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climate warming
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Matthew L. Kirwan2, Wenwen Liu1* and Yihui Zhang1*

1Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the
Environment and Ecology, Xiamen University, Xiamen, Fujian, China, 2Virginia Institute of Marine
Science, William & Mary, Gloucester Point, VA, United States
Introduction: Biomass allocation between aboveground and belowground pools

in salt marshes has distinct effects on salt marsh stability, and is influenced by

climate warming and reproductive investment. However, the lack of studies on the

effect of latitudinal variations in reproductive investments and biomass allocation in

salt marshes makes it difficult to explore mechanisms of marsh plant growth to

climate warming across geographical scales. The rapid invasion of the salt marsh

grass Spartina alterniflora into lower latitudemarshes around theworld provides an

opportunity to investigate biomass allocation and reproductive investment across

latitudes, helping to understand how salt marshes respond to climate warming.

Methods: Therefore, we investigated aboveground biomass (AGB), belowground

biomass (BGB), total biomass, sexual reproduction traits (inflorescence biomass,

flowering culm), asexual reproduction traits (shoot number, rhizome biomass),

among S. alterniflora at 19 sites in 10 geographic locations over a latitudinal

gradient of ~2000 km from Dongying (37.82°N, high latitude) to Danzhou (19.73°

N, low latitude) in China.

Results: The AGB, BGB, and total biomass displayed hump shaped relationships

with latitude, but the BGB: AGB ratio decreased with increasing latitude (i.e.

increased linearly with temperature). Interestingly, we found that the BGB: AGB

ratio negatively correlated with sexual reproductive investment, but positively

correlated with asexual reproductive investment.

Discussion: While conceptual and numerical models of salt marsh stability and

carbon accumulation often infer responses based on aboveground biomass, our

study suggests that salt marsh responses to climate warming based on

aboveground biomass and static allocations may bias estimates of future salt

marsh production driven by climate warming.
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1 Introduction

Biomass allocation is an essential plant functional trait that

reflects plant adaptive strategies (Poorter et al., 2012). Moreover,

biomass allocation affects ecosystem functions based on

aboveground biomass (AGB) and belowground biomass (BGB)

allocation, such as primary production (Kirwan et al., 2009),

storm surge abatement (Gedan et al., 2011), and carbon storage

(Ma et al., 2021). Temperature and precipitation are the main

factors affecting biomass allocation over wide latitudinal gradients,

the effects and relative importance are different between terrestrial

ecosystems (Liu et al., 2021; Ma et al., 2021; Qi et al., 2019; Wang

et al., 2016). Resource allocation to reproduction is also influenced

by temperature (Yue et al., 2020), precipitation (Wang et al., 2018),

water depth (Li et al., 2019), and salinity (Xue et al., 2018).

Furthermore, in suboptimal growth conditions, plants can

suppress reproductive allocation but conserve vegetative

allocation to ensure survivorship (Wenk and Falster, 2015). The

trade-off between growth and reproduction suggests that

reproductive investment affects the plant’s biomass allocation

(Lowry et al., 2019). There are few studies on the latitudinal

pattern of aboveground and belowground biomass allocation in

salt marshes (but see Crosby et al., 2017). Empirical evidence

strongly supports the effects of climate warming and reproductive

investment on biomass allocation separately (Ma et al., 2021; Wenk

and Falster, 2015), but the combined response of allocation to both

warming and reproductivity remains unknown.

In salt marshes, the aboveground organs are the main

contributors to primary production, efficient in reducing wave

height (Gedan et al., 2011), and helping to increase sediment

deposition (Jiang et al., 2024; Mudd et al., 2010). Meanwhile, the

belowground organs are the main location of carbon storage, which

can increase subsurface marsh volume, enhance soil shear strength,

and reduce erosion (Coleman and Kirwan, 2019; Kirwan and

Megonigal, 2013; Silliman et al., 2019). While increasing

temperatures can yield both positive and negative effects on salt

marshes, their impact varies depending on the geographic location

(Wernberg et al., 2024). In colder latitudes, warming tends to

stimulate the growth of marsh plants, whereas in the tropical

range limits of salt marshes, it tends to suppress or have minimal

impact on their growth (Coldren et al., 2019; Smith et al., 2022). A

manipulative warming experiment suggests that elevated

temperatures have different effects between above and

belowground organs, with optimum warming shown to be helpful

for belowground biomass accumulation (Noyce et al., 2019).

Latitudinal gradients of biomass allocation can help to explore the

mechanisms of marsh plant growth and the potential response of

salt marshes to climate warming at the geographical scale (Crosby

et al., 2017). However, previous studies have always focused on the

latitudinal pattern of AGB (Kirwan et al., 2009; Liu et al., 2016; Xu

et al., 2020), with few studies examining changes in BGB with

latitude. The timing of flowering and seeds set also varies with

latitude (Crosby et al., 2015; Liu et al., 2016), which should influence

biomass allocation (Chen et al., 2019; Sun et al., 2001). Therefore,

the combined effects of climate warming and reproductive
Frontiers in Marine Science 02
investment may affect above- and belowground biomass

allocation along latitudinal gradients, potentially altering the

stability and function of salt marshes.

Spartina alterniflora is a widely distributed salt marsh plant,

native to the United States (27°N ~ 45°N) (Kirwan et al., 2009;

Strong and Ayres, 2013). Previous studies in the U.S. found that S.

alterniflora AGB decreased with increasing latitude, while BGB

increased with increasing latitude, and that the BGB: AGB ratio

increased with latitude in its native range (Crosby et al., 2017; Gross

et al., 1991; Kirwan et al., 2009). S. alterniflora has been invading

salt marshes for more than 40 years in China, and now occurs over

~ 20° of latitude, from 19°N ~ 40°N (An et al., 2007; Liu et al., 2016,

2018). A variety of plant functional traits show different latitudinal

patterns between its native and invasive range, including

reproduction traits (e.g., flowering culm, seeds set, flowering

time), growth traits (e.g., size, density) and AGB (Liu et al., 2016,

2020a). These works suggest that the contrasting adaptation

strategies may occurs between native and invasive ranges (Liu

et al., 2020b).

Previous studies compared the trait differences between invasive

and native ranges of S. alterniflora (Liu et al., 2016, 2020b). Yet most

studies on biomass allocation have been conducted at local scales

and focused on the response to some abiotic factors in the native

(Biçe et al., 2023; Darby and Turner, 2008; Snedden et al., 2015) and

invasive ranges (Tang et al., 2022; Zhao et al., 2010). The broader

scale pattern of this latitudinal variation in biomass allocation of

invasive S. alterniflora and its relationship with reproductive

investment remains unknown. Furthermore, S. alterniflora in

China extends to lower latitudes (to ~ 19°N) than studies in the

US (to ~ 27°N, native range), providing a unique opportunity to

reveal the more complicated latitudinal biomass allocation patterns

than have been documented in the native range. In this study, we

address two questions: 1) does the biomass allocation of S.

alterniflora vary across latitudes within its invasive range in

China? 2) do environmental factors and reproductive investment

influence biomass allocation?
2 Materials and methods

2.1 Study sites

To investigate the latitudinal variations in biomass allocation

and reproduction investment, we conducted field survey across

latitude. The study locations encompassed a stretch of the Pacific

coast in China, covering a distance exceeding 2000 km. Ten specific

locations were chosen to represent the majority of S. alterniflora

distribution in China (Figure 1). These 10 study locations ranged

from Danzhou, Hainan (19.73°N), in the south to Dongying,

Shandong (37.82°N), in the north (Table 1). Since the introduced

in 1979, rapid spread of S. alterniflora happened in China coastal,

the invasion history of S. alterniflora in each location was range

from 1985 to 2000 (An et al., 2007), except Hannan in 2015 (Zhang

et al., 2017). We conducted field surveys from August to October

2021, which represented the end of the growing season at all
frontiersin.org
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TABLE 1 Location name, abbreviation (used in figures), latitude and longitude, mean annual temperature, growing degree day, mean annual
precipitation and mean tidal range of ten survey locations on the coast of China.

Location Abbreviation Latitude (°N)
Longitude
(°E)

Mean
annual
temperature
(°C)

Growing
degree
days (>10
°C)

Mean annual
precipitation
(mm)

Mean tidal
range
(cm)

Dongying DY 37.82 119.09 14.12 4863.76 691.19 54

Ganyu GY 34.84 119.20 14.87 4968.50 916.43 361

Rudong RD 32.46 121.29 16.50 5456.99 1252.14 448

Shanghai SH 30.83 121.65 17.46 5818.25 1384.53 403

Yueqing YQ 28.33 121.18 18.99 6437.64 1563.15 478

Luoyuan LY 26.45 119.76 18.73 6532.12 1577.64 476

Yunxiao YX 23.92 117.44 21.80 7898.81 1515.11 235

Leizhou LZ 20.92 110.17 23.90 8698.35 1650.74 179

Haikou HK 20.05 110.42 24.83 9008.59 1798.01 119

Danzhou DZ 19.73 109.27 24.69 9059.14 1858.62 194
F
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Locations are ordered from north to south.
FIGURE 1

Ten study locations on China’s east coast.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1510854
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2024.1510854
locations (Chen et al., 2021). At this time, the peak of flowering had

passed and plants were beginning to senesce.
2.2 Samples collection

At each location, we worked at two sites, 2-3 km apart (except

Danzhou). At each site, we sampled three to five 0.5*0.5 m quadrats,

with at least 30 m spacing between quadrats. To standardized

elevation effects across all sites, we defined the best-growing as

the tallest plants at each site. And study showed that plant height of

S. alterniflora have a humped relationships with elevation (Li et al.,

2018), tallest plants usually growing at mid/low marsh. All quadrats

were sampled in the mid/low marsh, where S. alterniflora had the

tallest plant and grows best (Liu et al., 2020b). In each quadrat, all

plants (including adult plants and seedlings) were counted and used

as an asexual reproduction trait (Xue et al., 2018). Then flowering

culms were counted and used to calculate the ratio of flowering

culms to adult plants, which served as a sexual reproduction trait

(Liu et al., 2016). All the aboveground parts were harvested at

ground level and immediately weighed in the field. A single

representative shoot, which was tallest with complete

inflorescence (Liu et al., 2022b), from each quadrat was taken to

the laboratory, dried at 60 °C to constant mass, and weighed. The

dry mass: fresh mass ratio of these shoots in each site (total 3-5

shoots) was used to calculate aboveground dry mass for each

quadrat, served as aboveground biomass (AGB). Furthermore, the

inflorescence biomass was determined for each representative

shoot, served as another reproduction trait (Sun et al., 2001).

A cylindrical soil core (15 cm diameter and 20 cm height)

containing roots was removed and washed from each quadrat,

most of the belowground organs was in the upper 20 cm soil

profile (Darby and Turner, 2008). Belowground organs

were divided into roots and rhizomes, and were taken to the

laboratory dried at 60 °C for 72 h to determine the root biomass

and rhizome biomass. All biomass data, including aboveground

biomass, root biomass, and rhizome biomass were calculated

proportionally to biomass per square meter. The belowground

biomass (BGB) is equal to the sum of root biomass and rhizome

biomass. The total biomass is equal to the sum of AGB and BGB.

The ratio of rhizome biomass to belowground biomass (referred to

as Rhizome: BGB ratio) serves as an indicator of asexual

reproduction trait (Kaldy and Dunton, 2000), and the ratio

of belowground biomass to aboveground biomass (referred to

as the BGB: AGB ratio) serves as an indicator of biomass

allocation strategy.
2.3 Local environmental factors

To investigate the relationship between S. alterniflora biomass

allocation and local environmental factors, we collected three

surface soil samples (under 5-10 cm from soil surface) near the

quadrats at each site. Soil water content (WC) and soil porewater
Frontiers in Marine Science 04
salinity (PS) were measured using the soil rehydration method

(Pennings and Richards, 1998). We also collocated surface soil with

a 100 cm3 ring knife at the same quadrats to measure soil bulk

density (BD) by the bulk density ring method (Yang et al., 2018).

The annual mean tidal range (MTR), which served as a local

environmental factor, was obtained from the stations closest to

each local in the National Marine Data and Information Service

(http://www.nmdis.gov.cn).
2.4 Climate environmental factors

To analyze the relationship between S. alterniflora biomass

allocation and climate environmental factors, we collected daily

meteorological data, including daily mean temperature and daily

rainfall, from the city closest to each site during 2012 to 2021 (Nearly

10 years) in Climate Information for the China Meteorological Data

Sharing Service System (https://data.cma.cn/). Mean annual

temperature (MAT), annual number of growing days (> 10 °C)

and mean annual precipitation (MAP) were calculated to represent

the climate differences at each site. Growing degree days (GDD)

measure the number of degrees that daily temperatures exceed a

threshold temperature (10 °C) necessary for significant plant

growth and therefore reflect both the temperature and duration of

the growing season (Kirwan et al., 2009).
2.5 Statistical analysis

For statistical analysis purposes, we assumed that S. alterniflora

in each quadrat was derived from an independent patch, so that

each quadrat was a replicate. Thus, we have 5-10 replicates at each

location. Regression analyses, including linear regression and

polynomial regression, were used to identify the latitudinal trend

of total biomass, AGB, BGB, BGB: AGB ratio, inflorescence

biomass, flowering culm, shoot number and Rhizome: BGB ratio,

furthermore used to identify the relationships between BGB: AGB

ratio and reproduction traits, which include inflorescence biomass,

flowering culm, shoot number and Rhizome: BGB ratio.

We used structural equation modeling (SEM) to explore the

pathways of how environmental variables affected the BGB: AGB

ratio. The SEM was based on the following hypotheses: 1)

environmental factors can affect BGB: AGB ratio directly or

indirectly by regulating reproductive investment (e.g., sexual

reproduction and asexual reproduction) that drive biomass

allocation. 2) environmental factors should divide in two parts,

climate environmental factors (named climate environment) and

non-climate environmental factors (named local environment),

which have different effects on BGB: AGB ratio and reproductive

investment. Owing to the large number of explanatory variables and

strong correlations among variables (Supplementary Tables S1, S2),

we developed multivariate functional indices through principal

component analysis (PCA) before SEM. The first principal

component (PC1) from the PCA conducted for the MAT, MAP
frontiersin.or
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and GDD were introduced in the SEMs to represent the climate

environment. The first principal component (PC1) from the PCA

conducted for the MTR, WC, PS and BD were introduced in the

SEMs to represent the local environment. The first principal

component (PC1) from the PCA conducted for the flowering

culm and inflorescence biomass were introduced in the SEMs to

represent the sexual investment. The first principal component

(PC1) from the PCA conducted for the ratio of Rhizome: BGB ratio

and shoot number were introduced in the SEMs to represent the

asexual investment. We used Fisher’s C test, the Akaike information

criteria (AIC) value, and P value to evaluate the goodness of these

models. All statistical analyses were performed on raw data from

each quadrat, and were conducted using R version 4.1.2 with the

‘vegan’ package for RDA analysis (Dixon, 2003), and the

‘piecewiseSEM’ package for SEM analyses (Lefcheck, 2016).
3 Results

Total biomass (R2 = 0.40, P < 0.001), aboveground biomass

(AGB) (R2 = 0.56, P < 0.001), and belowground biomass (BGB) (R2

= 0.08, P = 0.024) all demonstrated a humped relationship with

latitude (Figures 2A–C). Interestingly, the maximum values for

total, aboveground, and belowground biomasses were found at

similar latitudes. Specifically, the maximum AGB was 3854.95 ±

315.55 g/m², observed in YQ (28.33°N); the maximum BGB was

1658.38 ± 91.96 g/m², found in SH (30.83°N); and the maximum

total biomass was 5492.23 ± 206.51 g/m², also located in SH (30.83°

N). Furthermore, the ratio of BGB to AGB showed a linear decrease

with increasing latitude (R2 = 0.39, P < 0.001) (Figure 3). The

maximum value of the BGB: AGB ratio was 0.94 ± 0.07, found in LZ

(20.92°N), while the minimum BGB: AGB ratio was 0.16 ± 0.03,

observed in RD (32.46°N).

Sexual reproduction traits, specifically inflorescence biomass

and flowering culm, showed a linear increase with latitude

(Figures 4A, C. R2 = 0.41, P < 0.001; R2 = 0.37, P < 0.001). The

inflorescence biomass varied from 0.16 ± 0.02 g/plant to 2.63 ± 0.29

g/plant, while the proportion of flowering culm to total number of

adult plants ranged from 29.34 ± 3.63% to 79.14 ± 3.33%. In

contrast, asexual reproduction traits, namely shoot number and

Rhizome: BGB ratio, decreased linearly with increasing latitude
Frontiers in Marine Science 05
(Figures 4B, D. R2 = 0.39, P < 0.001, R2 = 0.23, P < 0.001). The shoot

number ranged from 126.00 ± 7.28 ind./m² to 547.27 ± 45.42 ind./

m². Rhizome: BGB ratio varied from 34.76 ± 2.65% to 73.26 ±

3.89%. These findings highlight the distinct responses of sexual and

asexual reproduction traits at latitudinal gradients.

The BGB: AGB ratio demonstrated contrasting relationships

with sexual and asexual reproduction traits, as clearly depicted in

the provided scatter plots (Figure 5). For sexual reproduction traits

(Figures 5A, C), the BGB: AGB ratio showed a linear decrease with

an increase in inflorescence biomass (R2 = 0.21, P < 0.001) and

flowering culm (R2 = 0.18, P < 0.001). On the other hand, for

asexual reproduction traits (Figures 5B, D), the BGB: AGB ratio

increased linearly with an increase in shoot number (R2 = 0.48, P <

0.001) and Rhizome: BGB ratio (R2 = 0.09, P = 0.003).

SEMs showed that the BGB: AGB ratio of S. alterniflora

increased with climate environment and decreased with local

environment (Figure 6). As indicated by the standardized total

effects, climate environment (MAT, MAP, GDD) was more

important than local environment (MTR, WC, PS, BD) in

explaining the BGB: AGB ratio of S. alterniflora. SEMs revealed

that the direct effects of climate and local environment on BGB:
FIGURE 3

Relationship between the ratio of belowground biomass to
aboveground biomass and latitude.
FIGURE 2

The relationships between (A) total biomass, (B) aboveground biomass and (C) belowground biomass and latitude.
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AGB ratio, but the indirect effects of climate and local environment

on BGB: AGB ratio were found only in asexual investment, and the

asexual investment increased with climate environment and

decreased with local environment. The results of SEMs showed

that both climate and local environment could directly affect

BGB: AGB ratio. And then, climate and local environments

could indirectly affect BGB: AGB ratio by changing the

asexual reproduction.
4 Discussion

Our research discovered a linear decrease in BGB: AGB ratio

from low to high latitude, indicating that S. alterniflora allocates

more biomass belowground in southern marshes than in northern

marshes in China. This variation in belowground biomass

allocation suggests that ecosystem functions may differ between

high and low latitudes. Previous studies focused on the effect of

environmental conditions (e.g., temperature) on BGB: AGB ratio in

the native range (Crosby et al., 2017), but our study found that

reproductive investment also had a major effect on the biomass

allocation of S. alterniflora across latitude in China. This finding

underscores the importance of considering latitudinal trends in

reproductive investment when predicting saltmarsh productivity
Frontiers in Marine Science 06
and its impact on ecosystem function in the future. This new

perspective could lead to more accurate predictions and better

management strategies for these critical ecosystems.
4.1 Peak aboveground and belowground
biomass in mid-latitudes

Niche theory posits that plants perform optimally in middle

latitudes, with performance decreasing below or above these middle

latitudes (Cody, 1991). Our findings corroborate this theory, as we

observed that AGB, BGB, and total biomass were highest in the mid-

latitudes. The latitudinal trend in AGB is consistent with previous

studies on AGB of S. alterniflora in China (Liu et al., 2016; Xu et al.,

2020). However, the latitudinal trends in AGB and BGB are

inconsistent with earlier studies in S. alterniflora in its native range,

where AGB decreased linearly from low to high latitude (Kirwan

et al., 2009; Liu et al., 2020a). Due to the methodological challenges

inherent in observing and quantifying BGB, there is a limited body of

research investigating the latitudinal patterns of BGB in S. alterniflora

in China. However, the available studies indicate a linear increase in

BGB with latitude in its native range (Crosby et al., 2017; Gross et al.,

1991). Overall, the difference in latitudinal trends between invasive

and native ranges of BGB may depend on the distribution and the
FIGURE 4

Relationships between sexual reproduction traits and asexual reproduction traits and latitude. Sexual reproduction traits include (A) inflorescence
biomass and (C) flowering culm, asexual reproduction traits include (B) shoot number and (D) Rhizome: BGB ratio.
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differences in environmental factors along latitudes (Liu et al., 2020a).

Research conducted across a broader latitudinal gradient suggests

that the decline in productivity of S. alterniflora at low and high

latitude regions may translate to marshes more susceptible to the

effects of sea level rise.

In this study, AGB and BGB were associated with most of

environmental factors (Supplementary Figure S1, Supplementary

Table S3), but the mean annual temperature, which decreases

linearly with latitude, is the most important environment factor.

The results suggest an optimal temperature for S. alterniflora growth,

which is consistent with the law of limiting factors, that plants often

perform better in favorable environmental conditions (Singh and Lal,

1935), and that deviations from these optimal conditions plant

performance reduce plant size and biomass (Liu et al., 2016; Liu

and Pennings, 2019). The result of AGB was consistent with previous

studies (Liu et al., 2016, 2020a), as both high and low temperatures

inhibit plant growth and physiological metabolism (Hatfield and

Prueger, 2015). The effect of temperature on BGB was also well

studied in a manipulative warming experiment, where a moderate

amount of warming maximized root growth (Noyce et al., 2019). The

warming experiment and our latitudinal investment suggest that
Frontiers in Marine Science 07
global warming may have different impacts on salt marsh

productivity across different latitudes. At lower latitudes, high

temperatures exceed the optimal temperature of S. alterniflora, so

that climate warming will reduce the growth of S. alterniflora. This

reduction in biomass may result in lower latitude salt marshes being

more vulnerable to sea level rise.
4.2 BGB: AGB ratio decreases linearly
with latitude

High BGB: AGB ratios at high latitudes in terrestrial ecosystems

have been attributed to cold winter temperatures (Vogel et al.,

2008), though complex vegetation types and various controlling

factors obscure a consistent pattern in BGB: AGB ratio with latitude

(Jin et al., 2022; Qi et al., 2019; Tedla et al., 2019). In contrast, we

found that BGB: AGB ratios were highest in low latitudes, and

decreased linearly with increasing latitude, indicating that S.

alterniflora allocated relatively more biomass to belowground in

southern than northern marshes in China. The latitudinal trend in

BGB: AGB ratio is also inconsistent with an earlier study in S.
FIGURE 5

Relationships between sexual reproduction traits, asexual reproduction traits, and the ratio of belowground biomass to aboveground biomass. Sexual
reproduction traits include (A) inflorescence biomass and (C) flowering culm, Asexual reproduction traits include (B) shoot number and (D) Rhizome:
BGB ratio. The dots of different colors represent the latitude of the quadrat.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1510854
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2024.1510854
alterniflora in its native range, in which BGB: AGB ratio increased

linearly from low to high latitude (Crosby et al., 2017). This may be

attributed to variances in the lowest latitudes between the two

studies: 19.73°N in our study and 32.55°N in Crosby’s study.

Additionally, there appears to be a linearly increasing trend from

RD (32.46°N) to DY (37.82°N). Discrepancies in temperature,

precipitation and other environment factors between the native

and invasive ranges could also contribute to differential responses

(Poorter et al., 2012). Biomass allocation in plants confirms to

optimal partitioning theory (Mccarthy and Enquist, 2007) and is

influenced by a variety of environmental factors, such that BGB:

AGB ratio typically decreases with temperature, and exhibits a

humped relationship with precipitation (Qi et al., 2019). Our study

found BGB: AGB ratio decreased linearly from low to high latitude.

The decreasing temperature with latitude may be the most

important factor in our study (Supplementary Figure S3). The

results are consistent with a previous study, where four seagrass

species showed a higher BGB: AGB ratio with temperature

increases, because higher temperatures increase leaf respiration

but decrease leaf photosynthesis, made them reallocate more AGB

to BGB (George et al., 2018). Furthermore, early research showed

first flowering day earlier at low latitude with higher temperature

(Chen et al., 2021), earlier flowering had positive effect on BGB:

AGB ratio (Liu et al., 2021), because most of photosynthetic

products will transfer to belowground after flowering (Crosby

et al., 2015). However, a warming experiment in a C4 Spartina

patens marsh suggests that temperature had a non-linear effect on

BGB and the BGB: AGB ratio, where BGB: AGB ratios were
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maximized for temperatures only slightly higher than ambient

(Noyce et al., 2019). The effect of temperature on biomass

allocation is also affected by other environmental factors (Ma

et al., 2021). Our study found that both climate and local

environments affect the BGB: AGB ratio of S. alterniflora. The

salinity decreasing along the latitudinal gradient also affected the

BGB: AGB ratio (Supplementary Figure S1), consistent with a

previous study (Zhou et al., 2021) that illustrated the increase in

soil salinity inhibits the absorption of nitrogen by plant roots, more

biomass allocates to belowground is needed to absorption of

nitrogen (Tang et al., 2022). Even though the results corroborate

the optimal partitioning theory. But the effect of different invasion

history on latitudinal biomass allocation is not clearly. Future

studies need to test the effects of different invasion history on

biomass allocation of S. alterniflora in different latitudes, which can

help to better understand the underly mechanisms of latitudinal

biomass allocation.

Our results may indicate that, in the future, although global

warming will reduce the productivity of S. alterniflora, rising

temperatures may encourage the plant to allocate more biomass

into the belowground part, which could partly mitigate the decline

in ground elevation and the erosion from sea level rising. And

studies showed that S. alterniflora growth better than native species

under flooding and salinity stress (Xue et al., 2018; Xu et al., 2020),

suggest that S. alterniflora was more tolerant than natives in future

scenarios of increased sea-level and saltwater intrusion (Borges

et al., 2021), the maintaining of S. alterniflora may help for costal

erosion control under future climate change (Strong and Ayres,
FIGURE 6

Structural equation models illustrate the plausible effects of environmental factors and reproductive investments on the biomass allocation of
Spartina alterniflora along latitude gradients. Black and red arrows represent significant positive and negative pathways, respectively, and dashed
arrows indicate nonsignificant pathways. Values next to the arrows represent standardized effect sizes with statistical significance (* P<0.05;
** P<0.01; *** P<0.001), arrow width is proportional to the strength of the relationship. MAT = mean annual temperature, MAP = mean annual
precipitation, GDD = growing degree day, MTR = mean tidal range, WC = soil water content, PS = soil porewater salinity, BD = soil bulk density.
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2013). However, S. alterniflora had negative impact on the native

coastal ecosystems (An et al., 2007). Many native species, including

salt marshes and mangroves, endangered birds and benthonic

animal are threatened by S. alterniflora invasion (Ma et al., 2003;

Zhang et al., 2012). Furthermore, the widely spread of S. alterniflora

in China also had damage in maricultural activities, soil formation,

and accumulation of nutrients (Gao et al., 2016), harm of S.

alterniflora may out weights its benefits.
4.3 Effects of reproductive investment on
BGB: AGB ratio

Previous work in a salt marsh warming experiment suggests

that biomass allocation of plants responds to temperature warming

through internal changes in nitrogen supply and demand (Noyce

et al., 2019; Bruns et al., 2024). This work finds that root:shoot ratios

are maximized at intermediate temperatures because plants must

allocate biomass to roots to satisfy high nitrogen demand even as

nitrogen supplied by mineralization is relatively low (Noyce et al.,

2019; Bruns et al., 2024). Our finding that BGB: AGB ratios increase

linearly with temperature differs from the findings of an optimum

(non-linear) response observed in the warming experiment, and

suggests additional mechanisms may be at play. For example, the

latitudinal gradient in aboveground biomass (Figure 2) suggests that

N demand should be lowest at low latitudes (i.e. low AGB), yet has

the highest BGB: AGB ratio.

Previous studies indicate that reproductive investment also

affects BGB: AGB ratio, such that increased sexual reproduction

will reduce the BGB: AGB ratio (Sun et al., 2001; Skarpaas et al.,

2016). In this study, the latitudinal patterns of sexual reproduction

traits and asexual reproduction were contrasted in S. alterniflora.

The latitudinal trend in sexual reproduction traits was also found in

previous studies (Chen et al., 2021; Liu et al., 2016), which was

embodied in the advance of flowering phenology (Crosby et al.,

2015; Liu et al., 2022a) and the increase in seed set with increases in

latitude (Liu et al., 2016). These increases may be due to shorter

growth cycles and higher synchronization offlowering phenology at

higher latitudes (Qiu et al., 2018). The latitudinal trends of asexual

reproduction traits show that plants use the same resource pool for

reproduction, and an increase in the investment in sexual

reproduction inevitably reduces the investment in asexual

reproduction (Thompson and Eckert, 2004). Furthermore, sexual

reproduction cost more than asexual reproduction, consumes a lot

of energy in individual growth to support flowering, cause less

investment in asexual reproduction (Skarpaas et al., 2016).

Plants that favor sexual reproduction usually exhibit increased

plant size and larger above-ground biomass (Liu and Pennings,

2019). Sexual reproduction requires substantial energy and this

inhibits plant energy reserves in the belowground part of the plant

(Liu et al., 2022a). In this study, the increasing sexual reproduction

investment led to a decrease in the BGB: AGB ratio. On the other

hand, asexual reproduction components, such as rhizomes, are an
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important part of belowground biomass, so that belowground

biomass allocation decreases with the decrease in asexual

reproduction (Xie et al., 2016). Furthermore, in the asexual

reproduction stage, plants allocate more resources to the asexual

reproductive organs which leads to a decrease in total biomass

(Chen et al., 2019), resulting in a high BGB: AGB ratio at low

latitudes. Overall, the lower input of sexual reproduction but the

higher input of asexual reproduction resulted in a higher BGB: AGB

ratio in low-latitude populations. Although the reasons for the

difference in the reproductive investment of S. alterniflora along the

latitude gradient remain to be studied, the higher investment in

sexual reproduction in high latitude and the higher investment in

asexual reproduction in low latitude contribute to a better

understanding of the latitudinal biomass allocation pattern,

indicating that the latitudinal trends of reproductive investment

should be considered in the calculation of saltmarsh productivity on

ecosystem function in the future.
5 Conclusion

S. alterniflora produces the most biomass at mid-latitudes,

which is consistent with niche theory and the observed latitudinal

trend in biomass indicates the presence of an optimal temperature

range for salt marshes. Therefore, a warming-induced productivity

decline will be found at low-latitude marshes with the future climate

warming. But the BGB: AGB ratio decreased with increasing

latitude (i.e. warming temperatures), so that an increase in the

allocation to asexual reproduction could help to maintain

belowground biomass with the future climate warming in low

latitudes. In salt marsh, allocation to belowground organs regulate

soil elevation gain, thereby influencing the future stability of salt

marshes, and thus to prevent erosion from sea level rise.
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