
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Harry Gorfine,
Victorian Fisheries Authority, Australia

REVIEWED BY

Tomislav Džoic,
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Lagrangian dispersal models are valuable tools for understanding the transport

mechanisms and distribution of larvae in space and time. These models primarily

use high-quality physical oceanographic data from hydrodynamic ocean models

to simulate the advection and connecting pathways of larvae. The paper seeks to

achieve the following objectives 1) to establish the dispersal patterns of larval

anchovies and sardines spawned in South Africa’s coastal marine protected areas

(i.e., inshore of the 200m isobath), and 2) to assess the impact of model resolution

on the dispersal patterns by comparing outputs of a 3-km-grid coastal and regional

ocean community model, and the 8-km-grid global ocean physics reanalysis

product. We demonstrate that the model yields more structured patterns than

sporadic patterns obtained from the global reanalysis. The model shows relatively

shorter residence times (i.e., < 5 days) and transport confined to the inshore area of

the Agulhas Current. The high variability of dispersals observed off the west coast is

attributable to the significant differences in mean kinetic energy between the

model and global reanalysis. This finding directly impacts transport and potential

connectivity along coastlines: global reanalysis data overestimated local retention

and subsequent recruitment variability. Our findings indicate that a model grid size

of 3 km or smaller may be more appropriate for studying the dispersal patterns of

anchovies and sardines in the South African coastal zone. These findings add to the

growing knowledge of the importance of including sub-mesoscale processes in

Lagrangian analysis for dispersal studies of coastal species.
KEYWORDS

marine protected areas, Lagrangian analysis, dispersion, connectivity, ocean model,
South Africa, anchovy, sardines
1 Introduction

Hydrodynamic models are crucial for understanding and predicting various aspects of

the ocean environment, including circulation and population connectivity. They have

improved significantly over the last 20 years, leading to a wide array of applications in

studies and across disciplines, including larval dispersal (Miller, 2007; Lett et al., 2008; Parada
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et al., 2008; Simons et al., 2013; Lett et al., 2015., Swearer et al., 2019;

Saint-Amand et al., 2023), population connectivity (Cowen, 2002;

Cowen et al., 2007; Jesús et al., 2007; Treml et al., 2008; Lett et al.,

2010; Pineda et al., 2007) and the assessment of networks of marine

protected areas (Yemane et al., 2009; Rossi et al., 2014; D’Agostini

et al., 2015; Fox et al., 2016; Ross et al., 2017). Hydrodynamic models

are a critical component for the development of larval dispersal

models for studying the transport mechanisms and distribution

patterns of early life history stages of commercially and

economically important species such as the South African anchovy

(Engraulis capensis) and sardine (Sardinops sagax) foraging in and

around coastal marine protected areas (MPAs). Larval dispersal

models make use of physical oceanographic data (e.g., ocean

current velocity fields, temperature and salinity) derived from these

hydrodynamic ocean models [e.g., the Regional Ocean Modelling

System (ROMS) and Hybrid Coordinate Ocean Model (HYCOM)].

Larval dispersal models are powerful tools for simulating larval

transport and recruitment variability over time and space (Pineda

et al., 2007; Cowen et al., 2009; Lett et al., 2008, 2010; White et al.,

2019). Outputs from larval dispersal models provide insight into the

science-based conservation and management of the coastal

ecosystems. However, accurate estimates of ocean states on high

spatial and temporal grids are needed, especially for current velocity

fields and water temperatures.

The development and subsequent utilization of dispersal models

in ecological studies is facilitated by the ever-increasing access to

computational resources. Dispersal models are popular and effective

tools for simulating larval transport and the evolution of coastal

species driven passively by ocean currents. Therefore, the success of

dispersal models is largely dependent on highly accurate three-

dimensional estimates of ocean currents and temperature

throughout the domain of interest. Conversely, the accurate

description and parameterization of biological processes and the

ability of the dispersal models to accurately represent physical

parameters is crucial for achieving biological realism (i.e., the

reproduction of realistic advection trajectories). Dispersal models

are suitable candidates for studying larval advection in highly

dynamic coastal environments (Mitarai et al., 2007; Lett et al.,

2010; Ospina-Alvarez et al., 2018; Santos et al., 2018; Bashevkin

et al., 2020). The accuracy of the ocean model is a more direct source

of uncertainty in dispersal models than the model’s spatial resolution.

The spatial resolution may affect the model’s accuracy. Optimal

model spatial resolution is required for larval dispersal models to

capture fine-scale processes in and around coastal marine protected

areas. There is a need to accurately represent small-scale processes

that are important for the dispersion of anchovy and sardine larvae.

Few studies have investigated the impact of model spatial resolution

on larval dispersal and connectivity of anchovies in South African

waters (Huggett et al., 2003; Koneé et al., 2013; Lett et al., 2015). These

studies relied on hydrodynamic models that could only resolve

mesoscale processes to determine spawning patterns of anchovy

within the Benguela Current ecosystem (BEC). For example,

Huggett et al. (2003) simulated eggs and larvae of anchovies with

passive transport completely driven by ocean currents. Koneé et al.

(2013) incorporated food-dependency to the temperature-dependent

larval growth to the biophysical models to determine spatial and
Frontiers in Marine Science 02
temporal patterns of recruitment success of anchovy in the Benguela

region. Lett et al. (2015) provided a synthesis of larval dispersal

models used to simulate dispersal patterns of anchovy in the BEC

region. None of these studies have considered model resolutions fine

enough to be applicable to coastal marine protected areas. Other

studies have investigated the role of model resolution in the larval

dispersal of commercially important corals in nearshore regions

(Liu et al., 2021; Saint-Amand et al., 2023; Ward et al., 2023).

These studies highlighted the need to resolve small-scale processes

to understand dispersal patterns and estimate larval connectivity in

coastal ecosystems.

In this study, we assessed larval transport pathways and

connectivity across the MPA Network located within the 200 m

isobath along the coastline (Figure 1). The impact of the model

spatial resolution on the larval dispersal patterns of the anchovy and

sardine species of South Africa spawned in the Exclusive Economic

Zone is also assessed. The simulation of larval transport driven only

by ocean currents was investigated using current velocity fields from

the 3-km model and 8-km global reanalysis product, focusing on

the month of October, which coincides with the peak spawning

period of anchovies and sardines (Crawford, 1980; Huggett et al.,

1998; Hutchings et al., 1998; Beckley and Van der Lingen, 1999; Van

der Lingen and Huggett, 2003; Miller et al., 2006). Our research

aims to provide insight into the dispersion of anchovy and sardine

larvae across the South African coastal MPA network. This study

also aims to evaluate the consequences of not including small-scale

processes in Lagrangian analyses of anchovy and sardine in the

coastal zone of South Africa.

Study area : Physical oceanography along the South

African coastline

The Agulhas Current is a major driver of variability along South

Africa’s east coast, influencing fish ecology and the dispersal of early

life stages of various coastal fish species (Heydorn et al., 1978;

Lutjeharms and De Ruijter, 1996; Lutjeharms, 2006; Lutjeharms,

2007). The current’s mesoscale and submesoscale variability

impacts wind speeds and circulation patterns (Lutjeharms, 2006;

Krug et al., 2017; Backeberg et al., 2008; Krug et al., 2018; Tedesco

et al., 2019). The Kwa-Zulu Natal Bight, a key region within the

northern Agulhas Current, is influenced by the KZN Bight Coastal

Counter Current (Heye et al., 2022. Mesoscale features like Natal

Pulses further impact shelf circulation and ecosystem dynamics

(Krug and Penven, 2011; Malan et al., 2018).

The Agulhas Current and winds primarily drive circulation

along South Africa’s south coast (Schumann et al., 1982; Schumann

et al., 1995; Lutjeharms and De Ruijter, 1996; Schumann, 1999;

Lutjeharms, 2006). The Agulhas Bank, a productive region,

supports the spawning of key fish species (Hutchings, 1994;

Hutchings et al., 2002). Mesoscale meanders in the Agulhas

Current influence the circulation and productivity over the

Agulhas Bank (Krug et al., 2014). Wind-driven circulation,

particularly during October, is a key factor in the west coast’s

ecosystem (Boyd and Nelson, 1998; Shannon, 2001; Risien, 2002).

The Benguela Current jet plays a crucial role in transporting fish

eggs and larvae Shelton and Hutchings, 1982; Grote et al., 2007;

Stenevik et al., 2008; Veitch et al., 2018). Seasonal variations in

upwelling influence the jet’s position and the success of fish
frontiersin.org
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recruitment (Fowler and Boyd, 1998; Huggett et al., 1998; Beckley

and Van der Lingen, 1999).

The complex interaction of currents and winds along South

Africa’s coastline creates a unique marine environment (Figure 2).

This environment is ideal for studying how ocean processes

influence the dispersal and survival of fish larvae.
2 Methods

2.1 Ocean circulation model and global
ocean reanalysis

Our approach uses a triply nested configuration of the Coastal

and Regional Ocean Community (CROCO; Penven et al., 2006;

Debreu et al., 2012) version of the Regional Ocean Modelling

System (ROMS; Shchepetkin and McWilliams, 2005) for

numerical simulations. The model has 60 terrain-following

vertical levels, which were scaled down from 1/4° to 1/12° and

finally to a 1/36° grid. Outputs from the 1/36° grid model are used in

this study because of the model’s ability to capture and resolve

smaller-scale features of the shelf around the South African

coastline. The CROCO simulation used for our study is that of

Tedesco et al., 2019, who set up the model to investigate key sub-

mesoscale processes in the Agulhas Current. The model’s realism
Frontiers in Marine Science 03
has been validated against existing observations in Tedesco et al.

(2019) and has subsequently been used in a number of studies

(Schubert et al., 2021; Heye et al., 2022; Pfaff et al., 2022; Suthers

et al., 2023). CROCO was forced by climatological fields of wind

stress, surface temperature and humidity from global reanalysis

products and other atmospheric models. Daily and monthly means

of the 1/36° grid datasets are available for the period 1993 to 2014.

However, for the purposes of this study, we extracted and used daily

outputs for a 5-year period spanning from 2010 to 2014. The model

outputs are freely available and can be accessed at http://

dap . saeon.ac .za/ thredds/cata log/SAEON.EGAGASINI/

2019.Penven/DAILY_MEANS/1_36_degree/catalog.html.

The 1/12° grid global ocean physics reanalysis (GLORYS12) from

the Copernicus Marine Environment Monitoring Service (CMEMS)

is used for comparison with the model in this study. The GLORYS12

product is a global eddy-resolving physical ocean and sea ice

reanalysis product, with 50 vertical levels and covering the period

from 1993 to the present (Jean-Michel et al., 2021). The product is

based on the framework of the real-time forecasting CMEMS nested

in the Nucleus for European Modelling of the Ocean (NEMO)

platform and has been driven at the surface by the European

Centre for Medium-Range Weather Forecasts (ECMWF) ERA-

Interim and ERA5 reanalysis in recent years. In this product, ocean

observations are assimilated by means of a reduced-order Kalman

filter. GLORYS12 uses the 3D-VAR algorithm to resolve corrections
FIGURE 1

The bathymetry along the coastline of South Africa showing the 200 m isobath (black dotted line) delineating the positions of the marine protected
areas in which particles were released.
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for the slowly evolving large-scale biases in temperature and salinity.

The product resolves small-scale variability in surface dynamics and

compares well with nonassimilated data. It provides a reliable

physical ocean state for climate variability and supports a variety of

applications, such as seasonal forecasts and marine biogeochemistry.

In this study, we extracted the daily products of GLORYS12 for a 5-

year period spanning 2010-2014. The GLORYS12 product can be

accessed freely from https://data.marine.copernicus.eu/product/

GLOBAL_MULTIYEAR_PHY_001_030/.
2.2 Sea surface temperature

The level-4 sea surface temperature (SST) product from the

European Space Agency Climate Change Initiative (ESA-CCI) is

used in this study to evaluate the performance of the CROCO model

in representing the main physical processes around the South African

coastline. The level 4 ESA-CCI product provides gap-free maps of daily

average SSTs at a depth of 20 cm in the global ocean at a horizontal grid

resolution of 5 km. It consists of observations from the Along-Track

Scanning Radiometers (A)ATSRs), Sea and Land Surface Temperature

Radiometer (SLSTR) and Advanced Very High-Resolution Radiometer

(AVHRR) series of sensors (Merchant et al., 2019; Good et al., 2020).

The Level-4 product is available from 1 September 1981 to October

2022 and can be accessed from the CMEMS via the following link

https://doi.org/10.48670/moi-00169.

The study also uses a global 1km Group for High Resolution Sea

Surface Temperature (GHRSST) Level 2P dataset based on multi-

channel SST retrievals from the AVHRR on the European

Meteorological Operational-A satellite which was first launched
Frontiers in Marine Science 04
on 19 October 2006. This SST product is produced and retrieved

in near real time from Metop/AVHRR infrared channels (3.7,

10.8 and 12.0 micrometer) using multispectral algorithm by the

Ocean and Sea Ice Satellite Application Facility (OSI SAF). To

correct the multispectral algorithm for regional and seasonal biases,

atmospheric profiles of water vapor and temperature from

numerical weather prediction model and radiative transfer model

are applied (OSI SAF, 2014). Data access is provided free of charge

via THREDDS services on Catalog https://www.ncei.noaa.gov/

thredds-ocean/catalog/ghrsst/L2P/AVHRR_SST_METOP_A/

OSISAF/catalog.html.
2.3 Wind and Ekman transport

Hourly ERA5 wind data from the European Centre for Medium-

Range Weather Forecasts (ECMWF) reanalysis for the global climate

and weather are used in this study. The hourly ERA5 wind data are

available from 1940 onwards, and they are regridded to a regular lat-

lon grid of 0.25 degrees. The ERA5 data combines model data with

global observations to produce a complete dataset (Hersbach et al.,

2023). Conversely, Ekman currents derived from the Copernicus

Level 4 multiyear global total velocity product are used to characterize

the mean circulation along the west coast of South Africa. The Level 4

multiyear product provides velocity fields at the surface and 15 m

depth, with a 3-hour frequency and a 0.25-degree regular grid

(product ID: MULTIOBS_GLO_PHY_REP_015_004). The velocity

fields are generated by combining the Ekman currents simulated

using the approach of Rio et al. (2014) and the CMEMS geostrophic

surface currents from satellites. Products are available in hourly, daily
FIGURE 2

Schematics show the main circulation features of the Agulhas Current system. Areas shallower than 3000 m are shaded, while the edge of the shelf
is circumscribed by a dotted line at the 500 m isobath (Source: Lutjeharms, 2006).
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and monthly means. In this study, the daily averaged fields from 2010

to 2014 are used. For the purposes of this study, we extracted daily

average fields from 2010 to 2014 (Rouault et al., 2010).
2.4 Larval dispersal model

To simulate the larval dispersal patterns of the anchovy species

Engraulis capensis and sardine Sardinops sagax in South Africa’s coastal

marine protected areas, the Ichthyop Lagrangian tool was used

(Ichthyop v3.15; Lett et al., 2008). Ichthyop is an open-source java-

based tool designed to study physical and biological drivers influencing

larval dynamics throughout the water column. Ichthyop utilizes

current velocity vector fields, temperature and salinity from

hydrodynamic models to simulate advection and connecting

pathways of virtual particles (i.e., larvae) in a three-dimensional

physical environment. Ichthyop was built with the assumption that

ichthyoplankton are advected and diffuse similarly to water particles

and can be used in various applications in physical oceanography and

marine ecology. The tool follows the particle’s location and records its

associated ocean properties, such as temperature and salinity. One of

the advantages of the tool is that it provides users with the option to

code virtual particles with biological behavior (e.g., diel vertical

migration, swimming, etc.) to assess its impact on larval dispersion.

Ichthyop allows users to run simulations offline in either hindcast

(backtracking) or forecasting modes. However, in this study, particle

trajectories were tracked in forecasting mode at a constant time step

using a fourth-order Runge-Kutta model, which enables particle

trajectory tracking with adaptive time steps without compromising

computational efficiency (Van Sebille et al., 2018). In total, 140, 000

particles were released in the first 30 m of the water column every

October (coinciding with the peak sardine and anchovy spawning

periods) in 14 marine protected areas located within the 200 m

isobath (Figure 1). We released 10, 000 particles in each of the marine

protected areas on the first day of October. Simulation experiments

were run for 30 days (~ pelagic duration of anchovy and sardine in

South Africa) and particles were tracked every half an hour (1800

seconds). The number of virtual particles released was found to be

statistically sufficient to reproduce stable connectivity estimates, as

similar results were obtained when using twice as many particles. We

configured and parameterized both coarse and fine meshes such that

particles were prevented from overlapping with land; therefore,

particles were considered dead when they reached land or drifted

outside the domain. This approach was used to avoid bias in our

analysis. Moreover, we released particles on the surface and allowed

them to be transported passively by ocean currents derived from both

the high-resolution CROCO model and the coarse-resolution

GLORYS products. The objective here was to test the sensitivity of

particle dispersion to spatial resolution when advected passively

without incorporating biological behaviors.
2.5 Connectivity metrics

We constructed connectivity matrices by evaluating larval

settlement (i.e., potential recruitment) every 15 days along the
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30-day particle trajectories. In this study, larval anchovies and

sardines were considered to have reached a suitable competency

period at the age of 15 days, which is the period when larvae are

suitable for settlement (Beckley and Van der Lingen, 1999; Somarakis

and Nikolioudakis, 2010; Hampton, 2014). This exercise was

performed every half an hour during the competency period. We

considered particles to have successfully settled if they were found

within a coastal marine protected area at any given time during the

competency period. Essentially, connectivity matrices were

constructed to summarize the number of virtual larvae exchanged

between any two MPAs, as were obtained after 30 days of simulation.

Moreover, from any connectivity matrix, we derived the strength of

the connection from one MPA to another. The strength of the

connection from MPA i to j corresponds to the proportion of

virtual larvae released on MPA i that then settled onto MPA j.

Row i of the matrix corresponds to the source MPA, and column j

corresponds to the settlement MPA. A nonzero value obtained from

the connectivity matrix denotes an existing connection between

MPA i and MPA j (D’Agostini et al., 2015; Andrello et al., 2017;

Belharet et al., 2020). Essentially, positive (negative) values of the

connectivity matrix denote a strong (weak) connection between

MPAs. Self-retention (also known as self-seeding) was also

considered in this study and is defined as the number of virtual

particles retained at the release MPA (i.e., origin location).
2.6 Visualization and analysis of results

The simulation outputs of the Ichthyop were analyzed using

open source Python software (v.3.11; https://www.anaconda.com/)

implemented in the Windows Anaconda platform for data science

as well as using R Statistical Software (v.4.0.4; R Core Team, 2021).

We calculated dispersion statistics for all 5 years combined (i.e.,

2010–2014) while distinguishing between the results obtained from

coarse-resolution GLORYS and the high-resolution CROCO

model. We calculated the following from the 5 years of

simulations: proportions of virtual particles 1) retained at the

release MPA, 2) those settling at adjacent MPAs other than the

release site, or 3) those not retained in any MPAs. We computed

trajectory density maps, connectivity matrices and residence times

for particles retained in any marine protected area.
3 Results

3.1 The realism of the evaluation model

The performance of the 3-km grid-resolution CROCOmodel in

accurately reproducing physical processes around the South African

coastline is assessed by comparing it to the 5-km grid-resolution

SST data derived from the European Space Agency Climate Change

Initiative (ESA-CCI) product. The ESA-CCI SST product is based

only on satellite observations and objective mapping, thus

providing us with independent observations to which we can

compare the CROCO model SSTs. The SST comparison exercise

serves to ascertain the model’s realism.
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There is a demonstrable consistency between the results

obtained from the model, GLORYS and the ESA-CCI SST

(Figure 3A). The results show good agreement between the model

and the three altimetry products (i.e., ESA-CCI,GLORYS and

GHRSST) in terms of the representation of the mean SST and the
Frontiers in Marine Science 06
location of the Agulhas Current (Supplementary Figure S1). The

results also show a relatively warm bias of +1°C observed off the

Cape Peninsula region in the CROCO model, which is more

strongly expressed along the path of the northwards-flowing,

shelf-edge Benguela jet current. The location of the jet appears to
FIGURE 3

(A) (Panel 1) Spatial distribution of the mean Sea Surface Temperature (SST) averaged over the 2010-2014 period from the (a) CROCO model, (b)
GLORYS and (c) ESA-CCI product. (Panel 2) A zoomed-out view of SST difference on the west coast between (d) (CROCO – ESA-CCI), (e) (CROCO –

GLORYS) and (f) (GLORYS – ESA-CCI). (B). Mean current vectors from (a) the CROCO model, and (b) mean geostrophic velocities from GLORYS for all
October months from 2010–2014. BJC, Benguela Jet Current; CC, Cape Columbine; and CC, Cape Peninsula. The BJC in CROCO model appears
to be displaced slightly more west than in GLORYS.
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be slightly more west in the model as compared to the GLORYS

product (Figure 3B).
3.2 Patterns of larval dispersal

Density maps of virtual particles released using a 3-km grid

model (CROCO) and 8-km global reanalysis (GLORYS) are used to

illustrate the dominant connecting pathways of particles that

eventually reach a recruitment zone (Figure 4). The main

connecting pathways observed in this study are consistent with

those of general circulation along coastlines. The fast, south-

westwards-flowing Agulhas Current drives variability off the east

coast and virtual particles in that region tend to align with the flow

of the Agulhas Current and are transported southwestward.

In the northern Agulhas Current region, a high number of

particles are observed in the Natal Bight and along the path of the

Agulhas Current in both models. South of 32 0S however, the model

shows that particles released on the east coast of South Africa tend

to move inshore of the Agulhas Current, whereas those in the global

reanalysis (GLORYS) are either entrained by the current or drift to
Frontiers in Marine Science 07
the outer regions of the current. Relatively large alongshore loss of

particles is observed in the GLORYS as compared to the model.

Relatively higher levels of energy are also observed in the Natal

Bight. The core of the Agulhas Current is observed to be more

inshore in the CROCO than in GLORYS. The large demonstrable

differences in mean kinetic energy (MKE) and eddy kinetic energy

(EKE) are observed south of the African continent.

The GLORYS show relatively sporadic (erratic) dispersal patterns

to the south of the continent. However, both the model and GLORYS

show a coherent high-density area of particles released over the

Agulhas Bank. Interannual variability significantly influences

dispersal patterns of anchovy and sardines (Supplementary Figure

S3. The west coast is characterized by a relatively large magnitude of

wind-modulated Ekman transport which appears to be influencing

dispersion in the region (Figure 5). High variability of particle

dispersals observed off the west coast. The model shows a stronger

jet at the inshore edge of the Benguela Current accompanied by rapid

advection of particles to the north. As a result, the particles follow the

mean jet path more leading to less retention in the model. The

GLORYS show strong inshore movement of particles leading to a

more pronounced local retention off the west coast.
FIGURE 4

Spatial distribution of the mean particle density (logarithmic scale) derived from the (A) CROCO model, (B) GLORYS model and (C) difference in
mean kinetic energy (MKE), and (D) eddy kinetic energy (EKE) for all October months of the period 2010–2014. Solid red and blue contour lines
indicate the 200 m isobath. AB = Agulhas Bank, and NB = Natal Bight.
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3.3 MPA connectivity

The schematic of the alongshore connectivity matrices

illustrates a generally high level of alongshore connectivity in the

region (Figure 6). The strong connectivity observed in Figure 6 is

consistent with the general hypothesis that connectivity increases

from east to west along the South African coastline. The hypothesis

is premised largely on the general coastal circulation around

southern Africa driven mainly by the 1) south-westwards fast-

flowing Agulhas Current on the east, 2) sluggish flow on the south

coast driven by the combination of winds and the mesoscale

activities of the Agulhas Current, and 3) northwesterly flowing

frontal Benguela jet Current off the west coast. While the general

pattern of alongshore connectivity was comparable between the
Frontiers in Marine Science 08
model and GLORYS, the strength of the connections between

release sites varied significantly. For instance, the model showed a

high degree of variability in terms of connectivity between the

release sites on the east and south coasts. Relatively high local

recruitment and self-retention were observed on the south and west

coasts in both the model and GLORYS. The GLORYS show a

stronger connection between release sites located on the south and

west coasts. Both the model and GLORYS show a coherent

upstream connectivity along the west coast with stronger

connections in the area between the Cape Peninsula and Cape

Columbine (i.e., northwardly from Robben Island to the

Childs Bank).

The GLORYS show that particles take longer in the northern

Agulhas region to move through the system (Figure 7). Similarly,
FIGURE 5

Mean circulation along the west coast of South Africa; (A) Ekman transport and (C) winds, together with spatial distribution of mean particle density
(logarithmic scale) derived from (B) the CROCO model and (D) GLORYS. Red, green and blue contour lines indicate the 200 m, 500 m, and 1000 m
isobaths, respectively.
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longer residence times (> 10 days) were observed south of the

continent in the GLORYS. This is especially true over the Agulhas

Bank. Particles released in the model spend on average half of the

time spent by those in the GLORYS on the south coast. Large

variability of residence times observed off the west coast in the

GLORYS with particles spending on average 8 days within the

release sites.
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4 Discussions

4.1 Representation of the major physical
processes in the model

Figure 3A shows a remarkable agreement between the results

obtained from the model and altimetry products (i.e., ESA-CCI and
FIGURE 6

Mean alongshore connectivity matrix (on a logarithmic scale) computed from the 30-day pelagic larval duration using the (A) CROCO model and (B)
GLORYS model for all the months of October in the period from 2010–2014. Connectivity matrices were calculated between MPAs from the east to the
west of the coastline. East coast MPAs include ISI – Isimangaliso, UTH – UThukela and PB – Protea Banks. South coast MPAs include AM – Amathole, PEC
– Port Elizabeth Corals, ADDO – Addo Elephant National Park, SWIS – Southwest Indian Ocean Seamounts, ACBC – Agulhas Bank Complex and ACM –

Agulhas Muds. The MPAs on the west coast include the Robben Islands (RIS), the Benguela Muds (BCM), the Cape Canyon (CC) and the Childs Bank (CB).
FIGURE 7

Average residence time (in days) of particles released in spawning areas using the GLORYS (orange color) and CROCO models (grey color). Spawning
areas for the west coast (16.5–21 degrees east): 1–8, south coast (21–26 degree east): 9–23, and east coast (26–33 degrees east): (24–32).
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GLORYS). The results are further supported by quantification of

SST error in terms of bias, RMSE and correlation coefficient

(Supplementary Figure S1). The results also show a relatively

warm bias of +1°C off the Cape Peninsula region in the CROCO

model. This warm bias in sea surface temperature (SST) is more

strongly expressed along the path of the northwards-flowing, shelf-

edge Benguela jet current along the west coast of South Africa. The

warm bias may be attributed to the location of the jet current which

appears to be slightly far west in the CROCO model than in ESA-

CCI product. While the model has a demonstrable ability to resolve

fine-scale processes, it seems to position the mean location of the

shelf-edge jet slightly far west. The jet appears to be too strong on

the leading edge of the Benguela Current off the Peninsula. It

follows that the observed warm bias in SST associated with eastern

boundary currents is a fairly common phenomenon in regional

coupled climate models (Dufois et al., 2012; Mao et al., 2019).

This warm bias typically manifests as higher than actual SSTs in

subtropical eastern boundary regions of the ocean, particularly affecting

upwelling systems resulting in discrepancies in modeled SST which can

influence climate predictions and oceanic processes. Dufois et al. (2012)

used the Pathfinder monthly SST climatologies and found out that this

warm bias can be significant, with summertime differences up to 3–5°C

in regions like the California, Humboldt, Canary, and Benguela

upwelling systems. Ma et al. (2019) found that insufficient ocean

dynamic upwelling is the dominant cause for SST warm bias in

subtropical eastern boundary regions. Weakened eastern boundary

currents result in additional warming that surpasses the cooling effects

typically provided by upwelling in these regions. The origins of this

warm bias, particularly during upwelling seasons, remain a subject of

ongoing research.
4.2 Distribution patterns of the cape
anchovy and sardine larvae

Figure 4 shows a high number of particles observed in the Natal

Bight and along the path of the Agulhas Current in both the model and

the GLORYS. The Natal Bight is recognized as a significant area for

larval retention, which is vital for various ecological processes,

including the successful settlement of fish larvae in the northern

Agulhas Current region (Heye et al., 2022). For example, Heye et al.

(2022) found that the Natal Bight Coastal Counter increases

connectivity between MPAs within the Natal Bight, where the

current increases water retention entrapping larvae, thus contributing

to increasing the suitability of the habitat for larval development and

settlement. However, south of the 310S, the model shows that particles

released on the east coast of South Africa tend to move inshore of the

Agulhas Current increasing residence times (Figure 7). Conversely, the

GLORYS show that particles are either entrained by the current or drift

to the outer regions of the current. The study of Tedesco et al. (2019)

demonstrated the ability of the 3 km grid CROCO model to represent

frontal features of the northern edge of the Agulhas Current such as

shear driven meso-and sub-mesoscale cyclonic eddies. Studies by Krug

et al. (2017) and Schubert et al. (2021) showed that these shear

instabilities extract their energy from the mean Agulhas Current jet

and increase the residence times of particles inshore of the current area.
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Another major difference between larval dispersals obtained

from the model and GLORYS is that there is a significantly large

offshore loss of particles in the GLORYS between the eastern and

southern coasts of South Africa (Figure 4). Demonstrable

differences in the MKE and EKE are observed south of the

African Continent. The differences in MKE can be attributed to

the fact that the current is stronger and more inshore in the

CROCO model, as opposed to the GLORYS where the current is

slightly far offshore. The CROCO model’s realism has been

validated by Tedesco et al. (2019) against in-situ Agulhas System

Climate Array (ASCA) observations and altimetry from AVISO.

The difference in EKE can be attributed to the net source of

mesoscale eddy energy in the Agulhas Current region

(Lutjeharms, 1989; Backeberg et al., 2008; Pauline et al., 2022;

Tedesco et al., 2022). The net source of mesoscale eddy energy is

caused by a strong generation of eddies (Tedesco et al., 2022)

resulting in increased eddy energy in the Southern Agulhas Current.

In the model, the local generation of mesoscale eddies dominates

the net EKE budget leading to the observed EKE difference.

Circulation off the southern coast is relatively sluggish and is

driven by winds and the Agulhas Current (Schumann et al., 1982;

Schumann et al., 1995 and Lutjeharms and De Ruijter, 1996;

Schumann, 1999; Lutjeharms, 2006). The region experiences a

more variable wind regime especially during October, shifting

from southwesterly in early October to southeasterly in late

October (Lutjeharms, 2006; Rouault et al., 2010; Schumann,

2010). The GLORYS shows relatively sporadic dispersal patterns

to the south of the continent as opposed to the model. However,

both the GLORYS and model show a coherent high-density of

particles over the Agulhas Bank (Figure 4). The winds influence the

cross-shore transport leading to inshore movement of larvae in

the region (Boyd and Shillington, 1994; Malan et al., 2019). The

Agulhas Current influences the inshore movement of particles

through intermittent mesoscale Natal Pulses meanders (Krug and

Penven, 2011; Krug et al., 2014; Malan et al., 2018) that bring

surface water closer to the shore. Krug et al. (2014) show that the

Natal Pulses impact the eastern Agulhas Bank for 110 days per year

on average, and through their intrusion, they impact drive the

particles to the shelf. Furthermore, Krug et al. (2014) show that

these Natal Pulses are responsible for the largest SST and current

velocity anomalies leading to increased particles on the west

Agulhas Bank.

The circulation along the highly dynamic west coast is largely

driven by winds and the Benguela Jet (Boyd and Nelson, 1998;

Shannon, 2001). The position and intensity of the shelf-edge

Benguela Jet are largely driven by seasonal wind forcings (Strub

et al., 1998; Penven et al., 2000; Fennel et al., 2012; Veitch et al.,

2018). These dynamics influence the high variability of dispersal

patterns observed on the west coast (Figures 4, 5). The wind-

modulated Ekman transport drives the onshore movement of

particles in the region (Figure 5; Desbiolles et al., 2015; Ragoasha

et al., 2019; Ragoasha et al., 2022; Bordbar et al., 2021). We have

anticipated the CROCO model to be able to resolve small-scale

processes with more frontal variability at the inshore edge of

Benguela Jet coupled with larval retention but our results show

that the Jet is stronger there resulting in rapid advection of particles
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(and less retention) to the north and particles follow the mean jet

path more. The model places the jet slightly more west than the

GLORYS with implications for dispersals in that region.

Conversely, the GLORYS show strong inshore movement leading

to overestimation of local larval retention especially near the

recognized recruitment area off the west coast.
4.3 MPA connectivity

Both the model and GLORYS show coherent upstream

connectivity coupled with relatively high local recruitment and

self-retention rates on the southern and western coasts (Figure 6)

- which are regions characterized by relatively sluggish circulation

driven by winds (Boyd and Nelson, 1998; Schumann et al., 1982;

Lutjeharms and De Ruijter, 1996; Shannon, 2001; Lutjeharms,

2006) and mesoscale meanders on the Agulhas Bank (Krug et al.,

2014; Malan et al., 2018; Tedesco et al., 2022; Tedesco et al., 2024).

The general upstream connectivity in these regions is associated

with large residence times (Figure 7). The difference between the

model and GLORYS is found in the highly dynamic west coast

region where GLORYS show larger connections, especially along

the Cape Peninsula to the Cape Columbine (i.e., northwardly from

Robben Island to the Childs Bank) stretch (Figure 5).

Stronger connections and large residence times are observed in

the MPAs located in the northern Agulhas Current (Figures 6, 7) in

both the model and GLORYS. These results highlight the influence

of the frontal activity of the Agulhas Current especially near the

Natal Bight region. The results show that there is significant larval

retention on the western Agulhas Bank. These findings are consistent

with literature which demonstrates that the western Agulhas Bank is

a significant retention area for many coastal fish species.
4 Conclusion

Knowledge of dispersal patterns of the commercially and

ecologically important Cape anchovy and sardine larvae in the

coastal regions of South Africa is currently limited, and our study

seeks to address this knowledge gap to support conservation and

fisheries management efforts. We used a daily current velocity field

from a regional configuration of 3 km grid, non-hydrostatic

CROCO model and 8 km grid GLORYS to investigate the

distribution patterns and connectivity pathways of the Cape

anchovy and sardine, focusing across the MPA network located

within the 200 m isobath. The model was chosen for its ability to

resolve fine-scale processes that are crucial for the dispersal and

recruitment variability of larval anchovies and sardines. We focused

on distribution patterns of larvae during the October month as it

coincides with the spawning peak period of the two coastal fish

species (Crawford, 1980; Huggett et al., 1998; Hutchings et al., 1998;

Beckley and Van der Lingen, 1999; Van der Lingen and Huggett,

2003; Miller et al., 2006).

Our study is unique because it provides for the first time an

overview of coastal connectivity across the South African Exclusive
Frontiers in Marine Science 11
Economic Zone (EEZ) and considers the impact of model resolution

on dispersal pathways. Previous studies that investigated the

influence of model resolution on larval dispersal in South Africa

relied on hydrodynamic model output that could only resolve

mesoscale processes (Huggett et al., 2003; Koneé et al., 2013; Lett

et al., 2015). The main findings of the study are a) the dominant role

of the Agulhas Current in driving southward connectivity across and

causing short residence time on the east coast MPAs, b) the large

retention area on the west Agulhas Bank, c) importance of the

Benguela Jet in driving dispersion and connectivity in the southern

Benguela region, and d) the inclusion of small scale processes

representation of the Benguela Jet have significant impact on

retention and connectivity. Particles were advected passively by

surface currents. In our experiments, particles were advected

passively by surface currents in a 2-dimensional flow.

Knowledge of distribution patterns and connecting pathways of

larval anchovies and sardines is crucial for the conservation and

sustainable management of pelagic fisheries. The Cape anchovy and

sardines are commercially and ecologically important fish species in

South Africa; hence, the a need to understand the transport

mechanisms of these species’ early life stages. Our research adds

to the growing body of knowledge on distribution patterns of the

two most commercially and ecologically important fish species in

South Africa.

Our study only considered the surface dispersion of particles in

a 2-dimensional flow without incorporating larval behavior.

However, future studies should incorporate larval behavior such

as diel vertical migration and swimming, and the particle dispersion

should be studied in 3-dimensional flow. This could potentially

improve the realism of modelling studies of the Cape anchovy and

sardine focusing on the entire water column within the EEZ.
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Pauline, T., Gula, J., Penven, P., and Ménesguen, C. (2022). Mesoscale eddy kinetic
energy budgets and transfers between vertical modes in the agulhas current. J. Phys.
Oceanography 52 (4), 677–704.

Penven, P., Claude, R. O. Y., De Verdière, A. C., and Largier, J. (2000). Simulation
of a coastal jet retention process using a barotropic model. Oceanologica Acta 23 (5),
615–634.

Penven, P., Debreu, L., Marchesiello, P., and McWilliams, J. C. (2006). Evaluation
and application of the ROMS 1-way embedding procedure to the central California
upwelling system. Ocean Model. 12, 157–187. doi: 10.1016/j.ocemod.2005.05.002

Pfaff, M. C., Hart-Davis, M., Smith, M. E., and Veitch, J. (2022). A new model-based
coastal retention index (CORE) identifies bays as hotspots of retention, biological
production and cumulative anthropogenic pressures. Estuarine Coast. Shelf Sci. 273,
107909.

Pineda, J., Hare, J. A., and Sponaugle, S. U. (2007). Larval transport and dispersal in
the coastal ocean and consequences for population connectivity. Oceanography 20, 22–
39. doi: 10.5670/oceanog.2007.27

R Core Team. (2021). R: A language and environment for statistical computing
(Vienna, Austria: R Foundation for Statistical Computing). Available at: https://www.
R-project.org/.

Ragoasha, N., Herbette, S., Cambon, G., Veitch, J., Reason, C., and Roy, C. (2019).
Lagrangian pathways in the southern Benguela upwelling system. J. Mar. Syst. 195, 50–
66. doi: 10.1016/j.jmarsys.2019.03.008

Ragoasha, M. N., Herbette, S., Veitch, J., Cambon, G., Reason, C. J., and Roy, C.
(2022). Inter-annual variability of the along-shore lagrangian transport success in the
southern benguela current upwelling system. J. Geophysical Research: Oceans 127 (3),
e2020JC017114.

Rio, M. H., Mulet, S., and Picot, N. (2014). Beyond GOCE for the ocean circulation
estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight
into geostrophic and Ekman currents. Geophys. Res. Lett. 41, 8918–8925. doi: 10.1002/
2014GL061773

Risien, C. M. (2002). Wind-stress variability over the Benguela upwelling system.

Ross, R. E., Nimmo-Smith, W. A. M., and Howell, K. L. (2017). Towards ‘ecological
coherence’: Assessing larval dispersal within a network of existing Marine Protected
Areas. Deep Sea Research Part I: Oceanographic Research Papers 126, 128–138.
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