(Reda et al., 2023). Similar findings have been reported by Du

et al. (2023), noting that vitamin D improves hepatic steatosis in

NAFLD by modulating fatty acid uptake and b-oxidation. Vitamin

E, also known as tocopherol, is well-recognized for its significant

antioxidant capabilities. The relationship between vitamin E and

NAFLD has been reviewed (Nagashimada and Ota, 2019; Sumida

et al., 2021; Vogli et al., 2023). Marine-derived tocopherols have been

shown to treat metabolic diseases by alleviating inflammatory

responses (Beppu et al., 2020).
TABLE 2 Continued

Type Name Source Model Dose
Mechanism
of action

Reference

Others

Xyl-B Xylaria sp. C57BL/6J
20, 40 mg/kg/d, i.p b-oxidation

(PPARa/PGC1a)
(Tong
et al., 2022)

CHNQD-0803
Aspergillus
candidus

LX-2, HepG2, C57BL/6J
0–200 mmol/L, 3/10 mg/kg/
12h for 7d, i.p

AMPK activator
(Chen
et al., 2023)

IKA
Bacterium strain
SNB-04

HeLa, C57BL/6J
0.5 mg/kg/3 times peer weeks
for 3weeks, i.p

TFEB activator
(Wang
et al., 2017a)

HN-001 Aspergillus sp. c1 HepG2, C57BL/6J
20 mg/kg/2d for 8weeks, i.p PLA2 inhibitor, Suppress

lipotoxicity (IRE-1a/
XBP-1s, JNK)

(Rao et al., 2024)
PUFAs, polyunsaturated fatty acids; DHA, docosahexaenoic acid; EPA-PC, eicosapentaenoic acid-containing phosphatidylcholine; SIRT1, sirtuin1; SNL, lipid component of susabinori (Pyropia
yezoensis); AMPK, AMP-activated protein kinase; PPARa, peroxisome proliferator-activated receptor a; PGC-1a, PPARg coactivator 1a; GM, gut microenvironment; LMWF, low molecular
weight fucoidan; HU, the high-sulfated derivative of Ulva pertusa polysaccharide; PYOs, porphyran-derived oligosaccharides from Porphyra yezoensis; EP, enteromorpha prolifera
polysaccharides; COS/COSM, chitooligosaccharide; G-CA, the polyphenol-rich fraction of Ecklonia cava produced from Gijang; DPHC, diphlorethohydroxycarmalol; DEE, dieckol-enriched
extract; LPs, monkfish peptides; MSP, Monkfish (Lophius litulon) swim bladders peptide; MMO,meretrix meretrix oligopeptides(Gln-Leu-Asn-Trp-Asp); AST, astaxanthin; NLE, Nitzschia laevis
extract; MDT, marine-derived tocopherol; Xyl-B, xyloketal B; IKA, ikarugamycin; TFEB, transcription factor EB.
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It is hoped that future research will uncover more benefits of

marine-derived vitamins and minerals for chronic liver diseases and

other chronic conditions.
4.7 Others

Xyloketal B (Xyl-B) is a novel marine compound with unique

chemical structure isolated from the mangrove fungus Xylaria

species found in the South China Sea (Lin et al., 2001; Gong

et al., 2022). Tong et al. conducted experiments using Xyl-B on

NAFLD mice and found that it reverses nutritional hepatic

steatosis, steatohepatitis, and hepatic fibrosis by activating the

PPARa/PGC1a signaling pathway, making it an extremely

effective potential natural product for the treatment of NAFLD

(Tong et al., 2022). Candidusin A (CHNQD-0803), an AMPK

activator, reduces lipid synthesis by inhibiting the expression of

adipose production genes, decreases fat deposition, negatively

regulates the NF-kB-TNF-a inflammatory axis to suppress

inflammation, and ameliorates liver injury and fibrosis (Chen

et al., 2023). Ikarugamycin (IKA), extracted from a marine-

derived bacterial strain SNB-040 isolated from a sediment sample

collected from Sweetings Cay in the Bahamas, is a TFEB agonist that

provides hepatoprotection against diet-induced steatosis in a mouse

model (Wang et al., 2017a). The structural formula of some

common marine bioactive substances has been summarized in

Figure 2, including DHA (A), EPA (B), high-sulfated Ulva pertusa

polysaccharide (HU) (C), dieckol (D), diphlorethohydroxycarmalol

(DPHC) (E), phloroglucinol (F), astaxanthin (G), fucoxanthin (H),

cyclo (-Pro-Tyr) (I), vitamin D3 (J), marine-derived tocopherol

(MDT) (K), Xyl-B (L), CHNQD-0803 (M), and HN-001 (N).
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5 Possible mechanisms by marine
bioactive substances involved in the
prevention or treatment of NAFLD

Marine bioactive substances can improve serum transaminase

levels, liver antioxidant enzyme activities, and liver inflammation

pathological characteristics in animal models of NAFLD. In

addition, oxidative stress, lipid peroxidation, liver inflammation,

and changes in gut microbiota are considered to be important

pathological processes in NAFLD. Therefore, marine bioactive

substances can prevent or treat NAFLD by antioxidative, anti-

inflammatory, inhibiting DNL, enhancing fatty acid b-oxidation
and alleviating the gut microenvironment, as shown in Figure 3.
5.1 Inhibit lipid synthesis

Lipid metabolism consists of multiple processes, including fatty

acids and cholesterol’s uptake, synthesis, transport, and efflux. The

inhibitory pathway of lipid synthesis has been extensively studied; on

the other hand, other pathways have been studied less. As a key

regulator of lipid homeostasis, SREBP-1c overexpression can regulate

lipogenic enzymes involved in fatty acid synthesis, such as ACC, FAS,

stearate-CoA desaturase-1 (SCD-1), and ATP citrate lyase (ACLY),

and triacylglycerols synthesis, diacylglycerol acyltransferase (DGAT).

AMPK is known to be an important regulator of lipid metabolism

that reduces the transcriptional and translational levels of SREBP-1c.

AMPK senses the energy status of the cell and is activated when the

intracellular AMP/ATP (adenosine monophosphate/adenosine

triphosphate) ratio is elevated, i.e., when the cellular energy level
FIGURE 2

Some structures of MNPs are mentioned in Table 2 and the content. (A) DHA, (B) EPA, (C) high-sulfated Ulva pertusa polysaccharide (HU), (D)
dieckol, (E) diphlorethohydroxycarmalol (DPHC), (F) phloroglucinol, (G) astaxanthin, (H) fucoxanthin, (I) cyclo (-Pro-Tyr), (J) vitamin D3, (K) marine-
derived tocopherol (MDT), (L) Xyl-B, (M) CHNQD-0803, and (N) HN-001.
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decreases. Marine bioactive substances can alleviate NAFLD by

inhibiting lipase expression, for example DHA (Luo et al., 2020),

astaxanthin (Li et al., 2022), EPA-PC from Cucumaria frondose (Liu

et al., 2016), and polyphenol-rich fraction of Ecklonia cava (Park

et al., 2015). HMG-CoA reductase is a rate-limiting enzyme for

cholesterol synthesis, and SREBP-2 is a transcription factor that plays

a key role in cholesterol regulation; both expressions can be

suppressed by sulfated polysaccharides from Enteromorpha

prolifera (EP) (Ren et al., 2017).
5.2 Alleviate hepatocyte inflammation

Lipid accumulation can trigger ERS in hepatocytes and, by

promoting ROS production, leads to oxidative stress and activation

of the NF-kB signaling pathway. NF-kB is a key transcription factor

for the transcription of many inflammatory genes. Normally, NF-kB
exists in the cytoplasm inactive in combination with its inhibitory

protein (IkB).When there is lipid accumulation in hepatocytes, IkB is

phosphorylated, causing nuclear transfer of NF-kB to activate

cytokines, chemokines, and gene expression of icosyl-like metabolic

enzymes that synthesize inflammatory lipid mediators (COX-2).

Among them, pro-inflammatory cytokines are thought to initiate

inflammatory cascade, and chemokines are thought to promote
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inflammation by recruiting neutrophils and monocytes. Janus

kinase (JAK)–signal transducer and activator of transcription

(STAT) signaling pathway is an important intracellular signaling

pathway that is commonly activated in inflammatory settings.

Cytokines such as IL-6 bind to receptors on the cell membrane and

activate JAK, which phosphorylates and recruits STAT proteins,

which are phosphorylated to form a dimer that enters the nucleus

and binds to specific regions of target genes to regulate gene

transcription. In the inflammatory response, this pathway promotes

the expression of inflammation-related genes. Marine fungi-derived

HN-001 treatment blocked palmitic-acid-induced JNK pathway

activation, alleviated ER-stress-mediated lipotoxicity, and

suppressed liver inflammation in NAFLD mice (Rao et al., 2024).

Polyphenol-rich fraction of Ecklonia cava treatment of high-fat

fed NAFLD mouse models can significantly reduce the levels of

inflammatorymarkers such as TNF-a, IL-1b, andMCP-1 (Park et al.,

2015). Many studies have shown that marine bioactive substances can

reduce related inflammatory factors (Feng et al., 2022).
5.3 Antioxidation

The ectopic accumulation of lipids in the liver increases the

production of ROS, including superoxide, hydroxyl radicals, and
FIGURE 3

Possible mechanisms by marine bioactive substances involved in the prevention or treatment of NAFLD. ↑: Elevated level, activate or cause. ↓:
Decrease in level, downward adjustment or cause. →: Cause. ⊥: Suppression. Figure is created using Biorender®.
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hydrogen peroxide, which requires enzyme [superoxide dismutase

(SOD, catalase (CAT), and GSH-Px] and non-enzymatic (GSH)

antioxidant defense systems in the liver to clear it. CAT and SOD

activities in the liver of db/db mice were also significantly increased

after treatments of LMWF from Laminaria japonica Areschoug

(Zheng et al., 2018). Oligopeptide extracted from Meretrix meretrix

(MMO) significantly increased the level of GSH-Px and SOD

activity in the liver and decreased the level of MDA in high-fat

fed mice (Huang et al., 2018b). It is worth mentioning that MMO

has also demonstrated abilities to alleviate early apoptosis in

NAFLD mice.

AMPK phosphorylation promotes nuclear factor erythroid-2

related factor 2 (Nrf2) activation (Park et al., 2016). The cellular

antioxidative stress defense system is significantly regulated by

Nrf2. Under normal conditions, Nrf2 binds to Kelch-like

epichlorohydrin-associated protein 1 (Keap1) and exists in the

cytoplasm in an inactive form. When cells are stimulated by

internal or external stimuli, Nrf2 dissociates from Keap1, binds to

antioxidant response elements (AREs), and stimulates the

transcription of downstream antioxidant genes such as

hemeoxygenase-1 (HO-1), CAT, and SOD. The study by Li has

shown that astaxanthin alleviates NAFLD by regulating the AMPK/

Nrf2 signal axis (Li et al., 2022). This supports the idea that marine

bioactive substances pose properties for antioxidation and are

worth additional research.
5.4 Accelerate b-oxidation

Promoting b-oxidation of fatty acids is also a key target for

inhibiting liver fat accumulation and lipid degeneration. PPARs are

a class of ligand-activated nuclear transcription factors that play a

key role in lipid metabolism. PPARa activates the expression of

genes involved in fatty acid uptake, transport, and b-oxidation, such
as carnitine/organic cation transporter 2 (OCTN2) and fatty acid

transporter protein (FATP), and promotes fatty acid metabolism

and utilization, etc. PPARg regulates adipocyte differentiation and

lipid storage and also affects hepatic lipid metabolism. Its activation

can increase the expression of fatty acid binding protein (FABP) and

other genes, promoting fatty acid uptake and triglyceride synthesis.

Dieckol-enriched extraction from Laminaria japonica and

antioxidant peptides extracted from the swim bladder of Lophius

litulon activate AMPK and PPARa to accelerate b-oxidation (Liu

et al., 2019; Wu et al., 2023a). In addition to being a regulator of

lipid metabolism, AMPK also regulates the activity of carnitine

palmitoyl transferase 1 (CPT-1) and PPAR. Activation of AMPK

reduces the level of malonyl-CoA (a precursor of fatty acid synthesis

and an inhibitor of CPT1) by inhibiting ACC overexpression,

thereby alleviating the inhibition of CPT-1 and accelerating the

transport of fatty acids from the cytoplasm to mitochondria (the

main site of fatty acid b-oxidation). Activation of AMPK can

phosphorylate PPARg coactivator 1a (PGC-1a), enhance its

interaction with PPAR, and promote b-oxidation of fatty acids.

PGC-1a can also be activated by Sirtuin1; thus, marine bioactive

substances are also hypothesized to target SIRT1 to promote fatty

acid b-oxidation (Luo et al., 2020).
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5.5 Alleviating the gut microenvironment

5.5.1 Targeting the intestinal epithelial barrier
NAFLD is often accompanied by damage to the intestinal

barrier, including damage to the intestinal villi and increased

intestinal permeability. A leaky gut caused by disruption of the

intestinal barrier triggers lipopolysaccharide (LPS)-mediated

endotoxemia. The integrity of the intestinal barrier is regulated by

tight junction proteins between intestinal epithelial cells and mucin

secreted by goblet cells. The use of COSM improved the intestinal

wall barrier integrity and endotoxemia in NAFLD mouse model,

which improved ZO-1, occludin, and claudin protein expression

(Feng et al., 2022).

5.5.2 Targeting the intestinal mucosal immune
Gut-associated lymphoid tissue (GALT) is an important

component of the intestinal immune barrier. It includes Peyer’s

patches, mesenteric lymph nodes, and isolated lymphoid follicles.

Immune cells in these lymphoid tissues, such as T cells, B cells,

macrophages, and dendritic cells, recognize and remove pathogens

from the intestine.

The Pyle’s lymph nodes are an important site of initiation of the

intestinal immune response. When an antigen enters the intestine,

the microfold cells (M cells) in the Pyle’s lymph nodes are able to

take up the antigen and pass it on to the immune cells, thus

triggering an immune response. At the same time, the intestinal

epithelial cells themselves can express some immune-related

molecules, which are involved in antigen recognition and

immune regulation.

After entering the liver through the portal vein, LPS activates

Kupffer cells through a TLR4/NF-kB-dependent mechanism, which

initiates the innate immunity of the liver, triggers an inflammatory

cascade, and releases inflammatory factors.

5.5.3 Targeting the gut microbiome and
microbial metabolites

Each stage of NAFLD has a special gut microbiota signature.

The severity of NAFLD has been associated with dysbiosis and loss

of commensal bacterial metabolic functions (Aron-Wisnewsky

et al., 2020). In NAFLD, at the bacterial phylum level, decreased

levels of Bacteroidetes are reported, while levels of Firmicutes and

Proteobacteria were increased. Sulfated polysaccharides (GLP) and

their agaro-oligosaccharides (GLO) derived from Gracilaria

lemaneiformis increased the abundance of Bacteroidetes and

decreased the abundance of Firmicutes (Zhang et al., 2020b),

which can also be accomplished through the use of PYOs (Wang

et al., 2021b) and astaxanthin (Li et al., 2022). A study had reviewed

the effects of marine polysaccharides (especially those derived from

marine microorganisms) and their metabolites on attenuating

metabolic syndrome (MetS). Although NAFLD is a hepatic

manifestation of MetS, the microbial polysaccharides listed in the

article did not improve lipid deposition in the liver (Wang

et al., 2018).

LPS, secondary bile acids, short-chain fatty acid (SCFA) (Zhang

et al., 2021a), and choline metabolites such as trimethylamine

(TMA) and trimethylamine N-oxide (TMAO) have been found to
frontiersin.org

https://doi.org/10.3389/fmars.2024.1523246
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2024.1523246
be associated with NAFLD (Chen and Vitetta, 2020). GLP was

shown to aid in cholesterol regulation and bile acid metabolism in

high-fat diet mice. After undergoing GLP treatment, secondary BAs

[including taurolithocholic acid (TLCA), glycodeoxycholic acid

(GDCA) , g lycoursodeoxychol ic ac id (GUDCA) , and

tauroursodeoxycholic acid (TUDCA)] increased in high-fat

mouse model (Huang et al., 2019). The levels of SCFAs, especially

the butyrate (p < 0.05), were appreciably restored by mussel

polysaccharide, a-D-glucan (MP-A), which was isolated from

Mytilus coruscus (Wu et al., 2019).
6 Possible sources of emerging
marine bioactive substances for
liver disease

6.1 Marine animals

Marine sponges have been considered a remarkable field for the

discovery of bioactive natural products, being the most studied

source of marine bioactive substances so far (Blunt et al., 2015;

Máximo et al., 2016). An investigation of the activity of the total

extract of the marine sponge Spongia irregularis and its different

fractions against the hepatitis C virus (HCV) was pursued; the

results revealed that the ethyl acetate fraction exhibited the highest

anti-HCV activity, with an IC50 value of 12.6 ± 0.05 mg/ml

(Abdelaleem et al., 2022b). The varied marine bioactive

substances and their functions produced by the diverse marine

sponge species are yet to be studied and warrant further exploration

(Orfanoudaki et al., 2021; Abdelaleem et al., 2022a; Jin et al., 2022b).

Marine fish consumption accounts for 20% of people’s animal

protein intake, and the related by-products are also being

investigated (Roy et al., 2022; Liu et al., 2024; Yuan et al., 2024),

for example, the finding of improving hepatic functions with

salmon milt (Takahashi et al., 2022). Not only limited to fish,

other marine animals and their related by-products are suggested to

also be studied to find more active substances that can help alleviate

NAFLD while avoiding waste.
6.2 Marine algae and other plants

Algae have been studied and utilized for centuries. For decades,

algae have been widely cultivated in 61 countries and territories,

contributing over 50% of global marine and coastal aquaculture

production (Pomin, 2011; Wade et al., 2020; Xie et al., 2023). At

present, there are many projects studying the implementation of

seaweed components on multiple medical conditions. Algae

polyphenols are utilized to target diabetes (Lopes et al., 2016),

cardiovascular disease (Gómez-Guzmán et al., 2018), cancer

(Zenthoefer et al., 2017), and neurodegenerative diseases

(Lomartire and Gonçalves, 2023). Algal polysaccharides are used

in antiviral treatments (Wei et al., 2022; Liyanage et al., 2023) and

treatment of Alzheimer’s disease (Bauer et al., 2021), and algal fatty
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acids and carotenoids are used as anti-inflammatory, for lowering of

blood lipid (Cherry et al., 2019), and for other aspects. Additionally,

some seaweed polysaccharides mentioned above have been shown

to have positive effects on NAFLD, including but not limited to

LMWF, Ulva, and PYOs. Therefore, it is very promising and

convenient to isolate various components from seaweed, prepare

prebiotics, and manufacture some dietary supplements. Given the

potential of these seaweed-derived compounds, hopefully, there will

be more seaweed products on the market in the future, especially

targeting NAFLD.

The hepatoprotective effects of microalgae, such as Chlorella

(Chlorella vulgaris Beijer.) and spirulina (Arthrospira maxima and

Arthrospira platensis), have also been well documented (Ferreira-

Hermosillo et al., 2010; González-Arceo et al., 2023; Fakhoury-

Sayegh et al., 2024). Although they are mostly distributed in alkaline

lakes and estuaries, the presence of microalgae in marine

environments warrants continued exploration (Shirouchi et al.,

2023). Oral administration of Chaetoceros gracilis—a marine

microalga—alleviates hepatic lipid accumulation in rats fed a

high-sucrose and cholesterol-containing diet (Shirouchi et al.,

2023). Two extracts (carotenoids and lipids) of Phaeodactylum

tricornutum, a ubiquitous marine diatom, have been shown to

have preventive effects on non-alcoholic fatty liver disease (Mayer

et al., 2020). It has been shown that the ethanol extracts of

microalgae Isochrysis zhanjiangensis, which are distributed in the

sea with high transparency, have a protective effect against acute

alcoholic liver injury (Wen et al., 2024). However, attention should

be paid to the possible toxicity of cyanobacteriotoxins to the liver

caused by cyanobacteria bloom (El-Shehawy et al., 2012; Sánchez-

Parra et al., 2020).

Beyond algae, which is currently a popular topic of study, other

plants with unique habitats in the ocean also deserve further

investigation, such as Avicennia marina, Ceriops tagal, Ipomoea

pes-caprae, Sonneratia apetala, and other marine halophytes

(Murugesan et al., 2023).
6.3 Marine microorganisms

Marine-derived fungi are a rich source of novel metabolites with

unique structural features and bioactivities (Mohamed and Ibrahim,

2021). So far, only a handful of marine fungi have been studied

(Amend et al., 2019). Various studies have been conducted on its

activity with antibacterial properties being the main direction of

research (Xu et al., 2015a; Qi et al., 2023). However, we think that

under specific marine environments, these marine-derived fungi

may be capable of producing compounds with activity against

chronic metabolic diseases.

Dihydrotrichodimerol, purified from the marine fungus,

Acremonium citrinum, has demonstrated positive effects on

NAFLD prevention by targeting PPAR pathways (Liu et al.,

2023a). In addition, phospholipase A2 (PLA2) inhibitor HN-001

was isolated from marine fungus Aspergillus sp. C1. Inhibition of

PLA2 in hepatocytes or in mice decreases lysophosphatidylcholine

(LPC) content, thus blocking the c-Jun N-terminal kinase (JNK)
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pathway and ameliorating hepatocyte apoptosis. On the other hand,

a reduction in LPC inhibits inositol-requiring enzyme 1a (IRE-1a)
activation, leading to XBP-1 splicing inhibition and transcriptional

regulation blockade and ameliorating ER stress, hepatocyte

apoptosis, and inflammation. As a result, NAFLD is alleviated

(Rao et al., 2024). Both marine fungi were isolated from coastal

intertidal zones, which are characterized by high salinity and

abundance of organic material. These findings support our

hypothesis that MNPs of marine fungi are beneficial to ameliorate

chronic metabolic diseases.

Moreover, we suggest that perhaps harvesting fungi in special

marine environments would bring greater value, such as from

deep-sea hydrothermal vents, cold springs, and other extreme

environments, as they have a higher possibility of producing

novel active products with special structures (Burgaud

et al., 2009).

In addition to marine fungi, marine bacteria are also an

important source of active drug ingredients, with over 13,000

natural compounds endowed with different pharmacological

properties have been isolated from different bacterial sources

documented as of 2022 (Stincone and Brandelli, 2020; Zhang

et al., 2020a; Mohan et al., 2022). Over the past two decades,

studies of these compounds have been focused on their

antibacterial and anticancer properties intensively (Stincone and

Brandelli, 2020; Zhang et al., 2020a; Mohan et al., 2022). However,

since GM plays a critical role in the amelioration of NAFLD, it has

been found that probiotic supplementation can alleviate NAFLD

through the influence of GM as well (Yao et al., 2021). This area of

interest in the implementations of marine-derived probiotics on

NAFLD is yet to be further expanded on.

To conclude, we hope that future researchers can continue to

explore the hidden treasures of the ocean from different

perspectives such as discovering probiotics and various marine

bioactive substances. We hope that in the future, we can continue

to explore the treasure house of the ocean from the perspective of

finding probiotics. The discovery of MNPs from different sources in

recent years has been shown in Figure 4 (Carroll et al., 2022,

2023, 2024).
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7 Future perspective

7.1 NAFLD and other related diseases

NAFLD is emerging as a significant global health challenge,

with its growing prevalence leading to an increasing burden on

social healthcare systems. It is an integral component of the

metabolic syndrome, and future research endeavors should aim to

establish stronger connections between NAFLD and other related

conditions, namely, obesity (Li et al., 2016), diabetes (Hazlehurst

et al., 2016; Cernea, 2024), cardiovascular diseases (Targher et al.,

2020), chronic kidney disease (Park et al., 2019), extrahepatic

malignancies (Thomas et al., 2024), inflammatory bowel disease

(Maresca et al., 2024), and even psoriasis (Costache et al., 2024). We

therefore suggest that some of the marine bioactive substances used

in the above disease studies might also be considered for their

beneficial effects on NAFLD.
7.2 Combination therapy for NAFLD

Researchers are progressively uncovering new mechanisms and

therapeutic targets, for instance, reduced fatty acid uptake and lipid

synthesis/accumulation, and interventions that decrease bacterial

endotoxin production or enhance the production of certain

enterobacterial metabolites such as bile acids and short-chain

fatty acids. However, given that NAFLD has a wide range of

pathogenic variables and numerous correlations with other

illnesses, monotherapy may lead to undesirable side effects.

Combination therapies therefore may be essential in the

management of NAFLD.
7.3 NAFLD and ADC

Antibody–drug conjugates (ADCs) represent a therapeutic class

that integrates the high specificity of monoclonal antibodies with

the potent cytotoxicity of small molecule drugs, thereby enhancing
FIGURE 4

Discovery of MNPs in recent years. (A) Number of MNPs from different marine sources in 2020, 2021, and 2022. (B) Proportion of MNPs from
different sources in 2022.
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the precision of cancer therapeutics and mitigating systemic

toxicities. The concept of ADCs was introduced in the 1980s, and

the first such conjugate received its approval from the FDA in 2000

for the treatment of acute myeloid leukemia. Unfortunately, this

particular ADC was subsequently withdrawn from the market in

2010 due to its associated lethality (Fu et al., 2022). Nevertheless, the

past decade has witnessed a resurgence of interest in ADCs

research, attributable to their demonstrated efficacy and targeted

therapeutic potential. Notably, unique cytotoxic agents derived

from marine sources have been successfully incorporated into

ADC formulations and are currently under evaluation in clinical

trials, exemplified by agents such as Adcetris® and Blenrep™

(Table 1). A majority of these marine-derived ADCs are currently

being investigated for their utility in the treatment of orphan

diseases. It is advocated that future research endeavors in the

ADC field should be expanded to include a greater focus on

marine natural products, given their novel and potentially

therapeutically relevant chemical structures.
7.4 Dietary supplements with fewer
side effects

Studies have shown that patients with NAFLD may have a

higher risk of drug-induced liver injury (Lammert et al., 2019). The

approval of Rezdiffra is a landmark event, calling an end to the

absence of an FDA-approved drug for NAFLD in nearly four

decades (Schaffner and Thaler, 1986; FDA approves first MASH

drug, 2024). Rezdiffra, in combination with diet and exercise, is used

for the treatment of moderate to advanced liver fibrosis in adults

with non-cirrhotic NASH, an advanced form of NAFLD. However,

it is important not to forget the possible side effects of Rezdiffra,

such as diarrhea and nausea (Ledford, 2024). Hence, an urgent

demand persists for the development of pharmaceuticals or dietary

supplements that are both safe and efficacious, while exhibiting a

diminished propensity for adverse side effects at the same time.

Diet, serving as a vital source of nutrients, exerts a profound

influence on human health and disease progression. Dietary

interventions have emerged as promising adjunctive treatment

strategies (Xiao et al., 2024). The use of marine bioactive substances

to prepare functional foods is a promising direction and low risk.
7.5 Further recommendations

In light of previous studies and the rapid advancement of

computer technology in recent years, the following points should

be taken into consideration in future studies about MNPs:
Fron
(1) Compared to the numerous studies, including the ones

listed above, which have explored the potential activity of

MNPs through in vivo and in vitro models, only a few

studies have investigated the bioavailability of these

compounds. In the future, more research is required to

better understand the bioavailability of these compounds,
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which would allow us to possibly alter the delivery methods

or chemical structure of these drug candidates.

(2) After studies at the cellular level and the use of mouse

models, additional testing should be considered by

researchers, acknowledging the differences between

rodents and primates and the limitations of the

models used.

(3) Traditional drug screening has certain technical errors and

scope. In future studies, computer platforms should be

considered for the use of virtual screening with large

capacity and small dosage to determine the approximate

biological activity. At the same time, multiple omics

methods such as transcriptome and metabolome were

used to further identify the regulatory pathways.

(4) By reading searched literatures, we found that most of the

studies on the alleviation of NAFLD by marine bioactive

substances mainly focused on the phenotypes and related

molecular mechanisms, but the structure–activity

relationships of specific compounds were less discussed.

For more NAFLD drug output, specific compounds and

their structures must be studied. When extracting and

preparing active molecules, after obtaining the initial

extract, we must analyze its components by means of

chromatography, mass spectrometry, nuclear magnetism,

and more and study its specific composition, structural

characterization, and structure–activity relationship to

better explore its molecular mechanism and obtain drug

lead molecules. At the same time, the extraction process was

optimized, and synthetic chemistry was combined when

necessary to solve the problem of fewer products from

traditional extraction methods, laying the foundation for

subsequent patent medicine and clinical treatment.
8 Conclusion

While the exploitation of terrestrial resources by the scientific

community has been extensive, the marine environment,

characterized by its vast expanse, profound depths, and unique

ecological conditions, remains an untapped and potentially rich

repository for “blue drugstore.” Given the high probability of

identifying novel bioactive compounds within this marine milieu

that are efficacious against chronic hepatic pathologies, there is a

compelling need for an augmented research effort directed toward

this largely uncharted domain to access more lead compounds for

NAFLD treatment in the future.

Notably, natural products are generally more preferable to

chemically synthesized drugs. It is also the main source of

molecules for current drug development. After a series of

extraction, screening, activity evaluation, and mechanism

exploration based on the material of possible source, researchers

also need to address the challenges of transitioning from small trials

to factory production.
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With the discovery of more therapeutic targets and the

discovery and modification of active molecules, the prospects for

the treatment of NAFLD are becoming brighter. The integration of

diet, pharmacology, and prevention strategies is expected to provide

a more comprehensive and effective approach to managing chronic

liver disease and other complex diseases. We believe that MNPs will

play an important role. The study of MNPs should not conclude

here; we are eager to see future more studies on this topic.
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