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Enhancing bathymetric
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data with deep learning
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Shaofeng Bian3, Zhengtao Wang4 and Aoyu Ma1

1College of Marine Science and Technology, Hubei Key Laboratory of Marine Geological Resources,
China University of Geosciences, Wuhan, China, 2Key Laboratory of Geological Survey and Evaluation
of Ministry of Education, China University of Geosciences, Wuhan, China, 3School of Electrical
Engineering, Naval University of Engineering, Wuhan, China, 4School of Geodesy and Geomatics, Key
Laboratory of Geospace Environment and Geodesy, Wuhan University, Wuhan, China
This study aims to enhance the spatial resolution and accuracy of bathymetric

prediction by integrating Gravity Anomaly (GA) and Vertical Gravity Gradient

Anomaly (VGG) data with a dual-channel Backpropagation Neural Network

(BPNN). The seafloor topography of the Izu-Ogasawara Trench in the Western

Pacific will be constructed and evaluated using depth models and single-beam

data. The BPNN improved the accuracy of seafloor topography prediction by

0.17% and 0.35% using the 1 arc-minute SIO and GEBCO depth models,

respectively, in areas without in-situ data. When single-beam data was utilized,

the BPNN improved prediction accuracy by 64.93%, 70.29%, and 68.78%

compared to the Gravity Geological Method (GGM), SIO v25.1, and GEBCO

2023, respectively. When single-beam, GA, and VGG data were all combined, the

root mean square error (RMSE) was reduced to 19.12 m, representing an

improvement of 60.92% and 61.13% compared to using only GA or VGG data,

respectively. Comparing bathymetric predictions at different depths, the BPNN

achieved a mean relative error (MRE) as low as 0.5%. Across various terrains—

such as trench areas, seamounts, and deep-sea plains—the accuracy of seafloor

topography predicted by the BPNN improved by 88.36%, 87.42%, and 84.39%

compared to GGM, SIO and GEBCO depth models, respectively. These findings

demonstrate that BPNN can integrate GA and VGG data to enhance both the

accuracy and spatial resolution of seafloor topography in regions with and

without in-situ data, and across various depths and terrains. This study

provides new data and methodological support for constructing high-precision

global seafloor topography.
KEYWORDS

seafloor topography, BPNN, gravity anomaly, vertical gravity gradient, Izu-Ogasawara
Trench, deep learning
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1 Introduction

Seafloor topography holds significant value in economic,

military, and scientific research. High-precision, high-resolution

mapping of the seafloor aids in drilling and extraction activities,

reducing risks and costs (Wegner and Campbell, 2014). It helps

identify fishing grounds and fish habitats (Sutton et al., 2008),

optimizing fisheries management and promoting sustainable

development (Lehodey and Grandperrin, 1996). Additionally, it

supports submarine navigation, undersea communication cable

laying, and the construction of underwater military facilities.

Understanding seafloor topography is crucial for clarifying

tectonic plate movements, volcanic activity, and seismic

mechanisms, revealing Earth’s history and evolutionary processes.

Moreover, it affects physical processes such as ocean circulation

(Noei et al., 2018), tides (Schorghofer, 2010), and waves, thereby

influencing global climate and weather patterns. Thus, high-

precision, high-resolution seafloor topography is vital for

understanding Earth’s evolution, global climate change, and the

structure and function of marine ecosystems, while also playing a

crucial role in economic development and national security.

The Earth’s oceans cover approximately 360 million square

kilometers, accounting for about 71% of the Earth’s surface.

Traditional seafloor mapping primarily relies on single-beam and

multi-beam sonar technologies. While these methods provide

precise measurements, they have limited coverage and are costly

(Smith, 2004). Additionally, the varying ocean depths—from

shallow to deep waters—and the complex and diverse

topographies increase the difficulty of measurements.

Consequently, obtaining high-resolution global seafloor

topography using traditional methods is challenging. With the

continuous advancement of satellite altimetry, the accuracy and

density of altimetric data have improved, prompting researchers to

explore altimetry-derived gravity inversion for seafloor topography

studies. Parker presented the first accurate theory for calculating

gravity anomalies due to seafloor topography using the Fast Fourier

Transform, which takes into account the non-linear effects of

topographic roughness (Parker, 1973). Watts analyzed the gravity

and bathymetry relationship for 14 profiles of the Emperor

Hawaiian Seamount chain using cross-spectral techniques to

obtain a derivative function between gravity and bathymetry

(Watts, 1978). Currently, traditional methods for gravity

inversion of seafloor topography include the Smith and Sandwell

method (Smith and Sandwell, 1994, 1997), least squares collocation

(Calmant, 1994; Fan et al., 2021; Tscherning, 1994),and the gravity-

geological method (GGM) (Hsiao et al., 2011; Kim et al., 2010;

Xiang et al., 2017).

Artificial intelligence (AI) technologies have emerged. AI’s

massive data processing algorithms have been widely applied in

fields such as seismology, geophysics, and geochemistry, achieving

significant results. Researchers have attempted to use AI for

altimetry-derived ocean gravity data inversion and to integrate

multi-source bathymetric data to construct global bathymetric

models. For example, Jena et al. used artificial neural networks to
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invert the bathymetry of the Arabian Sea, achieving depth inversion

accuracy better than 150m for 94% of the area and better than 50m

for 2% of the area (Jena et al., 2012). Yang et al. compared fully

connected deep neural networks and convolutional neural networks

with the GGM to determine if deep learning could provide better

seafloor topography predictions. They used short-wavelength

gravity and geological models as training parameters and

evaluated the performance of different models and parameter

combinations. The results indicated that the fully connected deep

neural networks method had the highest accuracy (Yang et al.,

2023). Zhang et al. applied machine learning techniques based on

the Smith and Sandwell method to establish new mathematical

relationships. The improved SAS method combined the Genetic

Algorithm-back propagation algorithm to invert the topography of

the Scarborough Seamount Chain in the South China Sea. The

results showed that the Genetic Algorithm-back propagation

algorithm method significantly reduced residuals and improved

the accuracy of the Smith and Sandwell method inversion method

(Zhang et al., 2024). Harper et al. designed and trained a neural

network using a dataset of 50 million depth measurements to

predict global bathymetry (Harper and Sandwell, 2024).

Many scholars believe that vertical gravity gradient (VGG)

contain more short-wavelength information about seafloor

topography, supporting the feasibility of using these anomalies to

predict bathymetry. Wang explored an alternative technique using

VGG, based on the observation that these anomalies primarily

originate from localized mass concentrations on the seafloor, with

negligible influence from the mass compensation of the oceanic

crust. This approach generates bathymetric predictions

independent of isostatic modeling assumptions, providing

constraints for lithospheric compensation models and other

geodetic and geophysical applications (Wang, 2000). Wan et al.

studied the sensitivity of gravity anomalies (GA) and VGG in

bathymetric inversion. Their results showed that VGG are more

sensitive to short-wavelength signals than gravity anomalies,

especially in the 0-20 km wavelength range (Wan et al., 2019).

Therefore, combining GA and VGG can improve seafloor

topography prediction.

A dual-channel Backpropagation neural network (BPNN) has

strong nonlinear mapping capabilities, effectively modeling various

geophysical transfer functions, such as the relationship between

gravity anomalies and bathymetry. BPNN can integrate GA and

VGG for depth inversion without mutual interference. Sun et al.

introduced dual-channel BPNN into bathymetric prediction,

proposing a method based on GA and VGG for depth estimation.

By comparing neural networks with gravity-geological methods, they

found that the neural network approach offered higher accuracy,

confirming the feasibility and effectiveness of the BPNNmethod (Sun

et al., 2022). Most of these studies focus on areas with dense ship-

measured bathymetric data. This paper addresses how to improve the

accuracy of seafloor topography in regions lacking such data.

The Izu-Ogasawara Trench (26°N–34°N, 140°E–148°E) is

located in the western Pacific Ocean, connecting to the Japan

Trench in the north and the Mariana Trench in the south
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(Figure 1). This region features complex and rapidly changing

topography, including abyssal plains, seamounts, and trenches,

with depths reaching up to 9,780 meters. It provides an ideal

setting to evaluate the performance of neural network models for

bathymetric inversion under various depth and terrain conditions.

This study uses the BPNN to integrate GA and VGG for

predicting the seafloor topography of the Izu-Ogasawara Trench.

The performance of this method in bathymetric inversion is

evaluated through the following: 1) To evaluate the performance

of the model in inverting seafloor topography by using bathymetric

models with different spatial resolutions and single-beam data; 2)

To verify the effectiveness of gravity data integration, three input

data scenarios are designed: GA, VGG, and combined GA and

VGG; 3) To assess the adaptability of the model, its performance in

predicting bathymetry is compared with the GGM and other

bathymetric models under various depth and terrain conditions.
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2 Data and methods

2.1 Data

The data used in this study includes:
1. GA and VGG are the 1 arc-minute resolution data from

version 32.1, downloaded from the Scripps Institution of

Oceanography website (SIO, https://topex.ucsd.edu/pub/);

2. Single-Beam Bathymetric Data are obtained from the

National Centers for Environmental Information (https://

www.ncei.noaa.gov/maps/iho_dcdb/), comprising 269,869

single-beam bathymetric points;

3. Bathymetric Models are SIO v25.1 (https://topex.ucsd.edu/

pub/) and GEBCO 2023 (https://www.gebco.net/

data_and_products/gridded_bathymetry_data/).
FIGURE 1

Study area and distribution of shipboard data. Black dots represent checkpoints, and gray dots represent input points. The regions include: ①Trench
Area, ②Seamount Area, ③Abyssal Plain Area.
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2.2 Methods

2.2.1 Processing of shipboard bathymetric data
Given the large time span and varying measurement accuracy

across different voyages, the following preprocessing steps were

applied to improve data quality. The GEBCO 2023 was used as a

priorimodel for quality control. Bathymetric points with differences

greater than twice the root mean square error or a relative error

greater than 0.5 were removed.

2.2.2 BPNN
The BPNN is a type of multilayer feedforward neural network

that is primarily trained using the error backpropagation algorithm.

BPNN is capable of handling complex nonlinear relationships and

possess strong generalization abilities, making it widely applicable

to various tasks.

The BPNN is typically composed of the following three layers.

1) Input Layer: Used to receive external input data, with each node

representing an input feature; 2) Hidden Layer: Located between the

input layer and the output layer, containing several neurons (nodes)

responsible for extracting features from the input data. The hidden

layer can consist of multiple layers; 3) Output Layer: Used to output

the final prediction results, with each node representing one output.

In the hidden layer, feature data is extracted to obtain a feature

vector. Mathematically, this process can be explained as

F(GA) = wGAf1f2 (wGAif1GA + bGAif1 ) + bGAf1f2

F(VG) = wVGf1f2 (wVGif1VG + bVGif1 ) + bVGf1f2

(
(1)

Among them, GA represents GA and residual GA, VG

represents VGG and residual VGG, F(GA) is the GA feature

vector, and F(VG) is the VGG feature vector. A feature vector is

a numeric array that represents a key feature or attribute of the data.

w and b are the weight vector and the bias of the neural network,

respectively. The weight vector and the bias of the neural network

are parameters that the network learns during training. The weight

vector determines the strength and direction of the influence of

input features on the output, while the bias allows the model to fit

the data better by providing an offset. Their subscripts indicate the

corresponding parameters’ position in the neural network.
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The principle of the neural network method used in this study is:

d = wf2oL(F(GA)⊕ F(VG)) + bf20 (2)

Where d is the depth predicted by the neural network, L is the

Rectified Linear Unit activation function, a commonly used

activation function, and ⊕ represents the connection operation

across given dimensions.

The above describes the forward computation of the neural

network. The backward computation in the neural network is

primarily used to adjust the weights of the network. The weights

and biases of the neural network are initialized with initial values,

and after training, the weights of each neuron are adjusted based on

the prediction error. The weight adjustment process can be

expressed as:

w0 = w − a
∂loss(d, d0)

∂w
(3)

Where w0 is the adjusted weight, a represents the learning rate,

is an important hyperparameter used to control the model weight

update step size. It determines the speed at which the model

parameters move in the direction of minimizing the loss at each

iteration. loss refers to the L2 loss function based on the mean

squared error, and d0 is the shipborne depth (Sun et al., 2022).

In this study, a dual-channel BPNN is used to predict depth by

leveraging GA and VGG data, as illustrated in Figure 2. Each

channel consists of an input layer, two hidden layers, and an

output layer. The first hidden layer contains 16 neurons, while

the second hidden layer has 256 neurons. The hidden layers of the

two channels respectively extract GA feature vectors and VGG

feature vectors. Finally, these vectors are concatenated into a gravity

feature vector for depth prediction.

2.2.3 Training and prediction
2.2.3.1 Feature data processing

Feature data is a prerequisite for neural network training and

prediction. The relationship between gravity data and depth data is

nonlinear, but nonlinear problems can be linearized by using an

appropriate reference field. The principle is to decompose a field

into a reference field and a residual field. The GA field is

decomposed into a reference GA field and a residual GA field,
FIGURE 2

Structure of the dual-channel BPNN.
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and the same process is applied to the VGG field. Finally, the results

are combined to obtain the feature data. The steps for feature data

processing are as follows: First, the depth and gravity data are

detrended to establish the optimal relationship between them. This

is achieved by fitting a polynomial trend surface using the least

squares method and subtracting this trend from the original data

(Supplementary Material 1.1). Second, a coherence analysis is

performed on the detrended data (Supplementary Material 1.2).

Based on the coherence results, the data is filtered to retain long-

wave components with coherence greater than 0.5, which represents

the correlation between datasets in the frequency domain. Third, for

the wavelength range with coherence exceeding 0.5, a scaling factor

between the gravity and depth data is determined through linear

regression. This scaling factor is applied to the shipborne depth to

derive the reference GA data, from which the residual GA data is

obtained by subtraction.
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2.2.3.2 Training

The purpose of neural network training is to obtain a model that

can predict the outcome most accurately. The dual-channel structure

of BPNN can independently update the weight and bias in each

channel during the training process, so that GA and VGGdo not affect

each other. After determining the training data, prediction data, and

neural network structure, the neural network is trained following these

steps: 1) Simultaneously normalize the training feature data by

removing the mean and dividing by the median error to reduce the

differences between input variables. 2) Initialize the neural network

model (including randomly generating initial weights and biases). 3)

the training feature data is fed into the input layer. The weighted sum

for each layer is computed and an activation function is applied,

propagating the data layer by layer to the output layer. The error

between the predicted values and the actual values is then calculated

using a loss function. 4) The gradient of the loss function with respect
FIGURE 3

Comparison of the first to third-order detrending results for gravity anomaly and depth data (SIO v25.1). (A) Coherence between gravity anomaly and
depth data after first to third-order detrending; (B) Coherence between gravity anomaly and depth data after first to third-order detrending for
wavelengths greater than 28 km; (C–E) Coherence between gravity anomaly and depth data after first, second, and third-order detrending,
respectively; (F–H) Linear regression between long-wavelength depth and long-wavelength gravity anomaly (wavelengths greater than 20 km) after
first, second, and third-order detrending, respectively.
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to the output layer is computed, and the error is backpropagated from

the output layer to the hidden layers and the input layer using the

chain rule. Gradients for each layer are calculated, and the weights and

biases are updated using a gradient descent algorithm. 5)Repeat steps

3) and 4) until the predetermined number of iterations is reached.

2.2.3.3 Prediction

The prediction feature data is input into the trained neural

network to predict the depth.
3 Results and discussion

To evaluate the performance of BPNN-based seafloor

topography inversion, this study compared different types of

training data, including various bathymetric models (SIO v25.1
Frontiers in Marine Science 06
and GEBCO 2023), single-beam bathymetric data, and predicted

data at different spatial resolutions with 15 arc-seconds, 30 arc-

seconds, and 1 arc-minute.
3.1 Seafloor topography prediction from
depth models

3.1.1 SIO v25.1
3.1.1.1 Coherence analysis results

To select the optimal detrending operation, a first to third-order

detrending was performed, and coherence was used to evaluate the

effectiveness of each detrending process. After detrending, the

coherence between gravity and depth data in the medium to long

wavelengths (wavelengths greater than 28 km) showed a significant

improvement compared to the original coherence (Figures 3A, 4A).
FIGURE 4

Comparison of the first to third-order detrending results for vertical gravity gradient anomaly and depth data (SIO v25.1). (A) Coherence between
vertical gravity gradient anomaly and depth data after first to third-order detrending; (B) Coherence between vertical gravity gradient anomaly and
depth data after first to third-order detrending for wavelengths greater than 28 km; (C–E) Coherence between vertical gravity gradient anomaly and
depth data after first, second, and third-order detrending, respectively; (F–H) Linear regression between long-wavelength depth and long-
wavelength vertical gravity gradient anomaly (wavelengths greater than 20 km) after first, second, and third-order detrending, respectively.
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Figures 3B–D, 4B–D show the coherence of the gravity and

depth data after first to third-order detrending. To select the most

effective detrending method, linear regression was applied to the

bands with coherence greater than 0.5 for each detrending,

corresponding to long-wave components with wavelengths greater

than 20 km. The goodness of fit (R²) and root mean square error

(RMSE) were used to evaluate the linear regression results. An R²

value close to 1 indicates the linear regression is effective, and an

RMSE close to zero is optimal.

Figures 3E–G, 4E–G show the linear regression results after first

to third-order detrending. The results indicate that third-order

detrending produced the best linear regression outcomes. The R²

for the linear regression between long-wavelength depth and GA

data was 0.86, with an RMSE of 28.33mGal. The R² for the linear

regression between long-wavelength depth and VGG data was 0.64,

with an RMSE of 16.50mGal. Therefore, this paper selects third-

order detrending. The scaling factor between long-wavelength

depth and long-wavelength GA data is 0.06mGal/m, and the

scaling factor between long-wavelength depth and long-

wavelength VGG data is 0.02 E/m.
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3.1.1.2 BPNN inversion results

Figure 5 shows the difference between the bathymetry model

obtained from the BPNN (using the SIO bathymetry model as training

data) and the single-beam data grid. Figure 6 shows the difference

between the SIO bathymetry model and the single-beam data grid.

The results indicate that the areas with more significant differences are

concentrated in deep trench regions. Figure 7 demonstrates that when

the SIO bathymetry model is used as the training data, the BPNN

method achieves the optimal seafloor topography inversion at a spatial

resolution of 15 arc-seconds. The RMSE is improved by 0.17

compared to the SIO model resampled to 15 arc-seconds.

3.1.2 GEBCO 2023
Using GEBCO 2023 as the training data, coherence was similarly

used to evaluate the effectiveness of various detrending operations.

The relevant results can be found in Supplementary Material 2.1.

Additionally, coherence analysis was conducted as with the GEBCO

training data, and the results also indicated that third-order

detrending achieved the best linear regression performance.

Supplementary Figure 5 shows the differences between the BPNN
FIGURE 5

Differences between the bathymetry model from the BPNN (with 1 arc-minute SIO bathymetry model as the training data) and the single-beam data
grid. (A, E, I) BPNN for 15 arc-seconds, 30 arc-seconds, and 1 arc-minute resolutions, respectively; (C, G, K) Spatial distribution of the differences
between the BPNN at 15 arc-seconds, 30 arc-seconds, and 1 arc-minute resolutions and the corresponding single-beam data; (B, F, J) Scatter
density plots comparing the BPNN at 15 arc-seconds, 30 arc-seconds, and 1 arc-minute resolutions with the corresponding single-beam data; (D,
H, L) Distribution histograms of the differences between the BPNN at 15 arc-seconds, 30 arc-seconds, and 1 arc-minute resolutions and the
corresponding single-beam data.
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FIGURE 6

Differences between the inversion results using the 1 arc-minute SIO bathymetry model as the training data and the single-beam data grid. (A, E, I)
SIO model at 15 arc-seconds, 30 arc-seconds, and 1 arc-minute resolutions, respectively; (C, G, K) Spatial distribution of the differences between
the 15 arc-seconds, 30 arc-seconds, and 1 arc-minute SIO models and the corresponding single-beam data; (B, F, J) Scatter density plots
comparing the 15 arc-seconds, 30 arc-seconds, and 1 arc-minute SIO models with the corresponding single-beam data; (D, H, L) Distribution
histograms of the differences between the 15 arc-seconds, 30 arc-seconds, and 1 arc-minute SIO models and the corresponding single-beam data.
FIGURE 7

Differences between the bathymetry model (using the 1 arc-minute SIO model as the training data) and the single-beam data. (A) Box plot of the
differences between the bathymetry model and the single-beam data; (B) Histogram of the differences between the bathymetry model and the
single-beam data. “NN” denotes “BPNN”.
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FIGURE 8

Differences between the bathymetry model (using the 1 arc-minute GEBCO model as the training data) and the single-beam data. (A) Box plot of the
differences between the bathymetry model and the single-beam data; (B) Histogram of the differences between the bathymetry model and the
single-beam data. “NN” denotes “BPNN”.
FIGURE 9

Differences between the bathymetry model (using single-beam data as the training data) and the checkpoints. (A) Box plot of the differences
between the bathymetry model and the checkpoints; (B) Histogram of the differences between the bathymetry model and the checkpoints. “NN”
denotes “BPNN”.
Frontiers in Marine Science frontiersin.org09
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bathymetry model, GEBCO model, and single-beam data grid. It can

be observed that the areas with more significant differences are

similarly concentrated in the deep trench regions. From Figure 8, it

can be seen that when the resolution is 1 arc-minute, the BPNN

method produces the best results, with the RMSE improved by 0.35%

compared to the resampling results.
3.2 Seafloor topography prediction from
the single-beam data

After data preprocessing, 220,276 single-beam bathymetry points

were obtained, and 10,000 points were selected as checkpoints, with

the remaining points used as input to construct the bathymetry
Frontiers in Marine Science 10
model. Coherence was similarly used to evaluate the effectiveness of

various detrending operations, with relevant results provided in

Supplementary Material 2.2.

To assess the performance of the BPNN for seafloor topography

inversion, the bathymetry model constructed using the BPNN

method was compared with other bathymetry models.GGM is a

commonly used high-precision bathymetry inversion method,

while SIO and GEBCO are recognized as highly accurate global

topography models. Both the GGM and BPNN bathymetry models

were constructed using the same GA data. The GGM bathymetry

model, based on the optimal density difference, as well as the SIO

and GEBCO models, are shown in Supplementary Figure 6.

Supplementary Figure 7 shows the differences between the

BPNN bathymetry model and other bathymetry models. The
FIGURE 10

Differences between the seafloor topography results (using single-beam and gravity data fusion as input data) and the checkpoints.
FIGURE 11

MRE between the bathymetry model (using single-beam data as training data) and the checkpoints at different depths.
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absolute difference statistics between the bathymetry model and the

10,000 checkpoints are presented in Figure 9. The results indicate

that the BPNN model performs better. Specifically, when the spatial

resolution is 15 arc-seconds, the RMS of the absolute difference

between the BPNN bathymetry model and the checkpoints is

19.12m, which represents a 64.93% improvement over the GGM

bathymetry model, a 70.29% improvement over the SIO model, and

a 68.78% improvement over the GEBCO model. The mean relative

error (MRE) of the absolute difference between the BPNN

bathymetry model and the checkpoints is 0.18%, which is a

78.25% improvement over the GGM model, an 82.62%

improvement over SIO, and an 81.74% improvement over GEBCO.
3.3 Effectiveness of gravity data fusion

This study designed three types of gravity data inputs for BPNN

depth prediction to verify the effectiveness of gravity data fusion:1)

Using both GA and VGG as input data; 2) Using only GA as input

data; 3) Using only VGG as input data.
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When single-beam data were used as training data, the

inversion results for the three types of gravity data inputs are

shown in Supplementary Figure 8. Figure 10 shows that when the

resolution is 15 arc-seconds, the model using both GA and VGG

data together has the smallest RMSE with the checkpoints, at

19.12m. This represents a 60.92% improvement compared to the

model using only GA and a 61.13% improvement compared to the

model using only VGG.
3.4 Adaptability of the BPNN

By comparing the absolute differences between different bathymetry

models and the checkpoints, the adaptability of the BPNN bathymetry

model to various depths and topographies was verified. Seafloor

topography is complex and diverse, so to validate whether the BPNN

can adapt to complex terrain, three sub-regions were selected: a trench

area (Area 1), a seamount area (Area 2), and a deep-sea plain area (Area

3) (as shown in Figure 1). These sub-regions were used to evaluate the

performance of the BPNN in inverting seafloor topography.
FIGURE 12

(A–C) Differences in the inversion bathymetry results (using single-beam data as the training data) for the three regions: ①Trench Area, ②Seamount
Area, ③Abyssal Plain Area.
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The MRE between different bathymetry models and the

checkpoints gradually decreases as depth increases, reaching a

higher value at depths less than 1 km (Figure 11). In regions

deeper than 5 km, the MRE stabilizes around 0.5%. At different

depths, the MRE of the BPNN model is significantly lower than that

of other bathymetry models, indicating that the BPNN is more

effective at varying depths. From Figure 12, it can be observed that

the RMS and MRE of the BPNNmodel are lower than those of other

bathymetry models, and its inversion results are the best across all

areas. The GGM underperforms in Area 2, the SIO models in Area 1,

and the GEBCO models in Area 3, suggesting that the BPNN

inversion method is universal and effective across various terrains.
4 Conclusions

This study utilized gravity and gravity gradient data to predict

seafloor topography in the Izu-Ogasawara Trench of the Western

Pacific, using a dual-channel BPNN. Seafloor topography models

and single-beam data were employed as training data. The

performance of the BPNN for depth inversion was evaluated

under different gravity data inputs, water depths, and terrain

conditions. The main conclusions are as follows:
Fron
1. The BPNN method improves the accuracy and spatial

resolution of depth inversion. When a 1 arc-minute

model is used as training data, the BPNN method

improves by 0.17% compared to the SIO model and by

0.35% compared to the GEBCO model. When single-beam

data is used as training data, the BPNN method is closer to

shipborne data than the GGM method, SIO model, and

GEBCO model. Specifically, when the spatial resolution is

15 arc-seconds, the RMS of the absolute difference between

the BPNN bathymetry model and the checkpoints is 19.12

meters, representing improvements of 64.93%, 70.29%, and

68.78% over the GGM, SIO, and GEBCO models,

respectively. The MRE of the absolute difference between

the BPNN bathymetry model and the checkpoints is 0.18%,

representing improvements of 78.25%, 82.62%, and 81.74%

over the GGM, SIO, and GEBCO models, respectively.

2. Fusion of gravity and gravity gradient data improves

inversion accuracy. By comparing models using different

gravity data, it was found that when the spatial resolution is

15 arc-seconds and single-beam data is used as training

data, the model using both GA and VGG data had the

smallest RMSE with the checkpoints, at 19.12 meters. This

represents a 60.92% improvement compared to the model

using only GA and a 61.13% improvement compared to the

model using only VGG.

3. The BPNN method can adapt to different depths and

terrain conditions. By comparing the BPNN bathymetry

model with other bathymetry models at different depths, it

was found that the MRE between the BPNN model and the

checkpoint data is significantly lower at all depths than the
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other models, stabilizing around 0.5%. In different terrain

conditions, the BPNN model consistently performed better

than other models. When the spatial resolution is 15 arc-

seconds and single-beam data is used as the target variable

input, the BPNN method achieved an RMS error of 7.18

meters in Area 2, representing improvements of 88.36%,

87.42%, and 84.39% compared to the GGM, SIO, and

GEBCO bathymetry models, respectively.
This study demonstrates the potential of BPNN in enhancing

the resolution of seafloor topography. Using gravity data with a

resolution of 1 arc-minute as input, increasing the resolution of the

training data significantly improves the accuracy of the results.

Although this study verified the accuracy of using the BPNN for

seafloor topography inversion with different input data and target

variables, it was only conducted in the Izu-Ogasawara Trench of the

Western Pacific. In future research, this deep learning method will

be applied to invert seafloor topography in different ocean regions

and even globally. Furthermore, this study focused solely on the

BPNN method, which does not account for specific physical

mechanisms. Future work will further explore BPNN methods

based on physical mechanisms for the global seafloor

topography prediction.
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