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SOM neural network-based port
function analysis: a case study in
21st-century Maritime Silk Road
Fahao Xie1†, Le Zhang1*†, Shanshui Zheng1, Aijun Xu1, Zhitao Li1,
Jiaxin Dai1 and Lang Xu2

1School of Transport and Logistics, Guangzhou Railway Polytechnic, Guangzhou, China, 2School of
Transport and Communications, Shanghai Maritime University, Shanghai, China
The 21st-century Maritime Silk Road initiative by the Chinese government has

garnered growing global attention. As pivotal facilitators of international trade,

the maritime routes and ports along this route are attracting the interest of

various stakeholders. There is a pressing need for extensive research to augment

the existing theoretical frameworks. This paper introduces a Self-Organizing Map

(SOM) neural network-based methodology for port function clustering, applied

to 24 major ports spanning from the South China Sea to the ASEAN region in

2023. The clustering outcomes are cross-validated against port rankings derived

from Principal Component Analysis. The study reveals several key insights: (1)

Singapore Port, Hong Kong Port, Shenzhen Port, and Guangzhou Port emerge as

the principal shipping hubs within the region; (2) The relationship between China

and Singapore is identified as a linchpin for the sustainable development of the

21st-century Maritime Silk Road; (3) Guangdong Province is highlighted as a

central economic and logistical node. Finally, the recommendations for the

accelerated development of the Hainan Free Trade Port and Fujian Coastal

Port is concluded.
KEYWORDS

21st-century Maritime Silk Road, SOM neural network, port function analysis, principal
component analysis, South China Sea to the ASEAN
1 Introduction

In 2013, the Chinese government introduced the strategic vision known as the “New

Silk Road Economic Belt and the 21st-Century Maritime Silk Road” (referred to as the Belt

and Road Initiative, BRI) (Li et al., 2020). This initiative has attracted significant attention

and garnered substantial support from the countries involved, regions concerned, and

indeed, the global community at large. In March 2015, the Ministry of Foreign Affairs and

the Ministry of Commerce of China jointly published the “Visions and Actions on Jointly

Building Silk Road Economic Belt and 21st-Century Maritime Silk Road.” This document

underscored the primary maritime route of the “21st-Century Maritime Silk Road” (21st-
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MSR), which extends from the South China Sea, through the Indian

Ocean, and onward to Europe (Peng et al., 2024).

As international trade continues to surge, container liner services

have emerged as the preferred mode for global cargo transportation,

attributed to their substantial loading capacity and cost-effectiveness

(Zhu et al., 2024). The enhancement of ports along the 21st-MSR has

become a pivotal initiative in advancing the BRI. Increasingly,

scholarly focus is being directed towards the study of ports along

the 21st-MSR (Xu et al., 2024a). For instance, to elucidate the spatio-

temporal evolution of the port system within this corridor,

Zhang et al. (2023c) have employed the Herfindahl-Hirschman

Index and the rank-size rule to scrutinize the spatio-temporal

correlation characteristics of container ports spanning the period

from 2000 to 2019. Furthermore, the studies have conducted in-depth

analyses on the sustainability and operational facets of the ports along

the 21st-MSR (Wang et al., 2021; Xu et al., 2023; Liu et al., 2024).

The 21st-MSR is a pivotal part of the BRI, serving as the southern

corridor among the initiative’s five economic belts. The primary

shipping routes of the 21st-MSR extend from Quanzhou through

Fuzhou, Guangzhou, Haikou, Beihai, Hanoi, Kuala Lumpur, Jakarta,

Colombo, Kolkata, Nairobi, Athens, and Venice, highlighting the

integral role of ASEAN countries in connecting the South China Sea

to Europe and the South Pacific (Lin and Liu, 2023). ASEAN region is

not only a crucial component of the the 21st-MSR but also one of the

most significant container markets in Asia. The emphasis on the joint

development of smooth, safe, and efficient transport corridors with key

ports as nodes is a strategic priority within the BRI (Nguyen et al.,

2020). The studies on shipping logistics from the South China Sea to

ASEAN are of great significance to the sustainable development of BRI

(Song and Fabinyi, 2022; Chen et al., 2024; Ardine et al., 2023).

In the context of direct Origin-Destination flows between

various ports, the transportation of goods necessitates a

substantial fleet of vehicles, often leading to suboptimal full load

rates (Kalahasthi et al., 2022). This approach can engender the

return of empty vehicles, thereby incurring higher costs and

contributing to the wastage of energy and resources. Conversely,

when the Origin-Destination flow is predominantly channeled

through specific hubs, the aggregation of goods for transportation

can leverage economies of scale, which not only reduces costs but

also mitigates environmental pollution (Xu et al., 2024b). Within

the framework of a sustainable shipping network, it is imperative to

categorize all ports based on their distinct capacities and functions

(Notteboom and Haralambides, 2023).

Large ports serve as the nucleus of the transportation network,

designated as hub ports, while smaller and medium-sized ports feed

into these hubs, known as feeder ports (Sugimura et al., 2023). Hub

ports fulfill dual roles in transportation, that acts as centralized

nodes for the aggregation and distribution of goods, akin to transit

warehouses, logistics centers, and distribution centers within a

logistics system (Nie et al., 2023). The interaction between hub

ports and feeder ports at varying load levels establishes a radial,

efficient shipping network that facilitates trade. To categorize ports

effectively, researchers have proposed the use of cluster analysis.

This method involves grouping objects or variables with similar

characteristics, thereby facilitating a more systematic and organized

approach to port classification (Guo et al., 2023). For example,
Frontiers in Marine Science 02
Kaliszewski et al. (2020) adopt the cluster analysis to container ports

into three distinct groups along three dimensions: number of

containers handled, berth length, and number of berths. Ke and

Wang (2017) combine cluster analysis, hierarchical analysis, and

principal component analysis to classify the Chinese maritime

centers of the main port cities, and rank the latter according to

their soft and hard infrastructure. Souza et al. (2023b) improve a

clustering method to analyze the competitiveness of Brazilian

container port terminals. In their study, thirteen criteria are

selected for the analysis taking into consideration both the

previous literature and the characteristics of Brazilian ports. Saeed

and Cullinane (2023) group China’s 155 maritime trading partners

into distinct meaningful clusters by a hierarchical clustering

technique. Mohd Rozar et al. (2023) use a hierarchical cluster

analysis to categorize 18 Malaysian bulk terminals into two

different classes and find that the Westport and Northport of

Klang Port have the best performance of all.

Due to constraints in data collection, traditional clustering

algorithms, such as hierarchical clustering and K-means

clustering, primarily analyze sample eigenvalues based on a

limited set of indicators selected by experts. This approach is

employed with a small number of indicators and samples to

prevent multicollinearity, which can arise from high-dimensional

data (Schumacher et al., 2022). However, with the advent of the big

data era, there is a growing need for novel intelligent algorithms

capable of managing high-dimensional data and large sample sizes

in order to effectively cluster ports (Bai et al., 2023). The traditional

clustering algorithms are indeed limited when it comes to handling

the vast amounts of data generated by large samples. These methods

struggle with scalability and become computationally expensive or

even infeasible as the dimensionality and volume of data increase.

The need for new intelligent algorithms capable of managing high-

dimensional samples for port clustering is evident.

One approach to address this challenge is through the

development of advanced intelligent techniques that can handle

large and complex datasets more efficiently. Neural networks are a

classic class of intelligent algorithms extensively utilized in various

domains, including image processing, text analysis, and data

processing (Rahmani et al., 2023). These networks can be broadly

categorized into two types: supervised and unsupervised learning

algorithms. Unsupervised neural networks are capable of processing

unstructured data and making decisions without external guidance,

particularly in cluster analysis. A notable example of this type is the

Self-Organizing Map (SOM) neural network (Zhang et al., 2023a).

The SOM neural network is a unsupervised algorithm that excels

in handling nonlinear problems and complex datasets (Zhang et al.,

2022). It is frequently utilized for pattern recognition and assessing

relationships among variables. Unlike other unsupervised methods,

SOM also has the capacity to manage large datasets and offers the

added benefit of visually exploring the results (Licen et al., 2023). The

core idea of SOM is to simulate the self-organization process of the

human brain’s nervous system. Through training, it enables similar

input data points to be mapped to adjacent neurons on a grid, thereby

forming a topological structure on the map that reflects the

relationships between the input data (Shahid, 2023). Due to these

functionalities and advantages, numerous researchers are inclined to
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employ SOM neural networks for conducting cluster analysis. For

example, Shahid (2023) conduct a comparison of SOM neural

network and hierarchical clustering. It is presented that hierarchical

clustering has the tendency to commit classification errors when

empirical data departs from ideal conditions of compact isolated

clusters. Rabelo et al. (2023) propose a SOM neural network to

characterize the main agricultural land systems in western

Mediterranean areas into five main clusters. In their study, the

implemented clustering approach leads to the municipality

aggregation into output units on the basis of proximity. de Souza

et al. (2023a) introduce a non-supervised clustering analysis with

SOM neural network as a strategy of decision-making to identify

potential variables in routine blood tests. Based on the SOM features,

it detects discrimination power around 83% to positive patients.

As previously discussed, the SOM neural network has been

effectively applied to cluster analysis in various domains, including

agriculture and logistics (Xu et al., 2024d). This technique also holds

potential applications in port research. The SOM achieves

clustering by projecting high-dimensional input data onto a low-

dimensional space (typically two-dimensional) while preserving the

topological relationships inherent in the input data (Wang et al.,

2023). The map learns to categorize variables based on their

groupings within the input space and undergoes training across

variables that occupy competitive layers of neighboring neurons.

The SOM is capable of learning both the distribution and topology

of input variables, and it excels at managing high-dimensional

indicators and large sample sizes, offering advantages over

traditional clustering methods (Zhang et al., 2023b).

In this study, an unsupervised SOM neural network-based port

clustering algorithm is introduced, which is applied to the shipping

route from the South China Sea to the ASEAN region. Initially, the

ports along the 21st-MSR and the relevant cluster indicators are

analyzed. Subsequently, the SOM neural network-based port

clustering algorithm is developed to categorize the selected ports

along the 21st-MSR. To ascertain the efficacy of this approach, the

clustering outcomes are juxtaposed with the port rankings derived

from Principal Component Analysis (PCA). The key contributions

of this paper are as follows:
Fron
1. Compared with the traditional clustering algorithms, the

SOM serves as a non-linear dimension-reduction tool,

effectively mapping high-dimensional data to lower

dimensions, which is particularly beneficial in handling

the complexity and volume of big data algorithm.

2. By incorporating trade indicators along the BRI, a cluster

analysis of major ports from the South China Sea to the

ASEAN region is conducted. The findings offer a valuable

theoretical foundation for the sustainable development of

the 21st-MSR.

3. The integration of the SOM neural network into port

clustering research presents a novel domain for the

application of this intelligent, thereby expanding the

application domain of this intelligent algorithm.
The rest of this paper is organized as follows. Section 2

illustrates the preparation of the art. Section 3 describes the SOM
tiers in Marine Science 03
neural network-based port clustering method. Section 4 presents

the validity test and discussion. The conclusion and future works

are given in Section 5.
2 Preparation

This section is organized into four subsections. The first

subsection introduces the port nodes under study. The second

subsection identifies the indicators used for clustering ports. The

third subsection examines the methods capable of achieving the

clustering objectives. The final subsection details the research data

used in this study.
2.1 Node determination

ASEAN is one of China’s largest trading partners. Regardless of

whether shipping routes extend to Europe or the South Pacific from

the South China Sea, ASEAN’s port nodes are essential. To simplify

calculations, this paper focuses on studying the main ports from the

South China Sea to ASEAN regions.

The main cities along the South China Sea to ASEAN include

Quanzhou, Fuzhou, Guangzhou, Haikou, Beihai, Hanoi, Kuala

Lumpur, and Jakarta (Tang et al., 2017), as shown in in Figure 1.

Based on the characteristics of the BRI, previous literature suggests

four distinct roles for shipping ports: international hub ports, regional

hub ports, node ports, and regional ports (Wang et al., 2021).

For the port selection along the aforementioned route, we have

chosen the top 100 ports from Fujian, Hong Kong, Guangdong,

Hainan, Guangxi, and ASEAN countries, as ranked by the 2023

Global Container Port Throughput published by the China Port

Association. For countries not listed among the top 100, we have

selected the largest seaport as an alternative (with the exception of

Laos, which is landlocked). In total, 24 ports have been selected for

the shipping route from the South China Sea to ASEAN. The

geographic information of these ports, which serve as trade nodes, is

presented in Table 1.

As shown in Table 1, there are 11 ports in China and 13 in

ASEAN countries. Guangdong Province in China, which is the

country’s largest by GDP, has the highest number of ports with five.

Three ports are selected in China’s Fujian Province: Quanzhou Port,

Xiamen Port, and Fuzhou Port, which is the starting point of the

21st Century Maritime Silk Road (21st-MSR). The smallest port is

Brunei Combined Port, yet it is the largest port in Brunei.
2.2 Indicator selection

The indicators of the samples serve as the inputs for all

clustering algorithms, with their values directly influencing the

clustering outcomes. Wang et al. (2021) encapsulate the port

development indicators within four dimensions: operational

capacity, economic conditions, environmental factors, and human

intellect and technology. Ke and Wang (2017) select the container

cargo throughput, port city GDP, total foreign trade volume, and
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other indicators to study the competitiveness of major ports in

China. Ogara et al. (2023) identify existing themes on port city and

marine ecosystem sustainability indicator frameworks. Xu et al.

(2024c) elaborate on the crucial support functions that port

infrastructure provides for the development of shipping trade and

the establishment of connecting routes.
Frontiers in Marine Science 04
By examining the components of the BRI and reviewing the

existing port literature, this paper introduces the most frequently

occurring indicators, as presented in Table 2. All selected indicators

are positively correlated with the evaluation outcomes. Notably, the

last indicator, ‘Foreign trade along the BRI’ incorporates distinctive

characteristics of the BRI that have not been widely considered in

other port-related studies.
2.3 Data collection

The evolution of shipping node structures is a gradual process.

Taking into account the anomalous shipping data resulting from the

Chinese government’s lockdown measures during the COVID-19

pandemic, we have collected port data 2023, the first year after the

pandemic’s onset, to perform cluster analysis on ports along the

South China Sea to ASEAN route. The key indicators’ data are

presented in Table 3.

In Table 3, all port statistics are of a uniform caliber, ensuring

consistency in data quality. The primary sources of this data include

the ‘China Statistical Yearbook’, ‘China Statistical Yearbook of

Relevant Provinces and Cities’, ‘China Yearbook of Cities’, and the

‘Statistical Bulletin of National Economy and Social Development of

Relevant Cities of China’. Data for all economic indicators

are rounded.
3 SOM neural network-based
port clustering

3.1 Algorithm description

The SOM neural network is composed of input and hidden

layers. Within the hidden layer, each node corresponds to a class
FIGURE 1

New Silk Road Economic Belt and the 21st-Century Maritime Silk Road.
TABLE 1 Selected nodes along the South China Sea to ASEAN.

Ports Countries Ports Countries

Quanzhou
Port

Fujian Province, China Ho Chi Minh Port Vietnam

Xiamen Port Fujian Province, China Sihanoukville Port Cambodia

Fuzhou Port Fujian Province, China Bangkok Port Thailand

Hong
Kong Port

Hong Kong, China Laem
Chabang Port

Thailand

Zhuhai Port Guangdong
Province, China

Singapore Port Singapore

Shenzhen
Port

Guangdong
Province, China

Klang Port Malaysia

Guangzhou
Port

Guangdong
Province, China

Tanjong
Palapas Port

Malaysia

Humen Port Guangdong
Province, China

Jakarta Port Indonesia

Foshan Port Guangdong
Province, China

Surabaya Port Indonesia

Hai Kou Port Hainan
Province, China

Manila Port Philippines

Beibu
Gulf Port

Guangxi
Province, China

Yangon Port Burma

Haiphong
Port

Vietnam Brunei
Combined Port

Brunei
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TABLE 2 The description of the selected indicators.

Indicators Description

Container throughput
It refers to the total number of containers loaded and unloaded at the port during a period of time, that reflects the port’s container logistics

service capacity to the countries and regions (Ogara et al., 2023).

Number of berths over
10,000 tons

It reflects the ability of the port to berth largeships that transport to/from other ports (Xu et al., 2024c).

Number of
container routes

It represents the connectivity of nodes in the shipping network (Ke and Wang, 2017).

Permanent population
This describes the number of permanent residents in the port-city. The sustainable development of ports is related to the economic

engagement of human resources (Wang et al., 2021).

City GDP
It is often considered as an indicator of the economic rigor of a port-city and it is usually positively correlated with port development (Nie

et al., 2023).

Foreign trade
As the imports and exports of the port city are closely related to port throughput, this indicator directly reflects the scale of port demand (Peng

et al., 2024).

Foreign trade along BRI
This index reflects the degree of connection between the port and ports along BRI, reflecting also the position of the port in BRI (Wang

et al., 2021).
F
rontiers in Marine Scienc
TABLE 3 Original data of indicators.

Ports
Container
throughput

Berths Routes
Permanent
population

City
GDP

Foreign
trade

Foreign trade
along BRI

Quanzhou 208 25 76 865.00 1117 239 120

Xiamen 1255 26 135 401.00 644 861 339

Fuzhou 349 55 83 766.00 1052 1717 84

Hong Kong 1430 72 208 741.00 3450 11401 6545

Zhuhai 123 28 76 163.40 380 440 145

Shenzhen 2988 72 226 1252.83 3318 4148 885

Guangzhou 2392 64 250 1449.84 3185 1432 436

Humen 391.00 34 42 826.00 1123 1822 369

Foshan 347 40 36 765.67 1414 645 147

Hai Kou 144 38 32 227.21 206 47 27

Beibu Gulf 228 46 36 666.40 486 217 148

Haiphong 445 20 42 1016.10 266 593 298

Ho Chi Minh 594 25 56 1400.00 505 1208 489

Sihanoukville 57 4 32 260.00 156 247 102

Bangkok 195 8 28 1197.00 1698 2366 1348

Laem Chabang 778 28 40 1240.00 1869 2430 1458

Singapore 3367 68 259 562.00 2970 7011 4163

Klang 1198 33 64 180.00 1620 1673 756

Tanjong Palapas 835 28 58 420.00 860 1076 452

Jakarta 607 27 72 1203.00 1720 460 298

Surabaya 350 24 46 413.00 674 364 170

Manila 483 26 58 201.00 1012 1265 583

Yangon 62 13 30 513.00 186.00 106 75

Brunei Combined 15 6 27 50.00 141 80 56
e
 05
Statistical unit: Berths—Number of 10,000-ton berths, Routes—Number of container routes, Container throughput—Ten thousand TEUs, Permanent population—Ten thousand people, City
GDP—Hundred million dollars, Foreign trade— Hundred million dollars, Foreign trade along BRI—Hundred million dollars.
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that is to be formed during the aggregation process. The nodes in

the input layer are fully connected to those in the competition layer,

collectively constituting a nonlinear learning system.

The relationships among the input neurons are trained based on

the original samples and are represented through weight

coefficients. Compared to traditional clustering methods, this

nonlinear learning system is well-suited to handle large datasets,

making it a potent tool for the era of big data. The architectural

layout of the SOM is depicted in Figure 2.

As illustrated in Figure 2, the training process of the SOM

neural network employs a ‘competitive learning’ paradigm. For each

input sample, the hidden layer is scanned to identify the node with

the closest match, known as the winning neuron. The weight vector

of the winning neuron is then updated using stochastic gradient

descent or similar optimization techniques. Neurons surrounding

the winning neuron also adjust their parameters in proportion to

their topological distance from the winner. This means that not only

are the weights and thresholds of the winning neuron modified, but

also those of the neighboring neurons, providing a dynamic

adjustment across the network. This training methodology

significantly enhances the SOM’s generalization capabilities,

allowing it to effectively capture the underlying structure of the data.
3.2 Model construction and calculation

In this section, the indicator data of major ports from China’s

southern coast to ASEAN (shown in Table 3) are applied to the

SOM neural network-based port clustering model. The method and

calculation process are as follows:

3.2.1 Step 1: standardisation of data
In this stage, we standardize the values of the indicators to make

them comparable across the 24 seaports. Let i be the port, j be the

indicator, Zij be the original data of indicator j for port i, Xij be the
Frontiers in Marine Science 06
normalised value of indicator j for port i. There is

Xij =
Zij − Zj

sj
(1)

where Zj and sj denote the mean and standard deviation of

indicator j for all ports, respectively. (Note: The subscript symbols i and

j are only used in the data standardization. If the same symbols appear

below, the corresponding meanings will be explained separately.)

3.2.2 Step 2: initialize parameters and set
output neurons

In this study, we utilize the default initial values provided by

the SOM neural network library functions in MATLAB 2016a

for our network’s parameters. Each node’s parameters are

initialized randomly.

The number of output neurons in our SOM corresponds to the

number of cluster categories. Wang et al. (2021) propose four

distinct roles for shipping ports: international hub ports, regional

hub ports, node ports, and regional ports. Following the

classification conventions outlined in the relevant literature, the

24 selected ports in this paper are categorized into these four

groups. Consequently, the SOM neural network is configured

with four output neurons during the training process to reflect

these port categories.

3.2.3 Step 3: set discriminant function
In training, it is necessary to find the most suitable node

(winning neuron) for each input sample by discriminant

function. The common discriminant functions include the

Euclidean distance method, absolute value error, and so on. This

section adopts the most classical Euclidean distance method as the

discriminant function (also known as the loss function). The

specific expression is shown in Equation 2:

dj(X) =o
n

i=1
(xi − wji)

2 : (2)

In Equation 2, i and j represent the neuron of the input and

competition layers, respectively. The symbolX = x1, x2, · · ·, xi · ··, x7f g
denotes the standardized value of each input sample. The number of

input neurons is n (n = 7 in this paper).

3.2.4 Step 4: weight update of near nodes
Once the winning neuron I(x) has been found, the weights of

other nodes need to be updated. Let Sij represent the distance

between nodes i and j. The weight update rule of near nodes is

shown in Equation 3:

Tj,I(X) = e
−S2

j,I(X)

2s2 : (3)

From Equation 3, we can find that the updated degree varies

according to the distance between adjacent nodes.

3.2.5 Step 5: parameter convergence
In training the SOM neural network, the criterion for successful

training is determined by the achievement of a convergence state in
FIGURE 2

Learning structure of SOM neural network.
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the node parameters through successive iterative processes. To

optimize parameter convergence, several advanced feedback

adjustment algorithms are commonly employed. These include

methods such as error backpropagation, gradient descent, and

quasi-Newton methods, among others.

In existing feedback tuning algorithms, the gradient descent

method has a small amount of computation and fast convergence

speed. In this section, the gradient descent method is adopted to

update parameters:

Dwji = h(t) · Tj,I(X)(t) · (xi − wji) : (4)

Gradient descent is a classical algorithm. The convergence proof

of this function is not repeated due to layout limitations. For the

calculation of the ports in this paper, MATLAB2016a is used. Its

iterative result is shown in Figure 3A.

As shown in Figure 3A, the number of input layers is 7. The

quantity of competition and output layers is 4. The iteration time is

200. The calculation time is 2 seconds.

3.2.6 Step 6: port clustering
Based on the convergent parameters trained by the SOMmodel,

the distribution of clustering center location is shown in Figure 3B.

As depicted in Figure 3B, the 24 ports are grouped into 4

distinct categories, with each category containing 4, 4, 6, and 10

ports, respectively. The considerable distance between the centers of

each category indicates the significance of the clustering results,

suggesting that the ports within each group are relatively

homogeneous while being distinct from ports in other groups.

To determine the grade levels within each category, this section

proceeds to calculate the characteristic values for each cluster. The

clusters are then ranked based on these values, which provide a

quantitative measure of the prominence or significance of each

category. The average characteristic values for the ports, along with

their corresponding cluster assignments, are presented in Table 4.

As presented in Table 4, the first-tier ports comprise Hong

Kong Port, Shenzhen Port, Guangzhou Port, and Singapore Port.

These ports exhibit an average characteristic value of 0.738, which is

significantly higher than the average values of the other groups. The

second-tier ports include Ho Chi Minh Port, Bangkok Port, Laem

Chabang Port, and Jakarta Port, with an average characteristic value

of 0.5533.

As shown in Table 4, the third-tier ports include Quanzhou

Port, Fuzhou Port, Humen Port, Foshan Port, Beibu Gulf Port, and

Haiphong Port. These ports have an average characteristic value of

0.4107, which, while slightly lower than that of the second-tier

ports, indicates a moderate standing within the clustering hierarchy.

The fourth-tier, comprising Xiamen Port, Zhuhai Port, Haikou

Port, Sihanoukville Port, Port Klang, Tanjong Palas Port, Surabaya

Port, Manitra Port, Yangon Port, Brunei Port, and others, exhibits

an average characteristic value of -0.4835. This negative value,

resulting from the de-dimensionality processing of the original

data, is considerably lower than the averages of the higher-

tier groups, placing these ports at the lower end of the

clustering hierarchy.
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4 Validity test and discussion

4.1 Validity test by PCA

To validate the model developed in this paper, the results from

Section 3 are compared with those obtained using established

methods within this section. Traditional port evaluation models

primarily consist of the Analytic Hierarchy Process and Principal

Component Analysis (PCA), among others. This section employs

PCA, a widely utilized method in evaluative studies, to assess the

port ranking outcomes derived from the SOM neural network.

PCA is a quantitative method that differs from the Analytic

Hierarchy Process. Its primary process involves converting multiple

indicators into a few comprehensive indicators, known as principal

components, using the concept of dimensionality reduction. These

principal components can reflect most of the information of

the original variables. PCA is particularly useful for reducing the

complexity of datasets while retaining the majority of the variability

present in the data.

In this section, PCA serves as a comparative method for the

SOM neural network model that has been constructed. Due to its

universal application, a detailed description of PCA calculations is

not repeated here. Instead, SPSS software is utilized to conduct PCA

on 7 indicators of 24 ports along the 21st-MSR. Principal

components with eigenvalues greater than 1.00 are selected,

which is a common criterion for retaining components that

explain a significant amount of variance in the data. The analysis

results are shown in Table 5.

As depicted in Table 5, the original seven-dimensional data

have been reduced to a two-dimensional representation. The

cumulative contribution rate of the components, which have

eigenvalues greater than 1.00, accounts for 84.7% of the variance,

effectively mitigating the impact of multicollinearity among the

total time-sharing variables for each port, as calculated in

subsequent analyses. Table 6 presents the two-dimensional

principal components along with the corresponding port scores

post-dimensionality reduction.

The PCA is conducted to evaluate the major ports spanning

from the southern coastal regions of China to the ASEAN countries.

As illustrated in Table 6, Hong Kong Port secured the highest

ranking with a score of 10.86. Singapore Port closely followed in the

second position with a score of 10.16. Shenzhen Port and

Guangzhou Port were ranked third and fourth, respectively, with

scores of 9.86 and 8.98. Notably, the top four ports identified by the

PCA analysis correspond with the first-tier ports that were

determined through the training of the SOM neural network, as

detailed in Section 3.

For the second-tier ports, namely Laem Chabang Port, Jakarta

Port, Bangkok Port, and Ho Chi Minh Port as listed in Table 4, their

PCA rankings are 5th, 6th, 9th, and 8th, respectively. Upon

comparing the PCA results with those of the SOM neural

network, a high degree of correlation is observed between the

distribution of the ports across the four groups as identified by

the SOM neural network and their PCA rankings. This concordance
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validates the robustness and reliability of the clustering results

yielded by the SOM neural network method.
4.2 Conclusion

The previous content introduces a SOM neural network-based

port function clustering. Through MATLAB training and

calculation, 24 major ports from the South China Sea to ASEAN

are successfully categorized into 4 clusters. The clustering results are

cross-validated with port rankings obtained through PCA method.

Based on the SOM neural network and PCA performed in this

study, three noteworthy outcomes have emerged:
Fron
1. Guangdong Province in China serves as a core logistics node

within the 21st-MSR. The clustering analysis conducted

using the SOM neural network indicates that Singapore

Port, Hong Kong Port, Shenzhen Port, and Guangzhou Port

are categorized as first-tier ports along the South China Sea

to ASEAN route. Among these, Shenzhen Port and
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Guangzhou Port, located in Guangdong Province, stand

out as the largest container ports in southern China.

Guangdong Province’s GDP reached 13.57 trillion yuan in

2023, a figure that exceeds the GDP of some developed

countries, including Australia and the Netherlands. Among

other ports in Guangdong Province, Humen Port has

established an extensive network of international

container liner routes, connecting to major ports across 30

countries and regions worldwide. These strategic

developments have significantly bolstered Guangdong’s

connectivity with nations along the BRI.

2. China’s extensive transportation infrastructure plays a

pivotal role in the development of the 21st-MSR. In the

context of port clustering, the vast majority—three quarters

—of first-tier ports are located in China, including Hong

Kong Port, Guangzhou Port, and Shenzhen Port. Each of

these ports is projected to handle over 20 million TEUs

of container traffic in 2023. In the second and third tiers

of ports, Chinese ports make up half of the total, including

Quanzhou Port, Fuzhou Port, Humen Port, and Foshan
BA

FIGURE 3

Training result of the SOM neural network. (A) Matlab iteration. (B) Cluster center points.
TABLE 4 Clustering results of 24 sports along 21st-MSR.

Rank Characteristic value Ports

1 0.7383 Hong Kong Port, Shenzhen Port, Guangzhou Port, Singapore Port

2 0.5533 Ho Chi Minh Port, Bangkok Port, Laem Chabang Port, Jakarta Port

3 0.4107
Quanzhou Port, Fuzhou Port, Humen Port,
Foshan Port, Beibu Gulf Port, Haiphong Port

4 -0.4835
Xiamen Port, Zhuhai Port, Haikou Port, Sihanoukville Port,

Klang Port, Tanjong Palas Port, Surabaya Port,
Manitra Port, Yangon Port, Brunei Combined Port
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Port. In port rankings, three out of the top four ports with

the highest scores are also Chinese, offering an efficient

logistics channel that serves the Chinese government’s

strategic interests within the 21st-MSR.
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3. China-Singapore cooperation is of paramount importance to

the sustainable development of the BRI. Both Singapore and

Hong Kong ports are strategically positioned as maritime hubs

along the 21st-MSR. These ports have long been at the
TABLE 6 Principal component analysis results.

Ports Component 1 Component 2 Scores Ranking

Quanzhou Port -0.38887 0.64801 -1.23386518 14

Xiamen Port -0.15868 -0.34902 -1.13778396 13

Fuzhou Port -0.02068 0.43683 0.35043294 7

Hong Kong Port 2.65556 -2.06510 10.86630836 1

Zhuhai Port -0.60870 -0.73879 -3.74410406 20

Shenzhen Port 1.73174 1.33598 9.86000236 3

Guangzhou Port 1.38829 2.11469 8.9836573 4

Humen Port -0.22571 0.32579 -0.7682093 11

Foshan Port -0.25325 0.50411 -0.7186622 10

Hai Kou Port -0.70542 -0.55764 -4.03033608 21

Beibu Gulf Port -0.45297 0.25401 -1.95509478 16

Haiphong Port -0.55170 0.62231 -2.05765466 17

Ho Chi Minh Port -0.26123 1.24657 0.00997129 8

Sihanoukville Port -1.00825 -0.72101 -5.68191634 22

Bangkok Port -0.21222 0.60031 -0.41830858 9

Laem Chabang Port 0.17648 0.77027 1.66050526 5

Singapore Port 2.33663 -1.22924 10.16910632 2

Klang Port -0.00081 -0.81685 -0.84858866 12

Tanjong Palapas Port -0.30801 -0.38739 -1.90857822 15

Jakarta Port -0.09019 1.27568 0.87748288 6

Surabaya Port -0.59517 -0.28814 -3.21188908 19

Manila Port -0.38745 -0.81738 -2.74212612 18

Yangon Port -0.98864 -1.10859 -5.9866635 23

Brunei Combined Port -1.07076 -1.05542 -6.33374524 24
TABLE 5 Total variance explanation of PCA.

Component

Initial eigenvalues Extraction sums of squared loadings

Total
% of

variance
Cumulative

%
Total

% of
variance

Cumulative
%

1 4.896 69.941 69.941 4.896 69.941 69.941

2 1.034 14.765 84.706 1.034 14.765 84.706

3 .622 8.882 93.588

4 .249 3.560 97.148

5 .119 1.697 98.844

6 .064 .909 99.754

7 .017 .246 100.000
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forefront of Asia’s maritime industry, leading in areas such as

shipping trade, shipping insurance, and shipping finance.

Singapore is strategically located at the heart of Southeast

Asia, guarding the vital maritime passage connecting the

Pacific and Indian Oceans—the Strait of Malacca. This

strategic position makes Singapore one of the world’s busiest

maritime transportation hubs and attracts a multitude of

shipping companies to establish their presence there.

Singapore and China exhibit strong industrial

complementarity. Singapore excels in finance, technology,

and services, while China boasts strengths in manufacturing

and infrastructure. Through the 21st-MSR, both countries aim

to enhance industrial collaboration, leverage their respective

strengths, and jointly foster regional economic growth.
5 Policy implications and future works

5.1 Policy implications

Given the pivotal role of ports along the 21st-MSR in the

sustainable development of the BRI, this study introduces a port

clustering approach that utilizes a SOM neural network. This

method was applied to train a dataset of 24 major ports spanning

from the South China Sea to ASEAN countries. The resulting clusters

were then validated against port rankings obtained through Principal

Component Analysis (PCA). Drawing from these comprehensive

analyses, the paper presents three substantive recommendations:
1. Promoting the construction of ports in Fujian Province is

essential. As the inception point of the 21st-MSR, Fujian

Province plays a vital role in the sustainable development of

the BRI. However, the findings of this study indicate a

significant disparity between Fujian Province’s current

status and its optimal positioning within the BRI. The

ports of Quanzhou, Xiamen, and Fuzhou all fall within

the lower-middle range in terms of clustering and ranking

scores. Moreover, when considering shipping potential, the

aggregate GDP of the cities of Xiamen, Fuzhou, and

Quanzhou is surpassed by that of Guangzhou alone.

2. The acceleration of the Hainan Free Trade Port’s construction

is of strategic importance. Positioned at the crossroads of Asia

and the Pacific Ocean, and midway between Japan and

Singapore, Hainan Island serves as a maritime nexus

connecting the Pacific and Indian Oceans. With a coastline

stretching 1944.35 kilometers, Hainan Island possesses distinct

advantages along the trade route corridor between China and

ASEAN. However, despite its strategic location, Hainan

Island’s container throughput reached only 1.445 million

TEU in 2023, placing it in the fourth tier of port clustering.

3. Improving the shipping structure of the Guangdong-Hong

Kong-Macao Greater Bay Area is crucial. As one of China’s

most open and economically dynamic regions, the

Guangdong-Hong Kong-Macao Greater Bay Area occupies

a significant strategic position within the BRI. Notably, Hong
tiers in Marine Science 10
Kong Port, Shenzhen Port, and Guangzhou Port are

classified as first-level ports in this region, while other

ports are ranked as third or fourth-level. The lack of

second-level ports indicates a generational gap. The uneven

development of ports in this region has substantially

impeded the progress of the 21st-MSR.
5.2 Future work

Compared to traditional clusteringmethodologies, the SOMneural

network-based port clustering approach demonstrates potential for

managing large datasets in the forthcoming era of big data, attributed to

its non-linear learning system. Nonetheless, there are limitations that

require further investigation. For instance, to validate the new method

against classical approaches, this study employs traditional indicators

and datasets. The efficacy of the SOM neural network in clustering

large samples merits deeper exploration.
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