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Underwater object detection plays a significant role in fisheries resource

assessment and ecological environment protection. However, traditional

underwater object detection methods struggle to achieve accurate detection

in complex underwater environments with limited computational resources. This

paper proposes a lightweight underwater object detection network called

LightFusionNet-YOLO (LFN-YOLO). First, we introduce the reparameterization

technique RepGhost to reduce the number of parameters while enhancing

training and inference efficiency. This approach effectively minimizes precision

loss even with a lightweight backbone network. Then, we replaced the standard

depthwise convolution in the feature extraction network with SPD-Conv, which

includes an additional pooling layer to mitigate detail loss. This modification

effectively enhances the detection performance for small objects. Furthermore,

We employed the Generalized Feature Pyramid Network (GFPN) for feature

fusion in the network's neck, enhancing the network's adaptability to features

of varying scales. Finally, we design a new detection head, CLLAHead, which

reduces computational costs and strengthens the robustness of the model

through cross-layer local attention. At the same time, the DFL loss function is

introduced to reduce regression and classification errors. Experiments

conducted on public datasets, including URPC, Brackish, and TrashCan,

showed that the mAP@0.5 reached 74.1%, 97.5%, and 66.2%, respectively, with

parameter sizes and computational complexities of 2.7M and 7.2 GFLOPs, and

the model size is only 5.9 Mb. Compared to mainstream vision models, our

model demonstrates superior performance. Additionally, deployment on the

NVIDIA Jetson AGX Orin edge computing device confirms its high real-time

performance and suitability for underwater applications, further showcasing the

exceptional capabilities of LFN-YOLO.
KEYWORDS

underwater object detection, lightweight detector, small object, marine resources,
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1 Introduction

Underwater object detection plays a crucial role in fisheries

resource assessment and the ecological environment protection. As

global attention on sustainable development increases, accurately

monitoring the state of underwater ecosystems and resources

becomes particularly important (Grip and Blomqvist, 2020). With

challenges in complex underwater environments, including

insufficient lighting, clutter interference, and limited computational

resources, traditional underwater object detection methods struggle

to achieve optimal detection accuracy (Er et al., 2023) (Liu et al.,

2023b). The above issues limit effective resource management and

ecological monitoring. Therefore, developing efficient and reliable

underwater object detection technology not only helps improve the

accuracy of fisheries resource assessments but also provides scientific

evidence for ecological protection, ensuring the sustainable

development of marine ecosystems (Zhou et al., 2024).

In recent years, deep learning-based object detection technology

has been widely applied in various fields. Deep learning-based

object detection algorithms are generally categorized into two-

stage and onestage detection algorithms. The former involves

generating candidate regions first and then classifying and

localizing these regions, which leads to high detection accuracy

but with the downside of complex structures and low real-time

performance, Notable examples include Faster R-CNN (Ren et al.,

2017), R-FCN (Dai et al., 2016), and Mask R-CNN (He et al., 2017).

The latter completes object detection in a single forward

propagation without generating candidate regions, resulting in a

simplified structure and a more lightweight model that effectively

balances accuracy and speed. These methods perform well in

various scenarios, with YOLO (Redmon et al., 2016), SSD (Liu

et al., 2016), and RetinaNet (Ross and Dollar, 2017) are notable

examples. YOLO, proposed by Joseph Redmon in 2016,

transformed object detection into a single regression problem and

achieved real-time object detection by dividing images into grids.

YOLOv8, the most representative algorithm in the YOLO series,

strikes a good balance between accuracy and model size, making it

more suitable for industrial applications. However, YOLOv8 was not

specifically designed for underwater environments, leaving room for

improvement in underwater detection tasks. Building upon YOLOv8,

we propose the Light Fusion Net YOLO (LFN-YOLO) model to

enhance the lightweight characteristics and performance of

underwater target detection models. Experimental results

demonstrate that the model performs exceptionally well on the

URPC (Zhanjiang, 2021 China Underwater Robot Professional

Contest) dataset, with a 2.2% increase in mAP@0.5 and a 19.1%

reduction in GFLOPs, achieving only 7.2 GFLOPs. The parameters

were reduced by 15.6%, down to 2.6M. Furthermore, LFN-YOLO

demonstrated excellent performance on the Brackish dataset, achieving

the highest accuracy and the smallest model size in comparison

experiments with other mainstream one-stage detection algorithms.

This demonstrates that LFN-YOLO strikes a better balance between

accuracy and model complexity, making it suitable for underwater

target detection tasks on platforms with limited hardware capabilities.

The main contributions of this paper are as follows:
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1) To reduce the number of network parameters and

computational complexity while enhancing training and inference

efficiency, a reparameterization approach is employed in the

backbone network to facilitate feature reuse. Furthermore, SPD-

Conv is utilized in the feature extraction process to enhance the

ability to capture small object features effectively.

2) To improve the network’s ability to adapt to features of

varying sizes, the Generalized Feature Pyramid Network was

applied for feature fusion, which effectively fuses geometric detail

information from lowlevel features with semantic information from

high-level features, allowing better feature extraction for

underwater objects of varying sizes.

3) A lightweight detection head, CLLAHead, was designed in this

paper, which incorporates a cross-layer local attention mechanism.

This design reduces unnecessary computations and enhances the

model’s robustness in underwater environments. Additionally, the

Distribution Focal Loss was introduced to minimize both regression

and classification losses in target detection.

4) The proposed LFN-YOLO demonstrates superior performance

in detection accuracy, network lightweight, and adaptability to

underwater environments. Additionally, this paper presents an

efficient underwater deployment solution. With the optimized

network architecture, LFN-YOLO shows improved detection

accuracy and higher FPS in real underwater scenarios.

The paper is organized as follows. Section 2 reviews the

development of underwater object detection research, along with

related work on lightweight networks and small object detection.

Section 3 provides a detailed introduction to the network structure

of LFN-YOLO, covering the overall design and the internal

principles of each module. Section 4 describes the experimental

setup, including datasets, evaluation metrics, equipment, and

software. Section 5 presents the experimental results and analysis,

including ablation and comparative experiments, as well as

underwater deployment experiments. In Section 6, the generality

and robustness of the LFN-YOLO model are evaluated using the

TrashCan dataset. Finally, Section 7 concludes the paper.
2 Related work

2.1 Underwater object detection

In recent years, deep learning-based underwater object detection

models have rapidly evolved. Many researchers have focused on

developing algorithms to tackle the challenges of underwater images,

which often suffer from high noise, low contrast, and color distortion

(Zhang et al., 2024b). Wang et al. (2023) proposed a reinforcement

learning paradigm for underwater visual enhancement, which

simultaneously optimizes the target detection and visual

enhancement tasks. However, the variability of underwater

environments poses limitations for the visual enhancement

algorithm. To address this, Wang et al. (2024) introduced a new

underwater image enhancement method that can select an

enhancement technique and configuration parameters based on the

degree of image degradation, thereby improving the effectiveness of the
frontiersin.org
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enhancement for practical applications. Additionally, underwater

environments present unique challenges for object detection, such as

background interference, dense object distribution, and occlusion.

These issues contrast sharply with those in conventional detection

scenarios, highlighting the complexity and necessity of robust

underwater detection methods (Jian et al., 2021). For instance, Wang

et al. (2022) proposed an enhanced YOLO network without anchor

points. They utilized Retinex theory to eliminate impurities in

underwater images and subsequently performed multi-scale feature

fusion in the YOLO network. This approach reduced the inference

time for regression and classification tasks while improving the

accuracy of underwater object detection. Yan et al. (2023) proposed

a dual adversarial contrastive learning enhancement network for

underwater images. This network transforms degraded waters into

high-quality waters and builds an inverse circulation net mapping in a

self-learning manner, reducing dependency on training data and

significantly enhancing the quality of underwater images. Liu et al.

(2023a) proposed the YOLOv7-AC network for underwater object

detection, which replaces the YOLOv7 convolution module with an

ACmixBlock and incorporates global attention in the backbone

network. Additionally, the K-means algorithm was employed to

optimize the anchor box selection, improving both average precision

and inference speed. Zhao et al. (2023) introduced the YOLOv7-CHS

model, which integrates a non-contextual transformer module with

parameter-free attention to learn spatial and channel relationships,

resulting in enhanced detection performance. Zhang et al. (2024a)

proposed the FasterNetT0 as the backbone network, reducing the

number of parameters and computational complexity. They further

added a small object detection head to improve accuracy for small

targets, and used Deformable ConvNets and channel attention

mechanisms in the neck to handle irregularly shaped and occluded

objects. A comprehensive qualitative comparison of underwater object

detection methods developed in recent years, as shown in Table 1.
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However, these underwater detection models primarily focus on

accurate object identification, without fully considering the need for

lightweight models that can be efficiently deployed in real

world scenarios.

Our research aims to improve the accuracy of object detection

models in underwater environments while reducing network

parameters and computational complexity to enable deployment

on hardware with varying performance levels. To accomplish this,

we designed CLLAHead, which incorporates a cross-layer local

attention mechanism (Tang and Li, 2020) and introduced the

Distribution Focal Loss (DFL) (Li et al., 2023). These

improvements have enhanced the model’s ability to accurately

identify and locate objects in underwater environments, while

also reducing unnecessary computational overhead and hardware

resource requirements.
2.2 Lightweight network

In recent years, the rapid development of Graphics Processing

Units (GPUs) has accelerated the growth of deep neural networks

(DNNs) across various fields. Simultaneously, the deployment of

DNN models on resource-limited devices, such as mobile and edge

devices, has become increasingly common. These devices often have

constrained computational power and storage, posing challenges

for DNN deployment. Balancing high accuracy with reduced model

size and computational complexity is a key challenge that needs to

be addressed (Xu et al., 2023a).

Currently, lightweight models are primarily achieved through

two approaches: network architecture design and model

compression (Lin et al., 2024). The former involves designing a

more efficient network structure to reduce the number of

parameters and floating-point operations (FLOPs). Popular

networks in this category include MobileNet (V1, V2, V3)

(Howard, 2017) (Sandler et al., 2018) (Howard et al., 2019),

EfficientNet (Tan and Le, 2019), GhostNet (Han et al., 2020), and

FasterNet (Chen et al., 2023a), which have significantly contributed

advancing to deep learning on mobile and edge devices. On the

other hand, model compression techniques—such as pruning,

quantization, and knowledge distillation—focus on reducing

parameters and complexity while maintaining performance.

In object detection, network architecture design is a commonly

used method for lightweight. Cheng et al. (2023b) proposed

replacing the YOLOv4 feature extraction backbone with the

lightweight MobileViT network, effectively extracting both local

and global features of objects while reducing model complexity.

Shang et al. (2023) suggested using ShuffleNetv2 to replace the

YOLOv5 backbone, which reduces memory access costs and

convolution operations, leading to a smaller model size and faster

detection speeds. Zhang et al. (2024a) introduced the FasterNet

network to replace the YOLOv8 backbone for lightweight

underwater object detection, aiming to reduce parameters and

computational complexity while maintaining accuracy. Although

these methods contribute to lightweight, they often fail to achieve a

satisfactory level of accuracy. Therefore, we leverage SPD-Conv

(Sunkara and Luo, 2022) for feature extraction and incorporate
TABLE 1 Comprehensive qualitative comparison of underwater object
detection methods developed in recent years.

Method Dataset Backbone Method highlights

Enhanced
YOLO (Wang
et al., 2022)

LED water
tank image

Resnet Retinex theory

YOLOv7-AC
(Liu
et al., 2023a)

URPC,
Brackish

Darknet53 K-means algorithm for
anchor box generation

YOLOv7-CHS
(Zhao
et al., 2023)

Starfish, DUO HOSI-
Darknet53

High-order spatial
interaction,

Contextual transformer

YOLOv8
improved
(Zhang
et al., 2024a)

UTDAC2020,
Pascal VOC

FasterNet-T0 Deformable ConvNets

CHE-YOLO
(Feng and
Jin, 2024)

DUO,
UTDAC2020

Darknet-53 High-order deformable
attention, Enhanced
spatial pyramid
pooling-fast

LFN-
YOLO (Ours)

URPC,
Brackish

RepGhostNet Cross-Level Local
Attention, Detecting head
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RepGhost for reparameterized feature reuse (Chen et al., 2024) in

the backbone network, ensuring that the underwater object

detection model achieves improved accuracy while maintaining a

lightweight backbone structure.
2.3 Small object detection

In object detection tasks, deep neural networks (DNNs)

typically recognize objects by capturing edge features and

geometric cues. However, underwater images often present

significant challenges due to occlusion and the presence of small

objects, making underwater object detection particularly difficult.

Improving the model’s ability to detect small objects is crucial for

practical applications in underwater object detection.

Small objects are generally categorized into two types based on their

definition: relative and absolute small objects (Tong and Wu, 2022).

Relative small objects refer to targets whose area is less than 1% of the

image area, while absolute small objects are defined based on fixed size

thresholds. For instance, in the MS-COCO dataset, absolute small

objects are defined as those with dimensions smaller than 32×32

pixels (Krishna and Jawahar, 2017). These definitions provide a basis

for evaluating the performance of object detection models in various

contexts, especially in scenarios with complex underwater environments.

Effective multi-scale feature fusion can significantly enhance the

model’s ability to detect small objects. Multi-scale feature fusion

involves combining geometric details and positional information

from low-level feature maps with rich semantic information from

high-level feature maps. Notable methods include the Feature Pyramid

Network (FPN), the Asymptotic Feature Pyramid Network (AFPN),
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and the Bidirectional Feature Pyramid Network (BiFPN). For example,

Zhai et al. (2023) introduced a Global Attention Mechanism (GAM)

into the neck of YOLOv8, enabling the network to improve the

interaction of global dimension features and fuse key features,

thereby increasing the speed and accuracy of small object detection.

Bao et al. (2023) employed a Double Dimensional Mixed Attention

(DDMA)mechanism to fuse local and non-local attention information

in the YOLOv5 network, reducing the missed detections caused by

densely packed small objects. Ma et al. (2024) used the Enhanced

Spatial Feature Pyramid Network (ESFPN) to combine high-resolution

and low-resolution semantic information, creating additional

high-resolution pyramid layers to improve small object detection

capabilities. However, these methods are not well-suited for

the unique conditions of underwater environments. To address the

challenge of misdetections and missed detections caused by the varying

scales of underwater objects, we propose employing the Generalized

Feature Pyramid Network (GFPN) (Jiang et al., 2022) for feature

fusion. This approach effectively utilizes the feature information of

small objects, enhancing the robustness of the model in detecting

small objects.
3 Materials and methods

In this paper, we propose a network specifically designed for

underwater object detection, which improves the detection

performance of small objects while maintaining accurate

detection of normal-sized objects, and reduces the model’s

parameter count and computational complexity. The structure of

the proposed network is shown in Figure 1. First, We introduce the
FIGURE 1

Illustration of the network structure of LFN-YOLO.
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reparameterization module RepGhost into the backbone of the

detection network to achieve efficient feature reuse. Second, in the

feature extraction network, we replace the standard depthwise

convolution with SPD-Conv to prevent the loss of detail. Then,

we employed GFPN to enhance the fusion of high-level semantic

information and low-level spatial information in the neck of the

network. Finally, we propose a new detection head, CLLAHead,

which integrates cross-layer local attention mechanisms with

Distribution Focal Loss (DFL) to improve object recognition and

localization, thereby forming the LFN-YOLO underwater object

detection model.
3.1 RepGhost reparameterization module

Feature reuse plays an essential role in lightweight convolutional

neural networks (Minaee et al., 2022). Existing feature reuse methods

often use concatenation operations to reuse feature maps from

different layers, which helps maintain a larger number of channels

but results in a higher computational cost on hardware devices,

posing challenges for real-world applications. To address this issue,

we propose the RepGhost module, which uses structural

reparameterization techniques to achieve feature reuse, eliminating

the need for computationally expensive concatenation operations.

The RepGhost module is a lightweight convolutional module

that replaces the concatenation operation used in Ghost modules

with an additional operation, which is more efficient in terms of

computation. The ReLU activation layer is moved behind the
Frontiers in Marine Science 05
depthwise convolution and additional layers to conform to the

rules of reparameterized structures. Lastly, a batch normalization

(BN) branch is added during training, which is then fused with the

depthwise convolution during inference, reducing floating-point

operations. Figure 2 illustrates the reparameterization process

of RepGhost.

By introducing the RepGhost module into the backbone

network of YOLOv8, we can train the object detection model

more efficiently. During the inference stage, this approach

enhances detection speed while minimizing accuracy loss,

achieving a balance between simplifying model complexity and

ensuring high detection performance. This enables the model to

meet the demands of object detection tasks in scenarios with limited

hardware resources, making it suitable for industrial applications.
3.2 SPD-Conv

In object detection, especially when dealing with small objects,

the amount of feature information is often limited. Standard stride

convolutions and pooling can lead to a loss of detail, which is a

major factor contributing to the low detection efficiency for small

objects (Cheng et al., 2023a). To mitigate this issue, we introduce

the SPD-Conv method, which replaces the standard convolution

layers in the feature extraction network of YOLOv8.

The SPD-Conv is composed of a Space-to-Depth layer followed

by a non-strided convolution layer. The Space-to-Depth layer

downsamples the original feature map while preserving the
FIGURE 2

(A–C) RepGhost module details.
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information in the channel dimension, with this downsampling

involving only a rearrangement of the data along the channel

dimension, avoiding information loss. For any intermediate

feature map X of size S × S × C1, we can generate a series of sub-

feature maps according to Equation 1.

f0,0 = X½0 : S :   scale  , 0 : S :   scale  �, f1,0 = X½1 : S :   scale  , 0 : S :   scale  �,…,

fscale−1,0 = X½scale − 1 : S :   scale  , 0 : S :   scale  �;
f0,1 = X½0 : S :   scale  , 1 : S :   scale  �, f1,1,…,

fscale−1,1 = X½  scale − 1 : S :   scale  , 1 : S :   scale  �;
⋮

f0,  scale−1 = X½0 : S :   scale  ,   scale − 1 : S :   scale  �, f1,  scale−1,…,

fscale−1,  scale−1 = X½  scale − 1 : S :   scale;   scale − 1 : S :   scale  �
(1)

These feature sub-maps fx,y are composed of all elements X(j

+i), which are divisible by both i+x and j +i. Therefore, each sub-

map is obtained by downsampling the original feature map X by a

scaling factor. These sub-maps are then concatenated along the

channel dimension to form a new feature map X0, where the space
and dimensions are reduced by the scaling factor, and the channel

dimension is increased by the square of the scaling factor. In other

words, Space-to-Depth transforms X(S, S, C1) into an intermediate

feature map X0(S Scale, S Scale, Scale2C1). Figure 3 illustrates the

process of Space-to-Depth conversion when the scaling factor is set

to 2.

After applying the Space-to-Depth transformation, a non-

strided (i.e., stride=1) convolution layer with C2 filters is added,

where C2 < scale2C1. The feature map is then further transformed

f r om X0( S
Scale ,

S
Scale , Scale

2C1) → X00( S
Scale ,

S
Scale , Scale

2C2). T h e

reason for using non-strided convolution is to retain as much

discriminative information as possible; otherwise, using stride=3

(as with a 3×3 filter) would downsample the feature map but only

sample each pixel once. If stride=2 were used, asymmetric sampling

would occur, with different rows or columns being sampled at
Frontiers in Marine Science 06
different times. Generally, strides greater than 1 leads to a loss of

discriminative information. Although it may appear that this

process downsamples the feature map from X(S, S, C1) → X00( S
Scale

, S
Scale , Scale

2C2), it fails to preserve the discriminative features of X0.
3.3 GFPN

In the feature extraction layers, the shallow layers have small

receptive fields and limited ability to represent semantic information,

but they are better at capturing geometric details with high-resolution

feature maps, making them suitable for perceiving position and

geometric details. In contrast, deeper layers have larger receptive

fields and stronger semantic representation capabilities, but they are

weaker at capturing geometric information and have lower resolution

feature maps (Chen et al., 2023b). Therefore, enhancing the exchange

of high-level semantic information with low-level spatial information is

key to handling objects of varying scales (Xiao et al., 2025). To address

this, we propose a novel cross-scale feature fusion method called the

Generalized Feature Pyramid Network (GFPN). GFPN aggregates

features from the same and adjacent levels to enable more efficient

information transfer. It also employs skip connections to prevent

gradient vanishing, improving the ability of features to propagate to

deeper layers. While striking a balance between model size and

performance, GFPN exhibits superior performance in feature fusion.

The feature fusion structure of GFPN is illustrated in Figure 4.

Since the GFPN structure is more complex compared to other

feature fusion networks, its complexity increases with the depth of

the layers leading to the issue of gradient vanishing. Inspired by the

reparameterized GFPN used in DAMO-YOLO (Xu et al., 2023b),

we adopt CSPStage to implement skip connections to replace the

C2f (Cross Stage Partial Network Fusion) and combine

convolutional layers, allowing information sharing between

features across different spatial scales and non-adjacent semantic
FIGURE 3

(A–E) Illustration of SPD-Conv when scale = 2.
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layers. This ensures that the network focuses on high-level semantic

information while avoiding the loss of low-level spatial information.

The CSPStage module incorporates reparameterized convolutions

(RepConv), which allow multiple computational branches to be fused

during the inference phase, enhancing the efficiency and performance

of the model. During training, RepConv uses multiple branches for

convolution. During inference, the parameters from these branches are

reparameterized into the main branch, thus reducing the

computational load and memory requirements. By using CSPStage

to implement skip connections, shallow feature information can be

passed to deeper layers, minimizing the loss of features and enhancing

the information exchange between shallow and deep layers. This

improves the network’s ability to adapt to targets of varying scales.
3.4 CLLAHead

In scenarios where small objects are densely packed, the original

detection head of YOLOv8 struggles to meet the demands of efficient

and accurate detection. Therefore, we combined the Cross-Level Local

Attention (CLLA) mechanism with Distribution Focal Loss (DFL) to

design CLLAHead, which enhances the model’s ability to recognize

and localize objects in images.
Frontiers in Marine Science 07
The goal of CLLA is to model the contextual relationships

between cross-level features and aggregate multi-level features, as

shown in Figure 5. Different levels of features typically contain

different recognition information. To capture fine-grained

contextual information across different feature levels and improve

the detection accuracy and robustness, we embedded the CLLA

module into the detection head.

The CLLA module models the relationships between the channels

and spatial dimensions of high-level and low-level feature maps.

Among them, F
0
1 and F

0
2 represent low-level and mid-level feature

maps, containing shallow information (such as texture, edges, and

color), while F
0
3 contains valuable deep semantic information. Then,

average pooling and 1×1 convolutions are applied to reduce the size of

F
0
1 and F

0
2, unifying their spatial dimensions into new feature maps Fl1

and Fm2 (with the same dimensions as F
0
3). Subsequently, three

learnable parameters WQ,WK and WV are used to project Fl1, F
m2

into the spaces of Q, K, and V, as shown in the following equation:

Q = Fl1W
Q,K = Fm2 W

K,V = Fm2 W
V (2)

Next, the dot product and the softmax function are used to

calculate the correlation weights between Q and K, followed by a

dot product with V to form a new feature map. This new feature

map is then added to F
0
3 to finally aggregate into FM, which can be
FIGURE 4

The structure of GFPN, which takes feature maps extracted from different depths as input and outputs a set of fused feature maps that encapsulate
rich semantic and spatial information.
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expressed by the following equation:

FM = F
0
3 + softmax

(Fl1W
Q)(Fm2 W

K)Tffiffiffiffiffi
dk

p
 !

(Fm2 W
V) (3)

Distribution Focal Loss (DFL) enables the network to focus on

values near the target label quickly, maximizing the probability

density around the label. This guides the model to pay attention to

difficult-todetect targets, improving its ability to detect small

objects. To optimize the probabilities at two positions near the

label y(yi and yi+1), DFL uses the cross-entropy function to

concentrate the network’s distribution around the target label

value. The formula for DFL is given below:

DFL(si ,si+1) = −((yi+1 − y)log(si) + (y − yi)log(si+1)) (4)

where si is the Sigmoid output of the network, and yi and yi+1
represent the interval labels for y(yi ≤ y ≤ yi+1).
4 Experiment preparation

To evaluate and validate the detection performance of our

proposed model architecture, we conducted experiments using

two challenging underwater object detection datasets.
4.1 Dataset

To verify the effectiveness of the proposed method in this paper,

the dataset used for the experiment contains two parts. One part is

from the 2021 China Underwater Robot Professional Contest

(URPC) dataset (Liu et al., 2021), which consists of 7,543 images in

total. The dataset includes four categories of objects: holothurian,

echinus, scallop, and starfish. The dataset presents challenges such as

occlusions, overlapping objects, and small-sized underwater targets.

In addition, it also includes significant color distortion caused by the

absorption and scattering of light at different wavelengths

underwater. This phenomenon results in a predominance of blue

and green tones in the images, while red and other long-wavelength

colors are heavily attenuated. These unique optical properties pose

challenges in accurately recognizing and classifying underwater

objects, making this dataset particularly valuable for testing
Frontiers in Marine Science 08
methods aimed at enhancing robustness under such conditions.

We randomly split the dataset into training, validation, and testing

sets in a 7:2:1 ratio. Specifically, 5,280 images were used for training,

1,463 for validation, and 800 images were reserved for testing and

performance evaluation. Figures 6A, B present the distribution of

target counts across different categories in the URPC dataset, along

with the height and width of bounding boxes. The analysis indicates

that most underwater organisms within the dataset are relatively

small, with the majority of bounding box dimensions falling within

the range of (0-0.1, 0-0.1).

The other part is The Brackish dataset (Pedersen et al., 2019),

which is a publicly available European underwater image dataset

consisting of 11,205 images in total. It includes six categories of

small marine organisms: crabs, normal-sized fish, small-sized fish,

starfish, shrimp, and jellyfish. The Brackish dataset contains a

significant number of small underwater targets. Moreover, the

presence of numerous suspended particles in the water results in

image blurring, reduced contrast, and even scattering artifacts,

posing considerable challenges for accurate detection and

recognition. The dataset also suffers from low image resolution,

further complicating the detection and recognition of small marine

organisms. These environmental factors make the Brackish dataset

an essential benchmark for evaluating the performance of detection

algorithms in turbid and low-visibility conditions. The dataset was

randomly split into training, validation, and testing sets in an 8:1:1

ratio. Figures 6C, D illustrate the visual attributes of the Brackish

dataset. Additionally, Figure 6E illustrates the representative

underwater environments of the URPC and Brackish datasets.
4.2 Evaluation metrics

In this paper, we use Precision (P), Recall (R), mean Average

Precision (mAP), Giga Floating-point Operations Per Second

(GFLOPs), the number of parameters, and Frames Per Second (FPS)

to evaluate the effectiveness of the model. Precision (P) reflects the

accuracy of classifying positive samples, while Recall (R) indicates the

effectiveness of identifying positive samples. mAP represents the mean

precision across all categories. GFLOPs is a commonly used metric for

measuring the computational complexity of a model, representing the

number of floating-point operations executed per second. The number

of parameters indicates the model’s size. These metrics are widely
FIGURE 5

The proposed CLLA model structure.
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adopted for evaluating object detection tasks. The formulas are as

follows (Equations 5–8):

Precision =
TP
FP

(5)

Recall =
TP

TP + FN
(6)
Frontiers in Marine Science 09
AP =
Z 1

0
P(r)dr (7)

mAP = o
k
i=1APi

k
(8)

Here, TP represents the number of true positive samples

correctly predicted by the model, FP represents the number of
FIGURE 6

(A, B) represent the number of different species and the label size distribution in the URPC dataset, respectively. (C, D) show the number of different
species and the label size distribution in the Brackish dataset, respectively. (E) illustrates the representative underwater environments of the URPC
and Brackish datasets.
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false positive samples, TN represents the number of true negative

samples, and FN represents the number of false negative samples. P

(r) represents the Precision-Recall curve, and k denotes the number

of classes in the current recognition task. In object detection tasks,

the mAP is determined by the selected Intersection over Union

(IoU) threshold. mAP@0.5 refers to the mean Average Precision

achieved by the model in object detection tasks when the IoU

threshold is set to 0.5.
4.3 Experimental platform

All experiments in this study were conducted on the same

computer, running the Windows 10 operating system, with an Intel®

Xeon® Silver 4100 CPU, an NVIDIA GeForce RTX 2080Ti GPU,

Python version 3.8, CUDA version 11.7, and PyTorch version 2.0.0.

The experiments involved training the model for 150 epochs, with the

batch size set to 16 and the learning rate set to 0.01. The model

gradients were optimized using the SGD optimizer. The edge

deployment device utilizes the NVIDIA Jetson AGX Orin with 32GB

of RAM and runs the Ubuntu 20.04 Focal operating system. It uses

Python 3.8, CUDA 11.4, and PyTorch v1.12.0 for GPU acceleration.

For the camera, we employ the IPC5MPW underwater camera, which

features a 5MP resolution, a 36mm lens, and a 2m focal length.
5 Experimental results and analysis

5.1 Ablation experiments

To validate the detection performance and model complexity of

the proposed model in this study, as well as to explore the impact of

specific network substructures on the model, we conducted ablation

experiments based on YOLOv8n. The results are presented in

Table 2, with the best results highlighted in bold.

The primary goal of the first set of experiments was to evaluate the

detection capabilities of the original model. Subsequently, we conducted

experiments to improve the model, both individually and collectively,

using RepGhost, SPD-Conv, GFPN, and CLLAHead, to assess the

effectiveness of these four enhancement techniques across the two

datasets. The original model achieved precision rates of 79.7 and 96.3

on the URPC and Brackish datasets, respectively. After individually

evaluating each improvement, we found that the introduction of the

RepGhost module slightly reduced accuracy on the URPC dataset, but it

significantly alleviated the issue of high model parameters and

computational load. In the subsequent combined experiments,

RepGhost had a positive impact on the performance of underwater

object detection tasks. On the Brackish dataset, the RepGhost module

improved both model accuracy and complexity. Additionally, we

observed that GFPN resulted in noticeable performance gains on

both datasets, further demonstrating the effectiveness and feasibility of

GFPN’s feature fusion approach for detecting small underwater objects.

Our proposed LFN-YOLO network achieved accuracy rates of

82.1% and 97.4% on the URPC and Brackish datasets, respectively,

representing improvements of 2.4% and 1.1% compared to the

original model. Furthermore, the parameter counts and GFLOPs
Frontiers in Marine Science 10
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were reduced by 15.6% and 19.1%, respectively. In addition, the

network demonstrated an increase in recall and mAP@0.5 by 1.5%

and 2.2% on the URPC dataset and by 1.3% and 0.6% on the

Brackish dataset. These results highlight the adaptability and

robustness of the LFN-YOLO model in different underwater

environments. Figure 7 illustrates a comparison of the detection

performance between the original YOLOv8 model and the

improved LFN-YOLO model for underwater object detection.

The interactions between these improvements are realized

through their complementary characteristics and advantages,

working synergistically to reinforce each other and ultimately
Frontiers in Marine Science 11
form a collaborative network for underwater object detection

tasks. To validate the effectiveness of the proposed model in

enhancing underwater detection performance, we compared the

mAP@0.5 and box loss fitting curves of LFN-YOLO and YOLOv8n

over 150 training epochs, as shown in Figures 8A-D. Additionally,

Figures 8E, F presents a detailed comparison of detection precision

for various organisms in the dataset between LFN-YOLO and

YOLOv8n. Experimental results demonstrate that LFN-YOLO

significantly outperforms YOLOv8n in detecting small objects,

such as echinus, scallops, jellyfish, and small fish. This

demonstrates LFN-YOLO’s exceptional ability to capture fine
FIGURE 7

Comparison of detection results of different methods (A, C, E, G) results from YOLOv8, and (B, D, F, H) results from LFN-YOLO.
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details and detect small-scale underwater organisms, which is

crucial for achieving accurate underwater object detection.
5.2 Comparative experiments

To further demonstrate that the LFN-YOLO model achieves a

better balance between model complexity and accuracy, we

conducted comparative experiments with eight other mainstream
Frontiers in Marine Science 12
one-stage detection models. All experiments were carried out under

the same settings, evaluating the models based on accuracy, recall,

mAP@0.5, number of parameters, computational complexity, and

model size. The detailed results are presented in Table 3. All the

algorithms compared in the experiments meet the real-time

monitoring requirements and LFN-YOLO exhibits higher

detection accuracy while maintaining a lighter model complexity.

Based on the experimental results in Table 3, LFN-YOLO

demonstrates outstanding performance on both the URPC and
FIGURE 8

(A, B) represent the fitting curves during training on the URPC dataset, while (C, D) show the fitting curves for the Brackish dataset. (E, F) respectively
illustrate the accuracy comparison for different species in the URPC and Brackish datasets.
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Brackish datasets. On the URPC dataset, LFN-YOLO achieved an

mAP@0.5 of 74.1%, surpassing YOLOv5n, YOLOv6-N, YOLOv8n,

YOLOv10n, and YOLOv11 by 2.3%, 3.4%, 2.2%, 3.3%, and 0.5%,

respectively. For the more rigorous mAP@0.5:0.95 evaluation

metric, LFN-YOLO remains the best among the YOLO series

models, showcasing its exceptional capability in detecting

underwater targets. Additionally, LFN-YOLO achieves an

inference speed of 58 FPS, highlighting its significant advantage

in real-time detection tasks. In contrast, the SSD model, with VGG-

16 as its backbone, demonstrated the best performance on the

URPC dataset, owing to the unique distribution of objects and scene

characteristics in the URPC dataset.; however, its poor performance

on the Brackish dataset reveals a lack of generalization and

robustness, which are essential qualities for underwater object

detection models. Moreover, SSD, being relatively large among

one-stage algorithms, is not suitable for underwater target

recognition tasks on unmanned platforms. Notably, among the

one-stage algorithms included in our comparative experiments,

only RetinaNet requires higher hardware performance to meet

the real-time demands of underwater detection tasks, as its lower

FPS makes it unsuitable for real-time underwater target detection.

Figure 9 presents a comparison of the detection results for

underwater objects using the seven models with the best

performance from Table 3. We used the same RGB color for the

detection boxes of all YOLO series algorithms for easier

comparison. YOLOv5n exhibited lower confidence scores for

detected objects, YOLOv11n showed instances of missed

detections, while YOLOv7tiny, YOLOv8n, and SSD suffered from

false positives. YOLOv9t experienced both false positives and

missed detections. In contrast, LFN-YOLO not only accurately

identified the underwater objects but also achieved higher

confidence scores. Among the networks compared, LFN-YOLO

boasts the most lightweight structure.
5.3 Model edge deployment

With the increasing computational capabilities of edge

deployment devices, deep learning-based object detection tasks

are now more feasible. In this study, we deploy LFN-YOLO on

the NVIDIA Jetson AGX Orin edge computing device to further

validate its applicability in underwater platforms. To this end, we

selected fish fry as the target for recognition, with the recognition

scenario being a 200L fish tank. Our algorithm is deployed and

tested underwater, as shown in Figure 10A, which illustrates the

hardware connection diagram.

First, we trained both the LFN-YOLO and YOLOv8n models

using the Brackish dataset on a PC and transferred the trained

models to the project directory on the NVIDIA Jetson AGX Orin.

Subsequently, an underwater camera was placed in the tank and

connected to the RJ45 port of the NVIDIA Jetson AGX Orin, and an

external monitor was connected via the HDMI port on the Jetson

AGX Orin. Finally, a pre-written Python script was used to capture

the underwater camera feed as network input, run predictions, and

display real-time data. The real-time detection results of LFN-

YOLO are shown in Figures 10B, C.
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To evaluate the practical applicability of LFN-YOLO, we compared

its detection performance against that of YOLOv8n. As illustrated in

Figure 11, YOLOv8n exhibited notable deficiencies, including

frequently missed detections and low confidence scores. In contrast,

LFN-YOLO demonstrated superior performance, particularly in terms

of real-time detection speed, where it outpaced YOLOv8n by a

substantial margin. These results demonstrate that our method

performs stably in underwater environments, enabling real-time

detection and recognition of underwater targets, thus validating the

effectiveness and practicality of the algorithm.
Frontiers in Marine Science 14
6 Discussion

The LFN-YOLO model excels in underwater object detection,

particularly in terms of accuracy and lightweight design. This can be

attributed to our specially designed deep learning-based object

detection network, which seamlessly integrates various modules

to address the inherent challenges of the underwater environment.

Importantly, the architecture of the LFN-YOLO network was not

specifically designed for our experimental dataset, highlighting the

network’s broad applicability and strong generalization capabilities
FIGURE 9

(A–H) Presentation of detection results from seven advanced models.
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FIGURE 10

(A) is the hardware connection diagram. (B, C) present the recognition results of the LFNYOLO deployment.
FIGURE 11

(A, B) Comparison of recognition results for edge deployment.
Frontiers in Marine Science frontiersin.org15

https://doi.org/10.3389/fmars.2024.1513740
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1513740
in underwater tasks. To further evaluate its effectiveness, we

compared LFN-YOLO with other leading object detection

algorithms using the TrashCan dataset (Hong et al., 2020). This

dataset comprises 7,212 underwater images, featuring 22 categories

of underwater objects such as debris, ROVs, and various marine

species. The images were sourced from the J-EDI (JAMSTEC

E-library of Deep-sea Images), managed by the Japan Agency for

Marine-Earth Science and Technology (JAMSTEC).
Frontiers in Marine Science 16
Table 4 presents the comprehensive experimental results of

LFN-YOLO compared to other models on the TrashCan dataset.

Our model achieved a mAP@0.5 of 66.2%, demonstrating a

significant advantage in accuracy over other algorithms, while

also being more lightweight in terms of model parameters and

GFLOPs compared to many real-time detection algorithms.

Figure 12 shows the detection results of LFN-YOLO across four

different underwater environments in the TrashCan dataset. In
TABLE 4 Experimental results of LFN-YOLO and other object detection models on the TrashCan dataset, with the best results highlighted in bold.

Model Parameters/M GFLOPs mAP@0.5/% mAP@0.5:0.95/%

Faster R-CNN 41.4 135 55.3 38.2

RT-DETR 32.8 109 61.4 44.2

YOLOv5n 2.7 7.8 61.7 43.7

YOLOv6-N 4.5 11.9 58.8 41.6

YOLOv7-tiny 6.2 13.2 65.9 45.0

YOLOv8n 3.2 8.9 64.1 45.8

YOLOv9t 2.0 7.9 63.9 45.6

YOLOv10n 2.7 8.4 61.0 43.6

YOLOv11n 2.6 6.5 63.4 45.3

SSD 26.3 116.2 58.1 40.4

LFN-YOLO 2.7 7.2 66.2 47.1
FIGURE 12

(A–D) Detection results of LFN-YOLO in four different underwater environments.
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particularly challenging conditions where human vision struggles to

discern objects that blend almost seamlessly with their

surroundings, LFN-YOLO can accurately and effectively detect

these targets. As illustrated in Figures 12A, B, even in scenarios

with extremely low contrast and densely clustered small objects, the

model successfully identifies underwater targets. Similarly, in

Figures 12C, D, LFN-YOLO demonstrates strong robustness in

detecting objects in complex backgrounds with occlusions.

Although our model has made significant progress in advancing

the deployment of underwater object detection systems, LFN-YOLO

still faces challenges with false positives and missed detections in highly

variable underwater environments. As shown in Figure 13, using the

URPC dataset as an example, LFN-YOLO struggles with small object

detection in complex backgrounds due to limitations in feature

extraction, leading to missed detections. Additionally, under low-

resolution conditions, such as those represented by the Brackish
Frontiers in Marine Science 17
dataset, small object detection is easily affected by occlusion and

insufficient resolution, resulting in inaccurate localization.

Furthermore, in scenarios with large variations in object scale, such

as the TrashCan dataset, LFN-YOLO still needs improvement in

detecting targets with significant scale changes in underwater images.
7 Conclusion

The detection of small underwater organisms is of great

significance for marine life sciences and resource exploration. This

paper proposes a lightweight underwater object detection model based

on deep learning, which achieves both lightweight design and high

accuracy while demonstrating excellent generalization and robustness,

essential qualities of a strong model. Firstly, the model introduces a

lightweight re-parameterization technique, RepGhost, to achieve
FIGURE 13

Presentation of representative failure cases. Panels (A, B) show missed detections in complex backgrounds from the URPC dataset. Panels (C, D)
illustrate misdetections in low-resolution images from the Brackish dataset. Panels (E, F) depict missed and misdetections due to significant scale
variations in the TrashCan dataset.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1513740
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1513740
feature reuse, reduce the number of parameters, and improve both

training efficiency and inference speed, minimizing the accuracy loss

while maintaining a lightweight backbone network. The feature

extraction network is further enhanced by incorporating SPD-Conv

convolution modules, which improves the effective extraction of small

object features. Secondly, to address challenges such as small object size,

dense distribution, and blurry imaging in underwater visible light

conditions, we propose a GFPN (General Feature Pyramid Network)

for feature fusion, enabling effective extraction of features across

varying object scales. Finally, cross-layer local attention mechanisms

are added to the detection head to reduce unnecessary computations

and enhance model robustness. A DFL (Distribution Focal Loss) is also

introduced to minimize regression and classification losses. LFN-

YOLO achieves strong detection results on the URPC, Brackish, and

TrashCan datasets, with mAP@0.5 scores of 82.2%, 97.5%, and 66.2%,

respectively, improving upon YOLOv8 by 2.6%, 1.2%, and 2.1%.

Meanwhile, the model reduces parameters and GFLOPs by 15.6%

and 19.1%, meeting the requirements for both lightweight design and

high precision. This makes it suitable for small underwater object

detection and marine species diversity surveys. In the future, we will

explore underwater multi-source information fusion, specifically by

integrating underwater visible light images with various underwater

sensors, such as sonar, to enable the model to perform underwater

exploration tasks in low-light or no-light conditions. This approach

aims to further enhance the model’s generalization capability and

adaptability to diverse environments. At the same time, we will

optimize the model end-to-end to improve its real-time detection

capabilities. This will not only assist researchers in conducting more

efficient marine resource surveys but also provide robust technological

support for underwater ecological conservation.
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