
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Chao Chen,
Suzhou University of Science and
Technology, China

REVIEWED BY

Mengquqn Wu,
Ludong University, China
Shaojie Sun,
Sun Yat-sen University, China

*CORRESPONDENCE

Dong Liu

dliu@niglas.ac.cn

Shengqiang Wang

shengqiang.wang@nuist.edu.cn

RECEIVED 31 October 2024

ACCEPTED 25 November 2024
PUBLISHED 17 December 2024

CITATION

Yang M, Khan FA, Fang H, Maúre EdR,
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The spatiotemporal variability of chlorophyll-a (Chl-a) in the Arabian Sea (AS) and

Persian Gulf (PG) has been widely studied, but long-term trends and influencing

factors remain less understood due to data gaps. This study investigates Chl-a

variability and trends from 2001 to 2019 using reconstructed MODIS-Terra

monthly Chl-a and sea surface temperature (SST) data, employing the Data

Interpolating Empirical Orthogonal Functions (DINEOF) method for

high-accuracy reconstruction. Results reveal pronounced seasonal variability,

with Chl-a peaks exceeding 3 mg m-3 during southwestern monsoons and

ranging between 1–3 mg m-3 during northeastern monsoons, with the lowest

levels in transitional months. Spatially, the highest Chl-a concentrations were

observed in the western and northeastern AS, influenced by summer

southwestern (SW) and winter northeastern (NE) monsoons. Trend analysis

using Sen’s slope and the Mann-Kendall test indicates significant Chl-a

declines (-0.002 to 0) along ASPG coasts, with slight increases (~0.005) in the

southeastern AS and southern PG. Rising SST anomalies (SST_A) correlated with

reduced Chl-a anomalies (Chl-a_A) in the western AS, while increased wind

anomalies (Wind_A) enhanced Chl-a_A in the western AS but decreased it in the

southern PG. These findings enhance our understanding of the complex

environmental dynamics shaping the ASPG ecosystems.
KEYWORDS
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1 Introduction

Chlorophyll-a (Chl-a) concentration serves as a key

bioindicator of phytoplankton biomass and marine productivity,

making it crucial for monitoring the health of marine ecosystems.

The Arabian Sea (AS) and Persian Gulf (PG) is recogonized as one

of the most productive regions in the world (Sathyendranath et al.,

1996). Understanding Chl-a variability and trends over the AS and

PG (ASPG) is crucial for predicting marine ecosystem health,

managing fisheries sustainably, and providing early warnings for

harmful algal blooms. Satellite remote sensing has proven to be an

effective tool for examining the spatiotemporal dynamics of Chl-a

in the ASPG (Goes et al., 2005; Prakash et al., 2012; Moradi, 2020;

Sarma et al., 2012; Jayaram et al., 2018; Moradi and Moradi, 2020;

Bordbar et al., 2024), thanks to its broad coverage and real-time

observation capabilities.

Previous research in these areas has revealed distinct seasonal and

interannual patterns in Chl-a variability, which are often associated

with factors such as sea surface temperatures (SST), monsoonal

winds, upwelling events, and large-scale climate phenomena like

the Indian Ocean Dipole and El Niño (Jayaram et al., 2018; Nezlin

et al., 2007; Sarma et al., 2012; Seelanki et al., 2022). Furthermore,

some studies have reported trends in Chl-a that either increase or

decrease over different time periods, typically related to changes in

SST, monsoonal winds, and sea level anomalies (Prakash et al., 2012;

Goes et al., 2005; Prasanna Kumar et al., 2010). However, many of

these studies in the ASPG region have been limited by their relatively

short time frames or their focus on specific regional areas, which may

restrict the generalizability of their findings. Expanding research to

cover longer time periods and broader regions could provide a more

comprehensive understanding of Chl-a variability and its underlying

drivers. Additionally, it has been observed that satellite-derived

products in the ASPG are often affected by suboptimal conditions,

such as sun-glint and cloud cover. These factors can lead to gaps in

the satellite-derived geographical data, which may result in

incomplete information for subsequent analyses.

Data Interpolating Empirical Orthogonal Function (DINEOF)

has emerged as a powerful method for reconstructing missing

geophysical data, such as SST and Chl-a. Compared to traditional

methods like linear interpolation and optimal interpolation, DINEOF

offers significant advantages, including faster computation,

parameter-free processing, and the ability to handle multiple

correlated data types without prior de-correlation scales (Miles and

He, 2010). These attributes make DINEOF particularly suitable for

oceanographic applications where satellite observations are often

hindered by clouds, sun-glint, and aerosols, leading to data gaps.

Despite alternatives like machine learning showing promise, it often

requires extensive in-situ data for training, which limits their

scalability, particularly in regions like the ASPG. DINEOF has

demonstrated success in various marine environments worldwide,

including the South Atlantic Bight, the coastal Gulf of Alaska, the

Gulf of Maine, the Gulf of Mexico, as well as the Sargasso Sea, and is

currently employed in global ocean color products by NOAA (Li and

He, 2014; Shropshire et al., 2016; Liu and Wang, 2018). However, in

the ASPG region, the application of DINEOF is still underexplored,

with issues such as limited studies on its efficacy and its primary focus
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on Chl-a reconstruction (Jayaram et al., 2018), highlighting the need

for further research to assess its potential in filling satellite-derived

data gaps across different oceanographic parameters.

This study has two primary objectives: (1) to investigate long-

term trends and associated spatiotemporal variability in Chl-a from

2001 to 2019 across the ASPG, and (2) to assess the influence of SST

and wind on Chl-a variability and trends. To achieve these goals,

DINEOF was employed to reconstruct missing MODIS-Terra Chl-a

and SST data over the study period. Subsequently, we investigated

the monthly Chl-a variability and conducted a trend analysis across

the entire ASPG. Additionally, we investigated the correlation

between Chl-a anomalies (Chl-a_A) and SST anomalies (SST_A),

as well as between Chl-a_A and wind anomalies (wind_A),

providing deeper insights into the environmental drivers of

marine productivity in the ASPG.
2 Data and methods

2.1 Study area and its subregions

The AS and PG, both located in the northwestern Indian Ocean

(Figure 1), exhibit distinct oceanic and atmospheric processes that

are critical for regional climate regulation and marine productivity.

The AS, spanning 5°N to 25°N and 55°E to 77°E, is characterized by

monsoon-driven ocean dynamics, influenced by the seasonal

reversal of monsoon winds and the region’s unique geography.

These winds generate variations in mixed layer depth, thermocline

shifts, and nutrient upwelling, particularly along the coasts of

Somalia and Oman during the Southwestern Monsoon, resulting

in high phytoplankton biomass and biological productivity (Goes

et al., 2005; Khan et al., 2023; Wiggert et al., 2005; Prasanna Kumar

et al., 2010). Additional factors influencing biological activity

include wind mixing, Ekman pumping, mesoscale eddies, and

large-scale climate events like the Indian Ocean Dipole (IOD) and

El Niño, which impact both phytoplankton blooms and surface
FIGURE 1

A bathymetry map of the ASPG region, showing the distribution of
21 stations across seven zones. Each station, represented by a filled
triangle, is assigned to a specific zone. Z1 through Z7 represent
zones 1 to 7, respectively, while S1, S2, and S3 represent stations 1,
2, and 3 within each zone. The yellow unfilled circles indicate the
stations selected for calculating the upwelling index.
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biomass distribution (Seelanki et al., 2022; Keerthi et al., 2013;

Shafeeque et al., 2021). In contrast, the PG, situated between 24°N

and 30°N and 48°E to 57°E, is a shallow, semi-enclosed sea marked

by extreme salinity, temperatures, and limited water exchange.

Despite these harsh conditions, it sustains a productive

ecosystem, influenced by seasonal wind stress, tidal turbulence,

and human activities such as coastal development and pollution

(Swift and Bower, 2003; Moradi and Moradi, 2020; Khan et al.,

2019). Understanding the differing productivity patterns of the

ASPG is vital for assessing long-term environmental changes and

the broader impact of climate change on these ecosystems.

The study area was divided into seven zones, each containing

three stations strategically positioned based on geographical and

oceanographic significance (Figure 1). Zone 1, along the Pakistan

coastline, is crucial for its upwelling, supporting rich fisheries in the

northern AS. Zone 2, along the Indian coast, is influenced by

monsoons driving nutrient inflow and boosting productivity.

Zone 3, near Oman, is shaped by Arabian coastal currents, while

Zone 4, along southern India, is affected by monsoon-driven

currents impacting nutrient dynamics. Zone 5, off Yemen,

benefits from upwelling, supporting marine biodiversity. Zone 6,

in the equatorial region, experiences equatorial currents and

upwelling influencing Chl-a variability. Zone 7, the PG, is notable

for its unique hydrological conditions and proximity to oil-

producing nations. This division enabled a region-specific analysis

of the factors driving Chl-a dynamics, offering insights into how

geographic and climatic factors influence marine productivity

across the ASPG.
2.2 Satellite data and preprocessing

The monthly composite Level-3 MODIS-Terra (hereafter

referred to as MODIS) Chl-a and SST data, with a 4 km spatial

resolution for 2001–2019, were obtained from NASA’s Ocean

Biology Processing Group (https://oceancolor.gsfc.nasa.gov/).

MODIS-Terra data were selected over MODIS-Aqua due to their

longer temporal coverage. A comparison of the accuracy between

MODIS-Terra and MODIS-Aqua data was conducted in our

subsequent research, revealing consistent seasonal variability and

trends in Chl-a across the ASPG, thus confirming the reliability of

MODIS-Terra for this study.

Due to factors such as cloud cover, sun glint, and other

atmospheric issues, the ASPG region experiences significant gaps

in the data, particularly during the summer monsoon season. For

instance, a previous study reported that the missing data rate for

MODIS-Aqua daily Chl-a between 2020 and 2021 fluctuated

significantly in the northern AS, with an overall rate ranging

from 65% to 100% (Yan et al., 2023). These data gaps can result

in the loss of important local information. Therefore, it is essential

to reconstruct missing Chl-a and SST data. In this study, the

DINEOF method was employed to fill in the missing data over

the ASPG (Section 2.4 below). Before reconstruction, all Chl-a and

SST data were filtered, and images with more than 95% cloud

coverage were discarded to maintain accuracy. Additionally, Chl-a
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data were log-transformed before reconstruction to meet DINEOF’s

assumption of normality, given the wide range of Chl-a values.

Once the data were reconstructed, the MODIS Chl-a and SST

values at each station were obtained by averaging values from a 3 ×

3 window centered on the station’s location. To eliminate the

seasonal cycle influence, the long-term monthly mean for each

month across all years was subtracted from the corresponding

monthly time series. This process generated monthly anomalies

of Chl-a and SST for each station, which were then used to compute

Chl-a_A and SST_A trends over the entire study period.

Furthermore, correlation statistics were calculated for the time

series of Chl-a_A and SST_A at each station to quantitatively

analyze the relationship between these anomalies.
2.3 Reanalysis data and preprocessing

From 2001 to 2019, weekly wind data at a spatial resolution of

0.12° × 0.12° and a height of 10 meters above the surface were

obtained from the European Centre for Medium-Range Weather

Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). To

represent monthly climatological patterns, these weekly wind data

were averaged for each of the 12 months, spanning from January

2001 to December 2019. ERA-Interim is a global atmospheric

reanalysis product that combines model-based predictions with

observations from various sources to provide a consistent,

comprehensive estimate of numerous atmospheric and oceanic

parameters. Furthermore, the wind data were used to compute

the Ekman transport components for each month during the study

period, based on the formulas provided by Kok et al. (2017) in

Equations 1, 2.

ETx =
rairc(u2 + v2)1=2v

rwaterf
(1)

ETy =
rairc(u2 + v2)1=2v

rwaterf
(2)

where u corresponds to the wind coming from the west (with

positive values indicating eastward wind) and v corresponds to the

wind coming from the south (with positive values indicating

northward wind). The parameter rair represents the density of air,

valued at 1.22 kg m-3, while rwater represents the density of water,

valued at 1025 kg m-3. Additionally, c is the drag coefficient, and f is

the Coriolis parameter. The calculated components of Ekman

transport, ETx and ETy, were used to generate monthly plots of

Ekman transport, providing a visual representation of its variability

over time.

The analysis of Ekman transport is critical for understanding

upwelling processes. This involves decomposing the movement of

water masses into perpendicular components to calculate the

Coastal Upwelling Index (CUI). Specifically, a “coast angle” is

formed between a northward vector and the landward side of the

shoreline, which is determined through geometric measurements at

each coastal station. Using geometric tools, these angles are
frontiersin.org
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measured and incorporated into the computation of the CUI.

Specifically, q represents the angle perpendicular to the

oceanward unit vector relative to the mean shoreline location.

The CUI quantifies coastal upwelling by factoring in the strength

and direction of Ekman transport in relation to the coastline. In this

study, the study area is divided into eight stations (as shown in

Figure 1) to assess the upwelling intensity across the region. The

effective angles of the coastline are calculated by averaging the

angles of arbitrary coastal lines with respect to the equator at each of

the eight coastal stations. The formulas used for CUI calculation is

provided in Equations 3 (Kok et al., 2017).

UI = − sin j −
p
2

� �� �
ETy + cos(j −

p
2
)ETx) (3)

where f represents the angle between the coastline and the

equator. According to the definition of CUI, a positive CUI

indicates regions where upwelling conditions are favorable, while

a negative CUI suggests that upwelling is unfavorable.
2.4 DINEOF reconstruction

DINEOF was employed to reconstruct missing data in the

MODIS Chl-a and SST datasets over the ASPG from 2001 to

2019. We utilized the DINEOF 3.0 package (Alvera-Azcárate

et al., 2005; Beckers and Rixen, 2003), available for download

from the GeoHydrodynamics and Environment Research (GHER)

website. The reconstruction process followed these key steps:
Fron
1. Each dataset was organized into a 3Dmatrix (y × x × t), where

y and x represent the latitude and longitude dimensions of

each image, and t is the total number of images, ensuring that

y×x> t. For Chl-a data, the natural logarithm was applied to

prevent negative values during reconstruction, while raw SST

data were used without transformation.

2. The mean value across both spatial and temporal

dimensions was subtracted from the matrix, and missing

data points were initialized to zero to minimize bias in the

initial guess.

3. Iterative singular value decomposition (SVD) (Toumazou

and Cretaux, 2001) and cross-validation using 3% of

randomly selected valid data were employed to identify

the optimal empirical orthogonal function (EOF) modes.

4. The optimal EOF modes were then used to reconstruct the

entire dataset. For further details on the DINEOF

methodology, see Alvera-Azcárate et al. (2005) and

Beckers and Rixen (2003).
To verify the accuracy of the DINEOF reconstruction, we

randomly selected 1% of the valid pixels from the original Chl-a

and SST datasets, treating them as “missing values” (Yang et al.,

2021). The remaining valid pixels were left unchanged to ensure

that only invalid pixels were involved in the reconstruction process.

After performing the DINEOF method, the reconstructed values for

the 1% of randomly selected pixels were compared with their

original values to evaluate the accuracy of the reconstruction.
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2.5 Trend calculation

The Mann-Kendall test and Sen’s slope trend analysis are widely

employed to assess the magnitude and significance of trends in Chl-a

and SST using long-term satellite-derived datasets. The Mann-Kendall

test is a non-parametric statistical method used to identify trends in

time series data and is based on the variance of the data (Solidoro et al.,

2009). Sen’s slope (Sen, 1968), another non-parametric method,

estimates the magnitude of monotonic trends over time and detects

their presence at a chosen significance level. Non-parametric tests, such

as these, offer higher statistical power when dealing with non-normally

distributed data, which is often the case for Chl-a, and are resistant to

the influence of outliers. In this study, a significance level of 95% was

used to determine trend significance. Both the Mann-Kendall test and

Sen’s slope were calculated using MATLAB.

To further investigate relationships among Chl-a_A, SST_A,

and Wind_A, Pearson’s correlation coefficients (r) were calculated,

and their significance was tested using Student’s t-test at a 5%

significance level (p < 0.05). Regression analyses were also

conducted for each variable pair, with statistical performance

evaluated through slope, coefficient of determination (R²), bias,

and root mean square error (RMSE).
3 Results

3.1 DINEOF reconstruction and validation
for Chl-a and SST

MODIS monthly log-transformed Chl-a and linear SST data from

2001 to 2019 were reconstructed using the DINEOF technique. The

reconstruction statistics are presented in Table 1, where the missing

data rates for Chl-a and SST are 24.67% and 1.26%, respectively. This

highlights the critical role of DINEOF in reconstructing Chl-a data,

which has a significantly higher missing data rate. Additionally, the

means of the input and output data for both Chl-a (-0.42 for input and

-0.428 for output) and SST (27.27 for both input and output) are

almost identical. Similarly, the standard deviations for input and output

data are very close for both Chl-a (0.41 for input and 0.405 for output)

and SST (1.96 for input and 1.958 for output). These similarities

indicate that the distribution of the reconstructed Chl-a and SST data
TABLE 1 Statistics of the DINEOF computations.

Log (Chl-a) SST

Dimensions
(latitude×longitude×time)

480×600×228 480×600×228

Missing data 24.67% 1.26%

Number of cross-validation points 373975 373975

Mean (input data) -0.42 27.27

Standard deviation (input data) 0.41 1.96

Mean (output data) -0.428 27.27

Standard deviation (output data) 0.405 1.958
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closely matches that of the original data, suggesting a high accuracy of

the reconstruction.

To evaluate the quality of the reconstructed data, we selected

one image of the reconstructed Chl-a from August and one image of

the reconstructed SST from June for comparison with the original

SST and Chl-a images (see Figure 2). The original images exhibited

numerous spatial gaps, particularly in the Chl-a data. In contrast,

the reconstructed images were more continuous and displayed a

more coherent spatial distribution.

We further conducted a cross-validation of the reconstructed

Chl-a and SST data using the method described earlier. The results

of the comparison between the reconstructed and original Chl-a/

SST data are presented in the density plots shown in Figure 3. Both

reconstructions showed strong correlations with the original data,

as evidenced by favorable metrics: slope (0.86 for Chl-a, 0.95 for

SST), R² (0.84 for Chl-a, 0.96 for SST), bias (0.002 for Chl-a, 0.04 for

SST), and RMSE (0.16 for Chl-a, 1.52 for SST). Additionally, the

density plots, which represent the number of data points within

each 4 km × 4 km grid bin, show an increasing trend towards the 1:1

line. This suggests that the data reconstructed using the DINEOF

method are both accurate and reliable.
3.2 Monthly climatology of Chl-a in
the ASPG

Based on the reconstructed data, the interannual monthly

climatology of Chl-a from 2001 to 2019 was generated.
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Hovmöller diagram (Figure 4) displays monthly Chl-a time series

along latitudinal sections at 17°N, 21°N, and 25°N, as well as

longitudinal sections at 61°E, 64°E, and 67°E. The interannual

variability of Chl-a across both latitudinal and longitudinal

gradients is further detailed in the Supplementary Materials

(Supplementary Figures 1, 2). This study focuses on the monthly

variability of Chl-a, with all plots in Figure 4 consistently capturing

the well-established seasonal cycle in the ASPG. Chl-a

concentrations peak during summer, with a secondary peak in

winter, and reach their lowest levels during the transitional months.

Spatially, the highest concentrations are observed near the western

and northern coastlines. This seasonal cycle is driven primarily by

the SW monsoon during summer and the NE monsoon in winter.

Along the latitudinal sections, chlorophyll-a (Chl-a) exhibited

two annual peaks: a major peak in summer and a minor peak in

winter (Figure 4). At 17°N, which is closer to the equator, Chl-a

concentrations remain consistently lower throughout the year.

Nevertheless, two distinct peaks are observed, one in summer

(August and September) and the other in winter (February and

March). As latitude increases to 21°N, Chl-a concentrations rise

significantly during both seasons, with the summer peak occurring

between July and September and the winter peak between February

and March. Further north at 25°N, a coastal region forming the

northern boundary of the AS, Chl-a levels remain high and

productive throughout most of the year, with pronounced peaks

during the summer (August to October) and winter (February to

March). Additionally, Chl-a concentrations increase gradually with
FIGURE 2

MODIS Chl-a in August and MODIS SST in June: (A, C) original cloudy data, and (B, D) data reconstructed using the DINEOF method.
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FIGURE 3

Density plots: (A) log(Chl-a) (reconstructed) vs Chl-a (original) and (B) SST (reconstructed) vs SST (original). The black solid lines are the 1:1 line.
FIGURE 4

A Hovmöller diagram illustrating the monthly variability of reconstructed MODIS Chl-a from January to December at 17°N, 21°N, and 25°N, as well as
at 61°E, 64°E, and 67°E.
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longitude. Overall, the AS is heavily influenced by monsoonal

dynamics, impacting both coastal regions and open ocean waters.

Similarly, along the longitudinal sections, Chl-a exhibited two

seasonal peaks, with the exception of the northeastern region

(Figure 4). At 61°E, closer to the western coast, Chl-a levels

remain consistently higher throughout the year, particularly in

the northern regions. Two seasonal peaks are apparent, occurring

during summer (July to September) and winter (February to

March). At 64°E, while the temporal and spatial patterns of Chl-a

are similar, the overall concentration is slightly lower. Moving

further east to 67°E, distinct spatial and temporal distribution

patterns emerge. Specifically, between 21°N and 23°N, Chl-a

exhibits two peaks in summer (August) and winter (February),

while between 23°N and 24°N, Chl-a increases markedly and

remains elevated throughout the year. These spatial variations

highlight the complex interplay between monsoonal forces and

the unique oceanographic characteristics of different regions within

the AS.
3.3 Long-term trends of Chl-a associated
with SST and wind

To analyze long-term trends in Chl-a and SST, the interannual

monthly anomaly data were used to compute Sen’s slope for each

pixel, where positive and negative values indicate increasing and

decreasing trends, respectively, and a value of zero denotes no trend.

The statistical significance of Sen’s slope was assessed using the

Mann-Kendall (MK) test, with results coded as 1 for significant

trends and 0 for non-significant trends. Non-significant Sen’s slope

values were masked, indicated by white areas. The spatial
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distributions of Sen’s slope, along with the MK test results for

Chl-a_A and SST_A, are illustrated in Figures 5A, B, respectively.

The Sen’s slope values for Chl-a_A with statistically significant

MK-test results were primarily concentrated in the coastal areas of

the ASPG. Most values were negative across the entire ASPG,

indicating a declining trend in Chl-a levels. In the AS, the lowest

Sen’s slope values were observed along the Arabian coasts, gradually

increasing towards open sea waters, with some positive values in the

southeastern region. In contrast, in the PG, Sen’s slope values

increased from the northern to the southern coasts. For SST_A,

Sen’s slope values with significant MK-test results were widespread

across the ASPG, with all values being positive, reflecting a rising

trend in SST. In the AS, larger Sen’s slope values were observed

along the Arabian coasts, decreasing towards open sea waters. In the

PG, the highest Sen’s slope values were found in the northwestern

region, diminishing towards the southern part of the gulf. The

detailed statistical summaries of Sen’s slope values for both Chl-a_A

and SST_A are presented in the Supplementary Materials

(Supplementary Table 1).

For the 21 selected stations shown in Figure 1, significant Sen’s

slope values were identified at only four stations: Z3-S1 (open sea

waters near the Oman coast), Z5-S2 (open sea waters near the

Yemen coast), Z5-S3 (coastal waters near the Oman coast), and Z7-

S2 (southern PG). The Sen’s slope values for these stations are

detailed in the Supplementary Materials (Supplementary Table 2).

Additionally, Sen’s slope values for SST_A and Wind anomalies

(Wind_A) were calculated for these stations, as they are two key

factors influencing Chl-a variability. The calculation of Wind_A

followed the same methodology used for Chl-a_A and SST_A. As

shown in Supplementary Table S2, all four stations exhibited a

decreasing trend in Chl-a_A. The trends for SST_A were
FIGURE 5

Spatial distributions of Sen’s slopes and MK-test results for (A) Chl-a_A and (B) SST_A over the ASPG from 2001 to 2019, along with the spatial
distributions of r values between (C) Chl-a_A and SST_A, as well as (D) Chl-a and Wind_A over the same period.
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significantly positive at Z3-S1, Z5-S2, and Z5-S3, but there was no

significant trend at Z7-S2. For Wind_A, significant positive trends

were observed at Z5-S2 and Z7-S2, while no significant trends were

found at Z3-S1 and Z5-S3. These results highlight the complex

interplay between Chl-a, SST, and wind patterns across different

regions of the ASPG.

To assess the impact of SST and wind on the long-term trends

of Chl-a, correlation coefficients (r) between Chl-a_A and SST_A,

as well as Chl-a_A and Wind_A, were calculated for each pixel

(Figures 5C, D). The r values between Chl-a_A and SST_A were

predominantly negative across the ASPG, indicating an inverse

relationship between these variables, with a few positive values in

the southern PG suggesting localized positive correlations.

Additionally, the majority of these correlations were statistically

significant throughout the ASPG. In contrast, the r values between

Chl-a_A and Wind_A were mostly positive in the AS, signifying a

positive correlation, while in the PG, the r values were generally

negative. Significant correlations between Chl-a_A and Wind_A

were primarily observed along the Oman coast, northeastern

Arabian coast, and western Indian coast in the AS, as well as in

the southern PG. The detailed statistical summaries of r values

between Chl-a_A and SST_A, as well as Chl-a_A and Wind_A are

presented in the Supplementary Materials (Supplementary Table 3).

Since significant trends in Chl-a_A were only detected at four

stations—Z3-S1, Z5-S2, Z5-S3, and Z7-S2—the time series of Chl-

a_A, SST_A, and Wind_A were extracted for these locations to

further examine temporal variability and the correlations between

Chl-a_A and SST_A, as well as Chl-a_A and Wind_A. A detailed

statistical summary of these correlations, covering the entire study

period, the southwestern monsoons, the northeastern monsoons, and

the transitional months (pre- and post-southwestern monsoons), is

presented in Table 2. At Z3-S1, no significant correlations between

Chl-a_A and either SST_A or Wind_A were observed for any time

frame. At Z5-S2, two significant correlations were found between

Chl-a_A and Wind_A: one positive correlation for the entire study

period and the other positive correlation during the northeastern

monsoons. At Z5-S3, three significant correlations were identified

between Chl-a_A and SST_A—one for the entire study period, one

for the northeastern monsoons, and another during the transitional

months. At Z7-S2, two significant correlations emerged between Chl-

a_A and Wind_A: one for the entire study period and the other

during the southwestern monsoons. These results underscore the

regional differences in the relationships between Chl-a_A and SST_A,

as well as Chl-a_A and Wind_A.

The time series of Chl-a_A, SST_A, and Wind_A at four stations

(Z3-S1, Z5-S2, Z5-S3, and Z7-S2) are presented in Figure 6. The

coefficient of variation (CV) was used to quantify variability, revealing

the highest Chl-a_A variation at Z5-S3 (6.50E+16), followed by Z5-S2

(-1.77E+16), Z3-S1 (-1.47E+16), and Z7-S2 (-3.49E+15). SST_A

variation was highest at Z5-S3 (-4.24E+15), followed by Z3-S1

(-2.54E+15), Z7-S2 (-1.34E+15), and Z5-S2 (1.04E+15). Wind_A

exhibited the most variation at Z3-S1 (6246.99), followed by Z7-S2

(152.20), Z5-S2 (-93.41), and Z5-S3 (-93.41). Due to the low spatial

resolution of wind data, Z5-S2 and Z5-S3 shared the same dataset.

Large Chl-a_A outliers were observed at Z3-S1 (e.g., August 2003,

February 2017), Z5-S2 (e.g., September 2001, February 2008), and Z5-
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S3 (e.g., August 2002, 2009, 2017). Although not fully explored, some

anomalies were linked to specific oceanographic events. For example,

the high Chl-a_A value in August 2003 coincided with a cold-core eddy

near the Somali coast, which likely contributed to elevated Chl-a_A

concentrations during this period (Prakash et al., 2012). These findings

highlight the complex dynamics influencing Chl-a_A variability.
4 Discussion

4.1 Advantages of using the DINEOF to fill
in the data gaps

In this study, the DINEOF method was employed to reconstruct

MODIS datasets of Chl-a and SST over the ASPG from 2001 to 2019.

The primary source of missing data in the original datasets was adverse
TABLE 2 Statistical summary of the significance of r values between
Chl-a_A and SST_A, as well as Chl-a_A and Wind_A, at the four stations
for the entire study period, southwestern monsoon seasons,
northeastern monsoon seasons, and transitional months from 2001
to 2019.

Stations
Chl-a_A
VS SST_A

Chl-a_A
VS Wind_A Time period

Z3-S1 0 0 All months

0 0
Southwestern
monsoons

0 0
Northeastern
monsoons

0 0
Transitional
months

Z5-S2 0 1+ All months

0 0
Southwestern
monsoons

0 1+
Northeastern
monsoons

0 0
Transitional
months

Z5-S3 1- 0 All months

0 0
Southwestern
monsoons

1- 0
Northeastern
monsoons

1- 0
Transitional
months

Z7-S2 0 1- All months

0 1-
Southwestern
monsoons

0 0
Northeastern
monsoons

0 0
Transitional
months
A value of 1 indicates a significant correlation, while 0 denotes no significance. The symbols
“+” and “–” represent positive and negative correlations, respectively.
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weather conditions, such as cloud cover and rainfall. Specifically,

24.67% of the Chl-a data and 1.26% of the SST data were missing, as

shown in Table 1. The relatively high percentage of missing Chl-a data

underscores the significance of applying DINEOF for accurate

reconstruction in this region. The comparison between the original

and reconstructed datasets demonstrated that the mean and standard

deviation values were closely aligned (Table 1), confirming the

precision and reliability of the DINEOF reconstruction. Additionally,

visual comparisons of the original and reconstructed Chl-a and SST

data for specific dates, illustrated in Figures 2, 3, reveal smooth and

plausible patterns in the reconstructed outputs. Further validation,

through cross-correlation analysis (Figure 4), shows strong agreement

between the reconstructed and original datasets for both Chl-a and

SST, reinforcing the robustness of the reconstruction method. In future

research, we aim to integrate field observations to further enhance the

validation of our reconstructed data.

To the best of our knowledge, only a limited number of studies

have utilized the DINEOF method to reconstruct satellite-derived Chl-

a datasets in specific regions like the AS or PG. Even fewer have applied

DINEOF to simultaneously reconstruct both Chl-a and SST datasets

over the entire ASPG. For instance, Jayaram et al. (2018) employed

DINEOF to reconstruct MODIS-Aqua Chl-a data over the AS for the

period 2002–2015. This study primarily investigated the seasonal and

interannual variability of Chl-a, highlighting the method’s utility in

regions with frequent data gaps due to cloud cover. Similarly, Huang

et al. (2022) used DINEOF to reconstruct Chl-a datasets from the

Ocean Colour Climate Change Initiative (OC-CCI) by the European

Space Agency (ESA) over the AS from 1998 to 2017. In contrast, Khan

et al. (2019) and Khan et al. (2022) extended the application of

DINEOF by reconstructing both MODIS-Terra monthly Chl-a and

SST datasets from 2001 to 2017. Their studies analyzed the seasonal

variability and explored the correlations between Chl-a and SST over

the entire study area. However, while they provided valuable insights

into the seasonal dynamics of Chl-a and SST, their work did not

examine the long-term trends in Chl-a.

In light of these gaps, the present study offers a more

comprehensive approach by not only reconstructing both Chl-a and

SST datasets using DINEOF but also performing an in-depth analysis

of the spatio-temporal variability and long-term trends of Chl-a across

the entire ASPG from 2001 to 2019. This extended temporal range

allows us to assess the potential impacts of climate variability and

oceanographic changes on Chl-a dynamics in the region. Additionally,

by reconstructing both Chl-a and SST, we are able to investigate their

interactions and correlations over time, providing a more holistic view

of the region’s marine ecosystem dynamics. Our study contributes to

the broader field of oceanography by demonstrating the effectiveness of

DINEOF in reconstructing multi-variable datasets and its potential

application in other regions where satellite data is frequently

compromised by missing observations.
4.2 Impact of SST and wind on the
spatiotemporal variability of Chl-a

The seasonal variability of Chl-a, as revealed in Figure 4, aligns

with findings from previous studies (Lévy et al., 2007; Sarma et al.,
Frontiers in Marine Science 09
2012; Piontkovski et al., 2013; Jayaram et al., 2018; Khan et al.,

2022), where monsoon-driven wind reversals were identified as the

main drivers of phytoplankton blooms. These wind shifts

significantly impact mixed-layer dynamics and promote

upwelling, bringing nutrient-rich waters from the deeper ocean to

the surface, which fuels phytoplankton growth during both the SW

and NE monsoon seasons (Goes et al., 2005; Jayaram et al., 2018).

This is further supported by the monthly climatology of wind

patterns from 2001 to 2019 (Figure 7), which reveals stronger

southwestern winds during the SW monsoon and weaker

northeastern winds during the NE monsoon, with the weakest

winds observed during the transitional periods.

Ekman transport, derived from wind data, exhibits distinct

seasonal variability across the ASPG, as illustrated in the

Supplementary Materials (Supplementary Figure 3). In the AS, it

peaks during the summer monsoon, driving surface water offshore

and promoting upwelling, with a maximum value of approximately

2 m³ s-1 m-1 in July. In winter, the transport shifts southeast,

resulting in downwelling. In contrast, Ekman transport in the PG

remains minimal throughout the year, with the highest values

observed in June, directed northeast.

To further investigate upwelling dynamics, an upwelling index

was calculated using wind vectors at eight coastal stations

(Figure 1). These coastal stations were strategically selected for

their proximity to known upwelling regions, such as Kochi, Duqm,

and Qishn, which are significantly influenced by seasonal

monsoonal winds. Additional stations were chosen based on their

alignment with nearshore data points within each zone to ensure

comprehensive coverage. Spanning a wide latitudinal range across

the ASPG, these stations provide a thorough spatial representation

of upwelling zones. This selection forms a robust foundation for

analyzing upwelling dynamics and their influence on regional Chl-

a variability.

The time series of the monthly upwelling indices (Figure 8)

reveals that upwelling was most pronounced along the western and

southeastern coasts of the AS (Duqam, Qishn, Kochi), followed by

the northern PG (Bandar Bushehr) and northeastern AS (Karachi)

during the SW monsoon. Higher Chl-a concentrations in the

western and northern AS (Figure 4) suggest that upwelling is a

key driver of Chl-a variability in these regions during the SW

monsoon. Notably, the monthly Chl-a data for the southeastern AS

and northern PG are not depicted in Figure 4. However, a prior

study by Khan et al. (2019) reported elevated Chl-a levels in the

southeastern AS during the SWmonsoon, whereas the northern PG

did not exhibit similar increases during this period; instead, higher

Chl-a concentrations were noted during the NW monsoon. This

discrepancy suggests that the effects of upwelling on Chl-a

variability differ between the AS and PG.

We also observed that the timing of Chl-a peaks varies across

different regions of the AS (Figure 4). A previous study by Jayaram

et al. (2018) reported that the northern AS was more productive

during the winter monsoon, while the southern coastal regions were

less productive, and vice versa. Our findings refine this observation,

indicating that the southwestern AS is more productive during the

summer monsoon, with reduced productivity in the northern

coastal regions, except for the northeastern area. Their study also
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identified intra-seasonal variability, with a primary productivity

peak during the onset phase of the summer monsoon and a

secondary peak during the withdrawal phase in the northern AS,

in addition to a single dominant peak during the winter monsoon,

based on Wavelet analysis. In contrast, our results show that the

timing of Chl-a peaks varies across regions in both summer and

winter in the northern AS. This regional variability aligns with the

findings of Lévy et al. (2007), who similarly reported that the timing

of peak productivity differs between regions within the northern AS,

due to differences in local physical and oceanographic processes.

These variations highlight the intricate relationship between large-

scale monsoon patterns and local environmental conditions,

showing that a detailed, region-specific analysis is essential for a

complete understanding of Chl-a variability in this area.

Additionally, we examined the influence of SST on the

spatiotemporal variability of Chl-a in the ASPG in our previous
Frontiers in Marine Science 10
research. Khan et al. (2019) applied the DINEOF method to

reconstruct monthly MODIS-Terra Chl-a and SST data from 2001

to 2017, revealing that the majority of the study area (96%) exhibited

a significantly negative correlation between SST and Chl-a. Only a

small portion (4%), including certain coastal areas, the PG, and parts

of the southeastern AS, showed a significant positive correlation. This

negative correlation is primarily driven by wind-induced upwelling,

where cooler, nutrient-rich water is brought to the surface, resulting

in higher Chl-a concentrations (Goes et al., 2005). Building on this, in

our recent study (Khan et al., 2022), we utilized the same

reconstructed MODIS-Terra Chl-a and SST datasets and found

that regions with elevated Chl-a were associated with lower SST

and strong Ekman transport, further validating the connection

between upwelling and the negative correlation between Chl-a and

SST. Our findings suggest that both SST and wind are key factors

influencing the seasonal variability of Chl-a in the ASPG, with
FIGURE 6

Time series of Chl-a_A and SST_A at four stations—(A) Z3-S1, (B) Z5-S2, (C) Z5-S3, and (D) Z7-S2—spanning the period from January 2001 to
December 2019 are shown. The blue and red lines represent the respective trendlines for Chl-a_A and SST_A. Similarly, time series of Chl-a_A and
Wind_A at the same four stations—(E) Z3-S1, (F) Z5-S2, (G) Z5-S3, and (H) Z7-S2—are presented for the same period, with blue and red lines
depicting the trendlines for Chl-a_A and Wind_A, respectively.
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FIGURE 8

Time series of monthly averaged coastal upwelling indices from 2001 to 2019 for (A) Duqm and Qishn stations along the western AS coast,
(B) Gawada and Karachi stations along the northern AS stations, (C) Mumbai and Kochi stations along the eastern AS stations, and (D) Bandar Busher
and Abu Dhabi stations along the PG coast. Error bars in each plot represent one standard deviation.
FIGURE 7

Monthly climatology of wind vectors over the ASPG from January to December (A–L). Vectors in all panels have the same scaling to allow for direct
comparison of wind intensity across different months. Quantitative values of wind speeds are also provided for reference.
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upwelling playing a critical role in regulating surface productivity in

response to local wind patterns.
4.3 Influence of SST_A and wind_A trends
on the Chl-a_A trend

Previous studies have revealed conflicting trends in Chl-a for

the AS. Goes et al. (2005) reported a more than 350% increase in

Chl-a off the Somali coast during the summer, attributed to the

strengthening of southwestern monsoon winds. In contrast,

Prasanna Kumar et al. (2010) observed a weak basin-wide

increasing trend in the monthly Chl-a during September-

October and the winter monsoon, but a decreasing trend during

the summer monsoon from 1997 to 2007. They linked the Chl-a

increase in September-October to dust-induced iron fertilization,

which enhanced productivity when sufficient nitrate accumulated

in the upper ocean. During winter, intensified evaporative cooling,

driven by stronger winds, promoted convective mixing and the

upward transport of nutrients from deeper layers, further

supported by increased dust deposition, which together

explained the Chl-a increase. Prakash et al. (2012) found an

increasing Chl-a trend from 1997 to 2003, similar to Goes et al.

(2005), but attributed it to a cold-core eddy in 2003, which

enhanced Chl-a. However, from 2004 to 2010, they observed a

decline in Chl-a off the Somali coast, suggesting that SLA, rather

than SST or wind, were likely the main drivers. These studies

highlight the spatial and temporal variability in Chl-a trends

across the AS. Given the significant seasonal-to-interannual

variability in this region, identifying long-term, climate-driven

trends requires an extended dataset of at least a decade or more

(McClain, 2009). Therefore, we used two decades of Chl-a data in

this study. We also found a decreasing trend in the western AS

(Figure 5A), consistent with Prakash et al. (2012).

Our results for the Persian Gulf align with previous studies, but

with some differences. Moradi (2020) reported a mostly decreasing

trend in annual Chl-a from 2002 to 2018 across the Persian Gulf,

except for small areas in the southern and central regions, while SST

showed an increasing trend throughout the Gulf, with the exception

of the Strait of Hormuz. In contrast, we found non-significant trends

in Chl-a in the central Persian Gulf and similarly non-significant

trends in SST in the Strait of Hormuz (Figure 5B). Bordbar et al.

(2024) observed an increasing SST trend in the entire Persian Gulf

from 2003 to 2021, which differs slightly from our findings. This

discrepancy could be attributed to differences in datasets or trend

calculation methods. Regarding the correlation between Chl-a and

SST, Bordbar et al. (2024) found an inverse relationship between SST

and Chl-a throughout the Gulf, except in the southern region, which

is consistent with our results (Figure 5C). Concerning surface winds,

the northwesterly Shamal wind, prevalent year-round in the Persian

Gulf (Perrone, 1979; Pous et al., 2013; Yu et al., 2016), has shown a

positive trend over the past decades (Aboobacker and Shanas, 2018),

consistent with the increasing wind trend observed at station Z7-S2

(Supplementary Table 2). Moreover, as Chl-a_A at Z7-S2 exhibited a
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decreasing trend (Supplementary Table 2), this led to a negative

correlation between Chl-a_A andWind_A at this station (Figure 5D).
5 Conclusion

In this study, we conducted a comprehensive analysis of the

spatiotemporal variability and long-term trends of Chl-a across the

ASPG using reconstructed MODIS monthly Chl-a and SST data from

2001 to 2019. The validation of the reconstructed dataset confirmed its

highaccuracyandreliability, ensuringtherobustnessofourfindings.Our

analysis revealed significant seasonal variability in Chl-a, with distinct

regional differences. Generally, a pronounced Chl-a peak occurred in

summer, followed by a secondary peak in winter, with the lowest levels

observed during the transitional months. Chl-a concentrations were

highest in the western and northeastern Arabian Sea. This seasonal

pattern is primarily driven by the SWmonsoon in summer and the NE

monsoon inwinter. Additionally, we observed regional variability in the

timingofChl-apeaksinbothsummerandwinter, likelyduetodifferences

in local physical and oceanographic processes, such as wind patterns,

vertical mixing, and nutrient availability.

Over the two decades from 2001 to 2019, Chl-a_A exhibited a

significant decreasing trend along the coasts of the ASPG, with only

small areas showing increasing trend in the southeastern AS and

southern PG. At the regional level, an analysis of 21 stations identified

significant Chl-a trends at four locations: Z3-S1, Z5-S2, and Z5-S3 in

the western AS, and Z7-S2 in the southern PG. Correlation analysis

revealed predominantly negative correlations between Chl-a_A and

SST_A in the western AS, while correlations between Chl-a_A and

Wind_Awere positive in the western AS and negative in the southern

PG. Significant correlations were found in specific cases: For Z5-S2,

we observed a significant positive correlation between Chl-a_A and

Wind_A throughout the study period and during the northeastern

monsoon. For Z5-S3, significant negative correlations between Chl-

a_A and SST_A were found over the entire study period, during the

northeastern monsoon, and the transitional monsoons. Similarly, Z7-

S2 exhibited significant negative correlations between Chl-a_A and

SST_A over the entire period and during the southwestern monsoon.

These three stations also displayed significant positive trends in both

SST_A and Wind_A.

This research advances our understanding of the complex

dynamics of marine ecosystems in the ASPG, shaped by both local

physical processes and broader climate variability. Future studies

should investigate additional factors, such as sea level anomalies

(SLA), wind stress curl (curlt), and the horizontal (u) and vertical (v)

components of wind vectors, and their influence on Chl-a trends, as

well as explore the underlying mechanisms driving these changes.

Such research will deepen our knowledge of marine productivity

trends in the ASPG and their broader ecological implications.
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