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Spatiotemporal characteristics
and influencing factors of
China’s knowledge spillover
network of the marine industry
Kai Liu1,2*, Yi Zhang1, Fei Peng1,2, Tong Xie1, Qiang Du1

and Jia-yin Tan1

1Institute of Marine Sustainable Development, Liaoning Normal University, Dalian, China, 2University
Collaborative Innovation Center of Marine Economy High-Quality Development of Liaoning Province,
Dalian, China
Using social network analysis, spatial econometric method and structural equation

model, based on the patent citation data of China’s marine industry from 2008 to

2019, this paper analyzes the temporal-spatial characteristics and influencing

factors of knowledge spillover network of marine Industry in China. The results

show that: the knowledge spillover network with Qingdao, Beijing and Shanghai as

the main distribution centers has expanded rapidly, and the network status of

Zhoushan, Wuhan and other cities has improved significantly. The network space

structure tends to be multi-core and complex, extending from coast to inland;

There are significant differences in cyberspace. The central and western regions are

low value areas, while the eastern region is the core area, and the core cities have

built an “X” shaped spatial structure with Qingdao as the intersection; Knowledge

proximity, social proximity, cognitive proximity and economic proximity are

important factors that affect knowledge spillover networks. Geographic proximity

has a reinforcing effect on knowledge proximity and economic proximity. This

paper is beneficial in that it provides a reference and experience for the innovation

of themarine industry and the high-quality development of themarine economy by

effectively analyzing the spatio-temporal characteristics and influencing factors of

China’s marine knowledge diffusion network.
KEYWORDS

knowledge spillover network, marine industry, spatiotemporal characteristics,
influencing factors, social network analysis, structural equation model
1 Introduction

Amidst the resource and environmental pressures stemming from the swift

advancement of the social economy, the ocean, which constitutes approximately 71% of

the Earth, represents a “blue ocean” abundant in resources and possessing extensive

development potential. The financial sector’s growing interconnection with the marine
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1509523/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1509523/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1509523/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1509523/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1509523&domain=pdf&date_stamp=2025-01-07
mailto:dalianliukai@lnnu.edu.cn
https://doi.org/10.3389/fmars.2024.1509523
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1509523
https://www.frontiersin.org/journals/marine-science


Liu et al. 10.3389/fmars.2024.1509523
economy (Song et al., 2020; Su et al., 2021) has emerged as a pivotal

factor in propelling future human economic progress. As a

prominent maritime nation, China’s marine economy has

emerged as a new focal point for economic growth; however, the

economic efficiency of marine science and technology innovation

remains inadequate (Wu et al., 2019; Wang et al., 2020), and the

disjointed development of the marine economic ecosystem (Peng

et al., 2018) has hindered the advancement of the marine industry.

Within the framework of the new development model, establishing

a marine innovation system and expediting the transition between

traditional and emerging driving factors has become crucial for

advancing the marine economy. Knowledge, learning, and

invention are fundamentally interconnected (Rao and Li, 2006).

Knowledge accumulation underpins innovation activities, while

knowledge spillover among enterprises, universities, and research

institutions fosters the creation of new knowledge and serves as an

internal mechanism for advancing regional innovation

development (Liu and Ge, 2018). The widespread use of new

technologies in the Internet economy facilitates cross-regional

knowledge transfer and information interchange, rendering

knowledge spillover beyond R&D investment a significant

method of knowledge acquisition.

Knowledge spillover denotes the phenomenon wherein the

knowledge generated by one economic organization is employed

by another, often without enough pay or at a value lower than its

worth (Jaffe, 1996). Explicit knowledge embedded in products and

documents, along with implicit knowledge inherent in individuals,

may unconsciously transfer to other industries or areas (Tijssen,

2001). Knowledge spillover, being an intangible phenomenon, poses

challenges for quantification using conventional data and

measuring techniques (Braunerhjelm and Svensson, 2024).

Griliches first developed a knowledge production function and

depicted knowledge spillover using a knowledge stock adjusted by

a distance function, establishing the groundwork for the

quantitative analysis of knowledge spillover (Griliches, 1979).

Knowledge spillover in Western new economics predominantly

illustrates a process of spatial interaction (Li et al., 2013).

Rodriguez-Pose, Crescenzi and Qiu (Rodriguze-pose and

Crescenzi, 2008; Qiu et al., 2020) employed spatial weight

matrices to examine the geographical confines of regional

knowledge spillovers in Europe and China, respectively.

Alongside geographical distance and concealed obstacles,

including social, cognitive, and institutional barriers (Abramo

et al., 2020), the examination of information spillover effects

through network linkages has deepened significantly. Many

empirical research rely on knowledge input or output data. The

cross-regional impacts of knowledge spillovers, facilitated by

varying proximity or network links, were assessed (Sheng and

Lesage, 2021; Cortinovis and Van Oort, 2019; Ma et al., 2018).

Conversely, Choi established a global knowledge spillover network

utilizing trade and FDI data to investigate the influence of network

structure on country innovation performance (Choi and Zo, 2022).

Zhang utilized patent data to develop a technology connectedness

index and matrix, examining the technology spillover network
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characteristics of Chinese innovation firms (Zhang et al., 2022). Li

and Wang examined the attributes and determinants of knowledge

spillover networks in China’s biopharmaceutical and knowledge-

intensive sectors, utilizing data from scientific paper writing and

patent citations (Li et al., 2013; Wang and Gu, 2021). These scholars

have examined the avenues of knowledge spillover from a

network approach.

Patent data, as an accessible and timely source of technical

information, encompasses geospatial and citation data that facilitate

the examination of the temporal and spatial attributes of knowledge

spillover, thereby reflecting its characteristics and possessing

distinct advantages (Wang and Gu, 2021). When a creative entity

applies for a patent, it will reference analogous patents to

demonstrate its distinction from prior patents, so illustrating the

advancement of the patent. Such citations are prevalent in patent

applications (Steensma et al., 2015), signifying that knowledge

transfer has occurred. Knowledge sources can be identified by

analyzing citation data in patent literature (Hussler, 2004;

Maurseth and Verspagen, 2002). Despite the presence of noisy

information, patent data can nevertheless indicate knowledge

connections or future knowledge flows (Li, 2017). Granovetter

contended that the network model’s focus on strong ties

restricted its relevance to small, defined groups, asserting that

weak ties might enhance the diversity of knowledge or

information obtained within the creation of loose networks

(Granovetter, 1973). Wang discovered that the significance of

weak links in semiconductor manufacturers’ knowledge spillover

networks, as measured by patent citation data, had been

underestimated in the acquisition of external knowledge (Wang

et al., 2017). The citation of information data partially represents

the innovation of the original knowledge, therefore enabling these

data to characterize the Marine innovation network (Li et al., 2021;

Guo et al., 2021). In recent years, evolutionary economic

geographers have examined the accumulation effect of innovation

space through the lens of multidimensional proximity theory,

addressing the effects of cognitive proximity, socio-cultural

proximity, organizational proximity, and social institutional

proximity (Rigby, 2015; Martinez et al., 2024). illustrates the

spatio-temporal variability of the knowledge spillover network.

Current research seldom addresses the knowledge spillover

within the marine industry, and there is insufficient discourse

regarding the primary sources, directions, and intensities of marine

knowledge spillover, along with the spatio-temporal variations of the

knowledge spillover network. Consequently, utilizing the notion of

weak ties and proximity, we aim to delineate the attributes of the

knowledge spillover network in the developmental trajectory of the

marine industry through patent data pertaining to the sector. This

paper employs patent citation data from China’s marine industry

spanning 2008 to 2019 to construct a knowledge spillover network at

the prefecture level. It utilizes social network analysis and

multidimensional proximity theory to thoroughly investigate the

evolutionary characteristics and potential mechanisms of network

state, external connections, and urban spatial distribution within the

spatial knowledge spillover of the marine industry.
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2 Data source and
research methodology

2.1 Building a knowledge spillover network

The research concentrates on prefecture-level cities in mainland

China, omitting Hong Kong, Macau, and Taiwan, and employs

certain criteria and methodologies for data filtration (Figure 1):

Initially, patent applicants must be Chinese citizens, and only the

geographic location details of the primary applicant are preserved to

guarantee data accessibility. Secondly, patents categorized as marine

patents are those including “Marine” in the title or abstract inside

the worldwide patent database (IncoPat) from 2008 to 2019. These

patents encompass domains pertaining to marine resources, energy

development, and the delivery of associated products and services.

Moreover, the forward and backward citations of patent data

elucidate knowledge spil lover from the viewpoints of

technological diffusion and spillover origins, respectively. Forward

citations may signify the advancement, investigation, application,

and dissemination of succeeding innovations derived from earlier

information (Alcácer and Gittelman, 2006; Hall et al., 2001; Marco,

2007). We investigate the knowledge spillover effect by examining

backward citations in patent literature and acquiring geographical

location data via publication numbers and database links. The

research categorizes the timeframe from 2008 to 2019 into three

distinct phases: 2008-2011, 2012-2015, and 2016-2019, to analyze

the configuration of the knowledge spillover network. Following

screening and processing, these three eras encompass 887, 3044,

and 5112 citation linkages, respectively, thereby establishing a

patent citation network with prefecture-level cities as nodes. The

research employs Ucinet 6.0 and ArcGIS 10.2 software for social

network analysis (SNA) and geographical analysis.
2.2 Social network analysis

The SNA involves the following network structure indices:

(1) Network size: It denotes the total number (n) of nodes in

a network.

(2) Network density: Network density reflects the degree of

connection between network nodes. The higher the network

density, the more significant the knowledge spillover between

nodes, and the more convenient the knowledge flow:
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 D = m=n(n − 1) (1)

where, m denotes the total number of actual relations in the

entire network (it is n(n-1) in a directed network). The closer to 1

the D value, the closer the relations between network nodes.

(3) Node reciprocity: It denotes the proportion of two-way

spillover relations in the entire network.

(4) Centrality: In this study, node centrality was measured in

terms of degree centrality (CD(i)), betweenness centrality (CB(i)), and

weighted centrality. Degree centrality reflects the ability of a node to

connect with other nodes. The higher the degree centrality, the

more nodes in the network that are directly connected to the node.

In a directed network, degree centrality is the sum of in-degree and

out-degree. Betweenness centrality reflects the degree of control of a

node over network information. The higher the betweenness

centrality, the more frequently a node is in the shortest path of

other node pairs. In this study, the weighted in-degree and out-

degree in a directed weighting network respectively reflected the

intensity at which individuals cite patents and individuals’ patents

are cited by others, and the sum of the two was weighted centrality.

The first two centrality indicators are standardized to facilitate the

comparison between networks of different sizes.

 CD(i) =
Cout
i + Cin

i

2(n − 1)
(2)

where, Cout
i =oN

j=1xij and C
in
i =oN

j=1xji, respectively denote

node out-degree and in-degree (the xij and xji values are 0 or 1).

CB(i) =
oj∈Nok∈Nbjk(i)
(n2 − 3n + 2)=2

(3)

where, j ≠ k ≠ i,  bjk(i) denotes the probability that Node i is in

the shortest path between Nodes k and j.

(5) Central potential: Degree central potential (CRD) reflects the

overall concentration degree of a network, and star networks have

the highest degree central potential. High betweenness central

potential (CB) of a network implies a high degree of dependence

on certain nodes in the process of knowledge transfer. Based on the

degree centrality and betweenness centrality of nodes, the degree

central potential and betweenness central potential of a network can

be calculated as follows:

CRD = o
n
i=1(CD(i)max − CD(i))

n − 2
(4)
FIGURE 1

Data presentation Note: a1 and a2 are the geographic information of joint applications (so do b1 and b2), and c and d denote the geographic
information of independent applicants.
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CB = o
n
i=1(CB(i)max − CB(i))

n − 1
(5)
2.3 A structural equation model

2.3.1 Constructing a SEM
Using a measurement model and a structural model,

structural equation modeling (SEM) is a technique for

examining the connections between indicators and latent

variables. Software like LISREL, AMOS, and SmartPLS are used

to implement SEM, which offers more precise parameter

estimations than typical linear regression. PLS-SEM is especially

appropriate when the influence mechanism is still unclear and can

manage individual variables (Hair et al., 2012). PLS-SEM is

constructed in this work using SmartPLS 3.0 software, which

analyzes 5,112 samples from 2016 to 2019. The model is validated

using 5,000 bootstrap resamplings. Geographical, knowledge,

social, economic, and cognitive proximity, as well as the

interplay between knowledge, economic, and geographic

proximity, are examples of exogenous latent variables in the

PLS-SEM model, whereas the degree of knowledge spillover is

an endogenous latent variable.

2.3.2 Multidimensional proximity variables
(1) Geographic proximity: It is measured in terms of nominal

and spatial distance proximity. Nominal distance proximity is

assigned a value according to the region in which a city is located

(1 for the same provincial region; 0.5 for the same region (eastern,

central, western and northeastern China specified in China’s 11th

Five-Year Plan), and 0 for the whole country). Geographic distance

is calculated based on a city’s latitude and longitude coordinates,

and spatial distance proximity is calculated using the method

specified by Wang (Wang, 2013):

Geoproij =
1 − ln (dij + 1)

ln (max (dij) + 1)
(6)

where, dij denotes the geographic distance between cities i and j;

max(dij) denotes the maximum geographic distance; Geoproij
denotes the spatial distance proximity between cities i and j

(value range: 0 to 1).

(2) Knowledge proximity and economic proximity: They reflect

the differences in the number of invention patent applications and

per-capita GDP between cities, and their ranges are standardized to

facilitate their evaluation.

(3) Social proximity: The Jaccard index is used to measure the

social proximity in a knowledge spillover network of the marine

industry (Gui et al., 2018):

Socproij =
Iij

Ij + Oi − Iij
(7)

where, Iij denotes the edge weight from i to j; Ij denotes all input

strengths of j; Oi denotes all output strengths of i (The value range

of social proximity is 0 to 1).
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(4) Cognitive proximity: Cognitive proximity is measured in

terms of knowledge structure similarity (Knopro) and industrial

structure similarity (Indpro):

Knotproij =
o8

n=1(finfjn)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o8

n=1f
2
in

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o8

n=1f
2
jn

q (8)

Indproij =
o3

k=1(fikfjk)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o3

k=1f
2
ik

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o3

n=1f
2
jk

q (9)

According to the international patent classification standard,

patents are classified into eight categories, and all industries are

classified into primary, secondary, and tertiary industries; fin and fjn
denote the number of all invention patent applications in the

technological field n in Cities i and j; fik and fjk denote the

proportion of Industry k in the industrial structure of Cities i and

j, and the value range of knowledge structure similarity and

industrial structure similarity is 0 to 1.
3 Spatiotemporal characteristics of
China’s knowledge spillover network
of the marine industry

3.1 The core positions of Qingdao, Beijing,
and Shanghai are continuously
strengthening, while cities like Zhoushan,
Wuhan, and Guangzhou are
developing rapidly

Table 1 presents the ten leading node cities ranked by centrality

across three periods from 2008 to 2019, with Qingdao, Beijing, and

Shanghai consistently occupying the top three positions, signifying

their pivotal role in the marine sector knowledge spillover network.

The ranks of sub-core cities, including Wuhan, Guangzhou,

Zhoushan, Tianjin, Dalian, Hangzhou, and Nanjing, are both

stable and subject to change. Between 2008 and 2011, Beijing’s

dominance was most pronounced. Between 2012 and 2015,

Qingdao’s centrality attained a value of 0.450, surpassing that of

Beijing and Shanghai, while significantly trailing other cities.

Between 2016 and 2019, the rankings of Zhoushan and

Guangzhou improved markedly, the disparity among core cities

diminished, and the overall centrality of the network increased to

44.54% (Table 2), signifying a shift towards a multicentric network

model, with knowledge increasingly concentrated in a select

number of core cities.

Between 2008 and 2019, Qingdao, Beijing, and Shanghai

consistently occupied the top three positions in intermediary

centrality. As centers of information dissemination, they have

increased opportunity to obtain diverse knowledge, however their

intermediate centrality experienced a modest decline. The

intermediary centrality of sub-core cities like Wuhan, Guangzhou,

and Zhoushan is increasing, narrowing the disparity among core

cities, and the intermediary effect of cities is becoming more
frontiersin.org
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distributed. From 2016 to 2019, Qingdao’s central role as a hub

continued to strengthen, despite a decline in intermediary

centrality, which remained the highest. Zhoushan’s position

increased from 14th to 6th (period 3), indicating its progressively

significant role in the marine sector knowledge spillover network.

Figure 2 illustrates the top 10 cities ranked by weighted

centrality across several periods, with findings mostly aligning

with those in Table 1. Qingdao, Beijing, and Shanghai occupy the

top three positions regarding weighted centrality, outgoing degree,

and incoming degree, making them the most dynamic nodes in the

knowledge spillover network. The weighted export degree of Beijing

and Shanghai consistently surpasses the weighted import degree,

and as the network’s radiation centers, their power and control are

intensifying. Conversely, the weighted import degree of Qingdao

consistently surpasses the weighted export degree, ranging from 142

to 2554, signifying the swift advancement of marine industry

patents in Qingdao, which has now emerged as the preeminent

hub in the network. In recent years, the weighted income of Wuhan,

Zhoushan, and Dalian has markedly increased.
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3.2 The spillover of marine knowledge in
cyberspace exhibits significant polarization
effects and is evolving towards a multi-
core complex model with three major
distribution centers as the focal points

Table 2 illustrates the topological attributes of the knowledge

spillover network within China’s marine sector from 2008 to 2019.

The nodes in the knowledge spillover network rose from 169 to 273,

while the network density grew from 0.031 to 0.069, signifying an

intensification of network expansion and knowledge flow. In

comparison to the degree center potential, the intermediary center

potential was diminished and persisted in its decrease. As innovation

capacity improves, the quantity of nodes directly associated with the

core node rises, signifying an increase in network concentration.

Nonetheless, the overall network density and node reciprocity are

minimal, with reference linkages predominantly unidirectional and

tenuous. Between 2016 and 2019, 3,094 city pairings produced 5,112

bilateral reference links, resulting in a network reciprocity of 30.9%.

The natural fracture method in ArcGIS software categorizes the

number of patent cross-citations in the Marine industry among

cities into five tiers. Figure 3 illustrates the spatial distribution of

the knowledge spillover network within China’s marine industry. The

findings indicated that, in all three periods, the low-strength bond

prevailed, with cities exhibiting bond strength below the average

constituting 78.08%, 81.83%, and 82.81%, respectively. First-tier and

second-tier cities serve as the primary overflow conduits, with side

number proportions of 1.63%, 0.76%, and 0.97%, respectively, and

total citation proportions of 17.52%, 18.88%, and 26.48%. The

concentrated technology transfer indicates that the knowledge

spillover network exhibits a notable spatial polarization effect.

Between 2008 and 2011, the mutual referrals between the

Beijing and Shanghai regions were the highest, indicating a

primary-level link. The citation count for other relational patents

is below 40, with the majority utilized for long-distance applications
TABLE 2 Topological structure indicators of the knowledge
spillover network.

Period
2008-
2011

2012-
2015

2016-
2019

Number of nodes 169 253 273

Network density 0.031 0.048 0.069

Node reciprocity (%) 20.0 28.0 30.9

Degree central
potential (%)

29.97 40.59 44.54

Between central
potential (%)

11.00 10.06 7.74
TABLE 1 Degree centrality and betweenness centrality of different cities.

Degree Centrality Betweenness Centrality

2008–2011 2012–2015 2016–2019 2008–2011 2012–2015 2016–2019

Beijing (0.327) Qingdao (0.450) Qingdao (0.551) Beijing (0.114) Qingdao (0.103) Qingdao (0.080)

Shanghai (0.280) Beijing (0.437) Beijing (0.493) Shanghai (0.094) Beijing (0.093) Beijing (0.071)

Qingdao (0.247) Shanghai (0.381) Shanghai (0.471) Qingdao (0.074) Shanghai (0.064) Shanghai (0.063)

Dalian (0.199) Tianjin (0.304) Wuhan (0.415) Dalian (0.051) Tianjin (0.040) Wuhan (0.040)

Hangzhou (0.185) Dalian (0.282) Guangzhou (0.403) Hangzhou (0.043) Dalian (0.034) Guangzhou (0.036)

Tianjin (0.182) Wuhan (0.280) Zhoushan (0.384) Guangzhou (0.040) Wuhan (0.033) Zhoushan (0.033)

Guangzhou (0.167) Hangzhou (0.258) Tianjin (0.371) Tianjin (0.036) Nanjing (0.025) Tianjin (0.028)

Nanjing (0.149) Nanjing (0.256) Dalian (0.355) Nanjing (0.026) Guangzhou (0.025) Nanjing (0.025)

Wuhan (0.143) Xiamen (0.244) Hangzhou (0.355) Chongqing (0.025) Hangzhou (0.024) Dalian (0.024)

Shenzhen (0.110) Wuxi (0.242) Nanjing (0.342) Wuhan (0.023) Xiamen (0.022) Hangzhou (0.023)

Standard
deviation (0.064)

Standard
deviation (0.075)

Standard
deviation (0.058)

Standard
deviation (0.030)

Standard
deviation (0.028)

Standard
deviation (0.020)
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across geographies. Between 2012 and 2015, the first-tier city

network comprised Beijing - Qingdao, Shanghai - Qingdao,

Beijing - Shanghai, and Beijing - Tianjin, during which the patent

citations of Qingdao in Beijing, Shanghai, Tianjin, Dalian, and

Guangzhou experienced substantial growth; additionally, Wuhan

and Zhoushan became part of the second-tier city network. Between

2016 and 2019, the triangular configuration of Qingdao, Beijing,

and Shanghai was significantly reinforced, resulting in closer

connections and a substantial expansion of the first-tier city

network. The knowledge spillover strength from Shanghai and

Qingdao to Zhoushan was notably augmented.

From 2008 to 2019, the intensity of knowledge spillover in

China’s marine industry experienced significant growth. Qingdao,

Beijing, and Shanghai have emerged as the three principal

distribution centers, distinct from the “trapezoidal” core structure

of “Beijing-Qingdao-Shanghai-Guangzhou” identified in Guo

et al.’s study on the geographical characteristics of the marine

scientific research network (Guo et al., 2021). The network has

transitioned from a dual-core framework to a multi-core

framework, and technology dissemination has progressed from
Frontiers in Marine Science 06
coastal regions to interior areas. The significance of inland cities

like Wuhan is growing daily, and the correlation between patent

citations and regions, as well as short distances within the network

of prominent cities, is intensifying.
3.3 Significant spatial variation in the
knowledge spillover network, and X-
shaped core area in eastern China with
Qingdao as the intersection

The ArcGIS kernel density analysis tool was utilized to create a

distribution map of the knowledge spillover network in China’s

marine industry (Figure 4), based on inter-city patent citation

intensity. The findings indicate that: i) notable disparities exist

within the spatial knowledge spillover network of China’s marine

industry; ii) with the exception of Wuhan, the nuclear density in the

central and western regions is predominantly low; iii) the eastern core

area exhibits an X-shaped spatial configuration with Qingdao as the

nexus, linking Beijing, Tianjin, Zhenjiang, Wuxi, Suzhou, Shanghai,
FIGURE 2

Weighted out-degree and in-degree of different cities.
FIGURE 3

Spatial characteristics of China’s knowledge spillover network of the marine industry (A) 2008-2012; (B) 2012-2016; (C) 2016-2019.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1509523
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1509523
Hangzhou, Zhoushan, Dalian, Yantai, Nanjing, Guangzhou, and

Shenzhen. The transfer of knowledge from the northeast to the

southwest is somewhat feeble. The inner and inter-connections

between the Bohai Sea Rim and Yangtze River Delta urban

agglomerations are notably strong. The analytical conclusion aligns

closely with Ma et al.’s nuclear density examination of the spatial

distribution evolution of urban innovation output (Ma et al., 2018),

demonstrating that marine industrial innovation exhibits analogous

spatial differentiation to urban innovation output in cities. Table 3

juxtaposes the information spillover network density throughout the

Bohai Rim, Yangtze River Delta, and Pearl River Delta regions. A

density matrix is built based on the patent citation relationships

within the marine industry. The row field denotes the overflow

ground, the column field signifies the receiving ground density

matrix, and the diagonal line illustrates the internal network density

of the corresponding city clusters. The findings indicate that the

density of the national directed weighted network is 0.306, whereas

the regional network densities for the circum-Bohai Sea, Yangtze

River Delta, and Pearl River Delta are 7.154, 7.320, and 1.708,

respectively, signifying the concentration of the knowledge spillover

network. The internal network density of the Bohai Rim city cluster

and the Yangtze River Delta city cluster significantly exceeds that of

the entire nation, with network densities from the Bohai Rim to the

Yangtze River Delta and from the Yangtze River Delta to the Bohai

Rim city cluster measuring 6.310 and 6.918, respectively, indicating

frequent knowledge exchange between the two regions. Conversely,

the local network density of the Pearl River Delta city cluster, centered

on Guangzhou, is comparatively low, yet the external network
Frontiers in Marine Science 07
intensity with the Yangtze River Delta and the Bohai Sea rim

surpasses that of the Pearl River Delta.
4 Analysis of influencing factors

4.1 Test of the measurement model

The measurement model involves a reliability and validity test.

The reliability test involves the load coefficients, Cronbach’s a, and
composite reliability of the measurement model. Table 4 lists the

Bootstrap test results of the load coefficient of the measurement

model. Specifically, the load coefficients of (Spatial distance

proximity)x(knowledge proximity) <- (Geography) x (Knowledge)

and Industrial structure proximity <- Cognitive proximity are

slightly lower than 0.7 (0.638 and 0.679 respectively); all other
FIGURE 4

Kernel density of China’s knowledge spillover network of the marine industry from 2016 to 2019.
TABLE 3 Density matrix of China’s three major city clusters.

Circum-
Bohai-Sea

Yangtze
River Delta

Pearl
River Delta

Circum-
Bohai-Sea

7.154 6.31 3.222

Yangtze
River Delta

6.918 7.32 4.096

Pearl
River Delta

3.536 3.63 1.708
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latent variables are greater than 0.7, and all indicators are significant

at the 0.01 level. As described in Table 5, Cronbach’s a of

geographic proximity is 0.736, and Cronbach’s a of other

variables are within an acceptable range of 0.6 to 0.7 and the

composite reliability of all variables is greater than 0.8. Therefore,

the measurement model is of high reliability. The validity test

involves convergent validity and discriminant validity. The

average variance extracted (AVE) of all reflective latent variables

is greater than 0.5 (Table 5), indicating that the measurement model

passes the convergent validity test. The root value of AVE (diagonal

value) of each latent variable in Table 6 is greater than the Pearson

correlation coefficients between it and other latent variables, and the

load coefficient of each indicator in the measurement model is

greater than its cross-load coefficients (load coefficients of the

indicator relative to other latent variables), indicating that the

measurement model passes the discriminant validity test.
4.2 Test of the structure model

The test of the structure model mainly involves the significance

of the path coefficients (measured by t-value) and the explanatory

power of the structure model (measured by R2). The explanatory

power of the model (R2) is equal to the product of the correlation

coefficients and path coefficients between latent variables and
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different explanatory latent variables; R2 reflects the extent to

which an explanatory latent variable explains a latent variable, or

the fit effect of the structure model. The adjusted R2 of the structure

model is 0.226 (greater than the minimum standard of 0.019),

indicating that the explanatory power of several latent variables in

the structure model is acceptable.

Table 7 lists the Bootstrap test results of the path coefficients of

the structure model. Evidently, the effect of geographic proximity is

not significant, the effect of knowledge proximity is significantly

negative at the 1% level, and the effect of social, cognitive, and

economic proximity is significantly positive at the 1% level.

Followed by social proximity, knowledge proximity has the largest

path coefficient, and the path coefficients of economic proximity

and cognitive proximity are smaller than those of knowledge and

social proximity to some extent. The interaction term between

geographic and knowledge proximity is significantly negative at the

10% level, and the interaction term between geographic and

economic proximity is significantly positive at the 1% level.

Evidently, geographic proximity produces a positive moderating

effect; specifically, it can strengthen the similarity of economic

strength between regions, as well as the effect of knowledge stock

gap on the intensity of knowledge spillover.

5 Conclusions and policy implications

Through a thorough examination of the patent citation data

pertaining to China’s marine industry from 2008 to 2019, we

develop an extensive knowledge spillover network. This network

elucidates the patterns and attributes of knowledge dissemination

within the Marine industry, while also offering recommendations to

augment Marine innovation capacity and foster the high-quality

advancement of the Marine economy. It aims to establish an

analytical framework for the Marine economy in China and

globally, viewed through the lens of knowledge spillover,

and serves as a reference for enhancing regional Marine

innovation capacity and stimulating the growth trajectory of the

Marine economy.
TABLE 4 Bootstrap test results of load coefficients of the measurement model.

External Model
Load (O)

Standard Deviation
(STDEV)

T Statistic
(|O/STDEV|)

P Value

Spatial distance proximity <- Geographic proximity 0.813 0.056 14.457 0

Nominal distance proximity <- Geographic proximity 0.947 0.025 37.217 0

Industrial structure proximity <- Cognitive proximity 0.679 0.048 14.141 0

Knowledge structure proximity <- Cognitive proximity 0.958 0.017 56.577 0

(Spatial distance proximity)x(knowledge proximity) <-
(Geography) x (Knowledge)

0.638 0.235 2.711 0.007

(Nominal distance proximity)x(knowledge proximity) <-
(Geography) x (Knowledge)

0.858 0.204 4.203 0

(Spatial distance proximity)x(economic proximity) <-
(Geography) x (Economy)

0.865 0.024 35.679 0

(Nominal distance proximity)x(economic proximity) <-
(Geography) x (Economy)

0.833 0.033 25.383 0
TABLE 5 Reliability and validity test of the measurement model.

Cronbach’s
a

Composite
Reliability

AVE

Geographic proximity 0.736 0.875 0.779

Cognitive proximity 0.611 0.812 0.689

(Geography)
x (Knowledge)

0.657 0.831 0.716

(Geography)
x (Economy)

0.696 0.868 0.766
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Initially, Qingdao, Beijing, and Shanghai have consistently

occupied the central role in the information spillover network,

succeeded by Zhoushan, Wuhan, and Guangzhou. This indicates

that they are pivotal in knowledge innovation and dissemination

within the Marine business, aligning with the findings of Li. in their

research on cooperative innovation networks in the Marine sector

(Li et al., 2021). Over time, the dimensions and density of the

network surrounding the three distribution hubs have progressively

expanded, mirroring the more frequent and intense exchange of

knowledge within the Marine industry. The transition of network

topology from dual-core to multi-core illustrates the complex and

varied nature of information spillover within the marine industry.
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Since 2016, the X-shaped spatial configuration in East China,

centered around Qingdao, underscores its activity and impact on

knowledge spillover.

The information spillover network exhibits a propensity to extend

inland. Inland cities like Beijing, Wuhan, and Nanjing have emerged as

primary support points of the X-type core area, serving as significant

nodes for knowledge innovation in the marine sector. The growing

prevalence of technology-intensive sectors, such as the contemporary

marine service and advanced marine manufacturing industries,

indicates that marine technological innovation is increasingly reliant

on terrestrial knowledge, highlighting a pronounced terrestrial trend

within the marine industry. Cities with favorable locational attributes
TABLE 7 Test results of the structure model.

Path
Coefficient Standard Deviation

(STDEV)
T Statistic
(|O/STDEV|)

P Value

(O)

Geographic proximity -> Spillover intensity 0.01 0.01 0.97 0.332

Knowledge proximity -> Spillover intensity -0.383*** 0.018 20.781 0

Social proximity -> Spillover intensity 0.372*** 0.027 13.604 0

Cognitive proximity -> Spillover intensity 0.205*** 0.019 11.059 0

Economic proximity -> Spillover intensity 0.109*** 0.012 9.012 0

(Geography) x (Knowledge) -> Spillover intensity -0.084* 0.034 2.49 0.013

(Geography) x (Economy) -> Spillover intensity 0.078*** 0.019 4.16 0
"***" indicates that the test is significant at the 1% level, while "*" denotes that the test is significant at the 10% level.
TABLE 6 Discriminant validity.

Spill-
over

Intensit-
y

Geographic
Proximity

Knowledge
Proximity

Social
Proximity

Economic
Proximity

Cognitive
Proximity

(Geography)
x
(Knowledge)

(Geography)
x (Economy)

Spillover
Intensity

1

Geographic
Proximity

0.049 0.882

Knowledge
Proximity

-0.134 -0.014 1

Social
Proximity

0.37 0.044 0.204 1

Economic
Proximity

0.123 0.047 0.428 0.279 1

Cognitive
Proximity

0.08 0.054 0.622 0.2 0.355 0.83

(Geography)
x
(Knowledge)

-0.034 0.112 -0.017 -0.003 -0.039 0.022 0.846

(Geography)
x (Economy)

0.069 0.137 -0.025 0.046 -0.025 0.012 0.457 0.875
The diagonal bold values in the table are the “AVE square - root values” of the test factors. When these values are greater than the maximum values of the correlation coefficients between each
factor and other factors, it indicates that the test factors have good discriminant validity.
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will serve as more significant nodes in marine information

dissemination. Nanjing, despite being an interior city, possesses

abundant marine research resources, including multiple ocean-related

universities and institutes, as well as significant geographical advantages,

such as access to sea and inland river transit.

Thirdly, the empirical study of PLS-SEM elucidates the

determinants driving knowledge spillover. The adverse impact of

knowledge proximity suggests that a bigger disparity in knowledge

potential increases the likelihood of information spillover, highlighting

the significance of diverse knowledge in the innovation process. The

beneficial impact of social proximity on knowledge spillover suggests

that strong social connections and high familiarity among cities can

significantly diminish barriers in information transfer mechanisms,

hence facilitating the dissemination and exchange of knowledge. Cities

with analogous knowledge and industrial frameworks incur reduced

costs in the assimilation and implementation of new knowledge, hence

enhancing the knowledge spillover within the Marine industry. 4)

While geographical proximity does not significantly affect knowledge

spillover, it moderates the impact of knowledge proximity and

economic proximity on knowledge spillover, indicating the necessity

of a comprehensive evaluation of the interplay among various factors in

the context of knowledge spillover.

In light of the aforementioned research, we propose the

subsequent policy recommendations:

Initially, the facilitation of information sharing across emergent

nodes should be encouraged via various channels and innovation

agents. Zhoushan can utilize university resources to proactively

pursue marine patent applications and citations. To bolster regional

independent innovation capacity, it is essential to promote the

profound integration of universities, research institutes, and

enterprises, facilitating knowledge diffusion, transformation, and

renewal through various spillover mechanisms. Consequently, it is

imperative to enhance the methods and avenues for knowledge

acquisition and to facilitate the interaction and syn.
6 Restrictions and upcoming studies

This study offers a comprehensive analysis of the structural

attributes and spatio-temporal evolution of China’s marine industry

knowledge spillover network, serving as a significant reference for

advancing policy interventions aimed at fostering innovative

development in the marine sector. Given the expanding influence of

the Marine industry on the global economy, our results and

recommendations will hold substantial theoretical and practical

importance in advancing the high-quality growth of the Marine

economy. Nonetheless, the knowledge spillover network derived

from patent citation data inadequately represents the efficacy of

knowledge spillovers occurring through alternative channels (such as

direct interpersonal interactions) in the advancement of Marine

industry inventions, and it fails to account for the evolution of

knowledge spillovers in the Marine industry across diverse data

sources. Future research will thoroughly examine various relational

data and investigate the analytical impact of alternative methodologies

on the knowledge spillover effect, thereby elucidating the role of cities

within the marine sector knowledge spillover network.
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