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Mesoscale eddy mixing significantly influences ocean circulation and climate

system. Coarse-resolution climate models are sensitive to the specification of

eddy diffusivity tensor. Mixing ellipses, derived from eddy diffusivity tensor,

illustrate mixing geometry, i.e., the magnitude, anisotropy, and dominant

direction of eddy mixing. Using satellite altimetry data and the Lagrangian

single-particle method, we estimate eddy mixing ellipses across the global

surface ocean, revealing substantial spatio-temporal variability. Notably, large

mixing ellipses predominantly occur in eddy-rich and energetic ocean regions.

We also assessed the predictability of global mixing ellipses using machine

learning algorithms, including Spatial Transformer Networks (STN),

Convolutional Neural Network (CNN) and Random Forest (RF), with mean-flow

and eddy- properties as features. All three models effectively represent and

predict spatiotemporal variations, with the STN model, which incorporates an

adaptive spatial attention mechanism, outperforming RF and CNN models in

predicting mixing anisotropy. Feature importance rankings indicate that eddy

velocity magnitude and eddy size are the most significant factors in predicting

the major axis and anisotropy. Furthermore, training the models with a 2-year

temporal duration, aligned with the El Niño Southern Oscillation (ENSO)

timescale, improved predictions in the northern equatorial central Pacific

region compared to models trained with a 12-year duration. This resulted in a

spatially averaged correlation increase of over 0.5 for predicting the minor axis
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and anisotropy, along with a reduction of more than 0.15 in the Normalized Root

Mean Square Error. These findings highlight the considerable potential of

machine learning algorithms in predicting mixing ellipses and parameterizing

eddy mixing processes within climate models.
KEYWORDS

eddy mixing ellipse, subgrid-scale processes, machine learning, feature importance
rankings, satellite observations, global ocean
1 Introduction

Mesoscale eddies play a critical role in large-scale ocean

circulation and climate system by stirring and mixing crucial

tracers. However, due to computational constraints, coarse-

resolution climate models struggle to fully resolve subgrid eddy

mixing processes, necessitating effective parameterization of eddy

diffusivity. Climate model results are sensitive to both the magnitude

and spatio-temporal structure of eddy diffusivity (Simmons et al.,

2004; Danabasoglu and Marshall, 2007; Liu et al., 2012; Busecke and

Abernathey, 2019). For example, Holmes et al. (2022) found that

incorporating horizontal variations in eddy diffusivity, rather than

constant values or scaling with grid resolution, along with the effects

of mixing suppression by mean flows improves model agreement

with observations of overturning circulation and tracer transport.

While most studies have focused on estimating global cross-stream

and along-stream components of the eddy diffusivity tensor (Ferrari

and Nikurashin, 2010; Zhang et al., 2023c), shear dispersion often

results in ubiquitous anisotropic eddy-induced transport (Berloff

et al., 2002; Bachman et al., 2020; Haigh et al., 2021).

Consequently, employing the full diffusivity tensor, rather than

scalar coefficients, provides a more accurate representation of eddy

mixing transport. Bovenschen (2021) demonstrated that

incorporating anisotropic diffusivities enhances model performance,

particularly in tidal regions and areas with strong shear gradients.

Unlike previous studies that primarily emphasize cross-stream

diffusivity, we focus on characterizing and predicting mixing

ellipses, which depict the magnitude, anisotropy, and orientation of

the eddy diffusivity tensor.

Although eddy mixing ellipses have been studied in idealized

scenarios, their realistic depiction on a global scale, which is

essential for developing plausible parameterizations, remains

limited. Most existing research has focused on specific regions or

used idealized models (Kamenkovich et al., 2009; Abernathey et al.,

2013; Kamenkovich et al., 2015; Wolfram et al., 2015; Haigh et al.,

2021; Wei and Wang, 2021; Zhang and Wolfe, 2022). For instance,

Chen and Waterman (2017) applied a highly simplified barotropic

quasi-geostrophic model to study mixing ellipses in a western

boundary current jet. Their findings revealed that properties of

mixing ellipses vary with flow regime, such that regions dominated

by wave radiation exhibiting pronounced anisotropy, while mixing
02
ellipses inside recirculation zones are nearly isotropic. Bachman

et al. (2020) estimated mixing ellipses and anisotropy through a

multiple-tracer inversion method and idealized mesoscale eddy-

resolving simulations. Their results showed that, in regions of high

kinetic energy, the major eigenvector of ellipses aligns primarily

along the along-stream direction. However, such idealized models

often simplify dynamics, assume homogeneous conditions, and

impose artificial boundaries, limiting their ability to simulate the

full complexity and variability of real ocean systems.

While machine learning algorithms have shown promise in

predicting cross-stream eddy diffusivities (Guan et al., 2022; Zhang

et al., 2023c), their application to the prediction of mixing ellipses

remains largely unexplored. Recent advancements in machine

learning techniques have yielded significant progress in various

fields, including ship classification and detection (e.g., Guan et al.,

2023; Zhang et al., 2023a; Gao et al., 2023b, e). Inspired by these

advancements, we aim to apply a novel approach to predict eddy

diffusivities, a crucial step toward the design and development of

eddy diffusivity tensor parameterizations for climate models. Guan

et al. (2022) applied Random Forest (RF) and Convolutional Neural

Network (CNN) models to predict the spatial distribution of cross-

stream eddy diffusivities in the Kuroshio Extension. Additionally,

RF model has been used to predict regionally averaged time series of

cross-stream eddy diffusivities across eight surface ocean regions

(Zhang et al., 2023c). However, besides these traditional

methodologies, we introduce Spatial Transformer Networks

(STN) as a novel machine learning approach for predicting

mixing ellipses. STN can enhance network performance by

adaptively learning spatial transformations (e.g., scaling, cropping,

rotations, and non-grid deformations) without manual parameter

specification. We systematically evaluate the performance of STN,

CNN, and RF models in predicting three key attributes of eddy

mixing ellipses: major axis, minor axis and anisotropy.

We chose satellite altimeter data for both estimating and

predicting global mixing ellipses due to its advantages over other

observational ways. Traditional techniques, such as drift buoys,

fixed-point, and shipborne observations, are often constrained by

oceanic environmental conditions and limited spatial coverage. In

contrast, radar altimeters on microwave remote sensing satellites

provide consistent, all-weather, and all-day global observations,

making them ideal for studying global mesoscale ocean
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phenomena. By analyzing the pulse echo signal characteristics

directly beneath the satellite, radar altimeters precisely measure

sea surface height, backscatter coefficients, and current velocities.

While Synthetic Aperture Radar (SAR), another active microwave

remote sensor, offers high-resolution observations by measuring

microwave backscattered signals and phases (Zhang et al., 2024a),

its global application remains limited. Advanced SAR techniques,

such as dual-polarized, full polarimetric (Raney, 2016), compact

polarimetric SAR (Zhang et al., 2022), polarimetric autocorrelation

matrix methods (Zhang et al., 2024b), and onboard multisatellite

information fusion (Gao et al., 2023c), have shown promise in

enhancing ocean current monitoring, but comprehensive global

analyses using SAR are still unrealized.

In summary, this study aims to estimate the spatio-temporal

variability of global surface eddy mixing ellipses using Lagrangian

single-particle method and to predict the features of mixing-ellipse

attributes using machine learning models. This paper is organized

as follows. Section 2 describes the dataset, including satellite

altimetry data and Lagrangian particle trajectories, and introduces

the methods for estimating and predicting Lagrangian (“particle-

based”) eddy mixing ellipses. Section 3 presents the description and

spatio-temporal variability of surface eddy mixing ellipses, as well as

the representative and predictive performance of machine learning

methods. Section 4 discusses the feature importance ranking and

equatorial analysis across three models. We summarize the findings

and conclusions in section 5.
2 Data and method

2.1 Data

The surface geostrophic velocity field is obtained from the

Archival Verification and Interpretation of Satellite Oceanographic
Frontiers in Marine Science 03
(AVISO, http://www.aviso.altimetry.fr/) data set of the French

National Space Agency. We utilize the AVISO product spanning

from 1994/01 to 2017/12, with a daily temporal resolution and a

spatial resolution of 0.25° × 0.25°. The dataset employs the

empirically validated “equatorial–geostrophic” approximation by

Lagerloef et al. (1999) to compute velocities within the equatorial

region (between 5°N and 5°S). AVISO data has been applied in

quite a few mixing studies (Abernathey and Marshall, 2013; Bates

et al., 2014; Abernathey and Haller, 2018; Shao et al., 2023). For

instance, Zhang et al. (2023c) estimated global cross-stream eddy

diffusivity using the Lagrangian particle method and discussed its

linkage with climate indices.

To estimate eddy mixing ellipses, we choose to use the

trajectories of particles advected by the total geostrophic flow

from satellite altimetry, whose total number is approximately 8 ×

105 per year (Figure 1). In brief, for each year (1994-2017), the

numerical particles were deployed offline at a resolution of 0.2° ×

0.2° globally. Then, these particles were advected through daily

geostrophic velocities for one year using a fourth-order Runge-

Kutta scheme, with a 20-minute time step. This particle trajectory

dataset was originally developed by Zhang et al. (2023b, c) for cross-

stream eddy mixing studies at the global ocean surface.
2.2 Methods

2.2.1 Mixing ellipse estimation: Lagrangian single-
particle method

Our study employs the Lagrangian single-particle method to

estimate the mixing ellipses. Originally introduced by Davis (1987),

this method has been proven to effectively estimate converged eddy

diffusivities in scenarios involving inhomogeneous turbulence with

mean flow (Griesel et al., 2014; Chen and Waterman, 2017; Liu

et al., 2023). Following Chen and Waterman (2017), we set the
FIGURE 1

Sample particle trajectories released globally on 1 January 2010 and advected for one year. To make these trajectories visible, only trajectories from
particles released at 6° intervals are shown here. Each gray dot marks the initial position of a trajectory. The areas of the red square marked (A–D)
are denoted respectively as Kuroshio Extension (KE), Gulf Stream Extension (GSE), Equatorial Region and Antarctic Circumpolar Current (ACC).
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initial positions of the pseudotrajectories at intervals of five days

along each particle track. Each pseudotrajectory spans a duration of

115 days. Then we use an adaptive bin approach based on the K-

means algorithm (Koszalka and LaCasce, 2010; Chen et al., 2014) to

estimate the eddy diffusivity tensor. k∞ij :

k∞ij (x) = lim
t→∞

 kij(x, t) ≈

Z t2

t1
kij(x, ~t)d~t

t2 − t1
, (1)

where

kij(x, t) =
Z t

0
d~t u

0
i(t0jx, t0)u

0
j(t0 + ~t jx, t0)

D E
L
: (2)

Here < · >L represents the ensemble average of all

pseudotrajectories in the bin centered at x. The term u
0
i(t0 + ~t jx, t0)

denotes eddy velocity of particles at time t0 + ~t , passing through

location x at t0. Eddy velocity refers to the difference between the

instantaneous Eulerian velocity ui(t0 + ~t) and the annual-mean

velocity �u. As the time t increases, the component of eddy

diffusivity tensor from Equation 2 gradually asymptotes to a

constant value. The time t at which the eddy diffusivity starts

leveling off is termed as the equilibrium time t = teq. The

converged value of eddy diffusivity from Equation 1 can be

obtained simply by averaging kij (x,t) over t ∈ [t1,t2], where t1 =
teq − 15 (day) and t2 = teq + 15 (day). For details of diagnosing teq, see
Chen and Waterman (2017).

The full eddy diffusivity tensor comprises both diffusive flux

(symmetric components of k∞ij ) and skew flux (antisymmetric

components of k∞ij ). The antisymmetric diffusivity tensor,

equivalent to advection of tracers by non-divergent velocities,

does not affect along-gradient fluxes (Vallis, 2006; Chen and

Waterman, 2017; Kamenkovich et al., 2021). Therefore, our

analysis focuses on the symmetric tensor S. Diffusion aligns with

the eigenvectors’ orientation, forming an orthogonal basis called the

principal axes of S. Each eigenvalue represents the diffusivity along

its corresponding axis. The magnitude and direction of these

principal axes form mixing ellipses (shown in Figure 2), which

effectively characterize the strength, dominant direction and

anisotropy of eddy mixing (Rypina et al., 2012; Chen and

Waterman, 2017; Bachman et al., 2020).

Following Chen and Waterman (2017), we calculated the

component of the symmetric tensor S, defined as s 2
x ,  s 2

y ,  s2
xy in

Equation 3,

s 2
x = kxx ,s

2
y = kyy ,s

2
xy =

kxx + kyy
2

: (3)

The lengths of the semimajor and semiminor axes, s 2
1 ,  s 2

2 , can

be estimated from the eigenvalue of S, following

s 2
1 =

1
2

s 2
x + s 2

y +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(s 2

x − s 2
y )

2 + 4(s 2
xy)

2
qh i

, (4)

s 2
2 = (s 2

x + s 2
y ) − s 2

1 : (5)

Mixing anisotropy measures the ellipse eccentricity. It can be

diagnosed from
Frontiers in Marine Science 04
Anisotropy =
s 2
2

s 2
1
, (6)

which ranges from zero to one. Zero (one) represents purely

unidirectional (isotropic) ellipse. Therefore, small (large) value of

Anisotropy corresponds to high (low) anisotropy of mixing ellipses.

The ellipse orientation can be represented by q, which denotes the

anticlockwise angle of the semimajor axis relative to the positive x.

The term tan(q) satisfies,

tan (q) =
s 2
1 − s 2

x

s2
xy

: (7)
2.2.2 Mixing ellipse prediction: machine
learning method

Machine learning algorithms, known for their computational

efficiency and ability to capture nonlinear relations between

predictors and predictand, have been widely applied in oceanic and

atmospheric predictions (Guan et al., 2022; Liu et al., 2023). For

instance, Cao et al. (2024) introduced a deep learning model that

significantly improves the retrieved of wave spectra and wave

parameters. Similarly, Gao et al. (2024b) proposed a hybrid

multiscale spatial-temporal model incorporating an error correlation

map, leading to enhanced sea surface temperature predictions.

We apply three algorithms, STN, CNN, and RF, to predict

mixing-ellipse attributes, each offering distinct advantages. The

STN approach incorporates a spatial attention mechanism into a

CNN framework, enabling robust image recognition under affine

transformations such as scaling, rotation, and cropping. This self-

supervised, end-to-end process has proven effective in other fields

(e.g., Jaderberg et al., 2015; Mirmohammadsadeghi et al., 2017;

Sinclair et al., 2022). The CNN approach extracts spatial features

from input images through convolutional operations. CNN-based

methods, including their variants, have demonstrated success in

various applications, such as ship detection and classification (e.g.,

Guan et al., 2023; Gao et al., 2023a, d, 2024a). The RF approach can

improve prediction accuracy through an ensemble of decision trees,

each constructed by randomly selecting features at each split. This

method is computationally efficient, resistant to overfitting, and has

been successfully applied to predict across-stream eddy diffusivities

(e.g., Ho, 1995; Su et al., 2018; Guan et al., 2022).

The architecture and implementation details of these three

models are shown in Figure 2 and are described as follows:
• Model 1: STN integrates a Spatial Transformer module,

which consists of three components: the Localization

Network, the Grid Generator, and Differentiable Image

Sampling. The Localization Network extracts spatial

features and outputs a 6-dimensional vector representing

the parameters of affine transformation matrix. The Grid

Generator uses these parameters to compute transformed

grid coordinates, while Differentiable Image Sampling

applies bilinear interpolation to generate the transformed

feature map. These transformed features are then processed

by the main network, which includes two convolutional
frontiersin.org
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Fron
layers. The first layer is followed by Rectified Linear Unit

(ReLU) activation and average pooling, while the second

layer is followed by dropout, ReLU activation, and average

pooling. The resulting feature map is then flattened and

passed through a fully connected layer, followed by a

dropout layer for regularization. The final fully connected

layer produces the model’s output.

• Model 2: The CNN model’s architecture consists of 5

convolutional layers, 4 average pooling layers, 1 dropout
tiers in Marine Science 05
layer (with a probability of 0.2), and 1 fully connected layer with an

output size of 1. Batch normalization and ReLU activation function

are applied after the first four convolutional layers to mitigate

vanishing gradients and overfitting issues. Each convolutional layer

uses a filter size of 2, with the number of neurons increasing from 8

to 32. The model is trained with a learning rate of 10-4 for up to

70 epoches.

• Model 3: The RF model is computationally efficient and requires

fewer parameters. The number of trees in the forest (ntrees) is set
FIGURE 2

The flowchart and structure of the Spatial Transformer Networks (STN), Convolutional Neural Network (CNN) and Random Forest (RF) approaches
for predicting three attributes (major axis, minor axis, and anisotropy) of mixing ellipses.
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to 500, and the number of features in a random subset of each

node (mtry) is set to 1.

The prediction procedure, as shown in Figure 2, involves

four steps:
Fron
• Step 1: Dataset preparation. The original dataset includes

the predictands and four predictors. The predictands are

the major axis, minor axis and anisotropy of mixing ellipses,

each with a spatial resolution of 1° × 1°. The predictors,

chosen based on the Suppressed Mixing Length Theory

(SMLT), are as follows: eddy size Leddy, eddy velocity

magnitude urms, the inverse of eddy decorrelation time

scale g, and eddy propagating speed relative to the mean

flow Cw−j jU ‖ (see Section 2.2.3). The original dataset is

divided into a training set and a test set to respectively assess

the representative and predictive performance of the

machine learning models. A Z-score normalization is

conducted to rescale both predictors and predictands.

• Step 2: Model construction. In the RF model, the input

variables are local grid points from the training set, with a

resolution of 1°. For the STN and CNN models, the four

predictors are extracted from overlapping subdomains,

each covering an area of 2° × 2° and containing 8 × 8

grid points, with spatially averaged predictands serving as

the counterpart output. The subdomain predictors are

resampled at a higher resolution of 0.25°. Two dataset

selection methods are used: (1) a “12-Year model”, where

the training set comprises four predictors and the

predictands spanning 1994-2005 and the test set covers

the period 2006-2017, and (2) a “2-Year model”, where the

training set consists of two years preceding the predicted

year, and the test set corresponds to the predicted year (see

Section 4.2).

• Step 3: Model representation and prediction. The models

are trained and tested using the predictors from the training

and test sets. For the 12-Year model, outputs include

representative results (1994-2005) and predictive results

(2006-2017) for the annual mean mixing-ellipse attributes

across the global ocean. Here, the representative

(predictive) skill refers to the goodness of fit to the

training (test) set. For the 2-Year model, predictive skill is

analyzed for each year from 2006 to 2017. This approach

requires training 12 separate models, each corresponding to

a different predicted year.

• Step 4: Performance evaluation. We evaluate the

performance by calculating correlation coefficients and

normalized root-mean-square error (NRMSE) between

the representative (predictive) results (YML) and their

particle-based counterparts (YParticle) during the same

period. NRMSE is defined as

NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N SN

1 (YML − YParticle)
2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N SN

1 (YParticle)
2

q : (8)
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2.2.3 Predictors from the suppressed mixing
length theory

The predictors for our machine learning models (Figure 2) are

the variables derived from SMLT, which has been formulated to

express cross-stream eddy diffusivity (Ferrari and Nikurashin, 2010;

Klocker and Abernathey, 2014). Recent studies have demonstrated

that models employing these predictors (Leddy, urms, g, Cw−j jU ‖)
can well represent the spatiotemporal variability of cross-stream

eddy diffusivities, i.e., those in the cross-mean flow direction (Guan

et al., 2022; Zhang et al., 2023c). Inspired by these findings, we

utilize this predictor set to predict the eddy mixing-

ellipse attributes.

The diagnosis of eddy and mean flow properties follows

previous studies (e.g., Chen et al., 2014; Guan et al., 2022; Zhang

et al., 2023c). Specifically, eddy size Leddy is calculated by Equation 9,

where the eddy wavenumber keddy is derived from the two-

dimensional eddy kinetic energy (EKE) wavenumber spectrum.

The spectrum is calculated over spatial regions spanning 3° in

latitude and longitude. In Equation 10, k and l denote the zonal and

meridional wavenumbers, respectively.

Leddy(x, y) =
2p

keddy(x, y)
(9)

keddy(x, y) =

ðð ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 + l2

p
SEKE(k, l)dkdlðð

SEKE(k:l)dkdl
(10)

Eddy velocity magnitude urms is defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u′2 + v′2

p
. Here, the

zonal (meridional) eddy velocity u0(v0) is the deviations of the zonal
(meridional) flow velocity u (v) from its annual-mean �u  (�v). The

inverse of eddy decorrelation timescale g is computed using

Equation 11, where a mixing efficiency of G = 0.35 is adopted

based on previous studies (Chen et al., 2014; Klocker and

Abernathey, 2014).

g (x, y) =
urms(x, y)

2GLeddy(x, y)
(11)

When estimating the eddy propagating speed relative to the

mean flow Cw−j jU ‖, Uj j refers to the magnitude of the local

annual-mean geostrophic flow vector U. Eddy phase speed Cw

refers to eddy phase speed along the mean flow direction. As

described by Guan et al. (2022) and Zhang et al. (2023c), Cw is

extracted from the Hovmoller¨ diagram of sea level anomaly using

the Radon transform method.
3 Results

3.1 Mixing ellipse estimation

3.1.1 Mixing ellipse description
Particle-based mixing ellipses have significant spatio-temporal

variability at the global ocean surface. The mixing-ellipse area is

especially large in eddy-rich and energetic ocean regions, such as the
frontiersin.org
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Kuroshio Extension (KE), Gulf Stream Extension (GSE), Antarctic

Circumpolar Current (ACC) and equatorial zones, reflecting elevated

eddy mixing. Figure 3 illustrates mixing ellipses for these key regions,

with data from 2005 and 2008 for the KE to represent stable and

unstable states (Qiu et al., 2014; Chen et al., 2017), and data from

2010 for other regions as an example. Intuitively, mixing ellipses in

the KE region exhibit pronounced interannual variability, which is to

a certain degree linked with the KE’s transition between stable (e.g. in

2005) and unstable (e.g. in 2008) states (Figures 3A, B).

Mixing ellipses also have significant heterogeneity across these

eddy-rich and energetic regions (Figures 3B-E). In the upstream of

the KE and GSE jet, mixing ellipses tend to be elongated along the

streamlines due to the suppression of mixing across the intense jet,

leading to high anisotropy (Ferrari and Nikurashin, 2010; Chen

et al., 2014; Wei and Wang, 2021). This feature is consistent with

Nummelin et al. (2021), who found that strong mean flow elongates

(squeezes) the mixing ellipses along (across) the mean flow
Frontiers in Marine Science 07
direction. In contrast, in the downstream area, eddy motions

dominate as the jet flow weakens and thus mixing across the jet is

less suppressed and mixing ellipses are relatively circular. In the

equatorial region, strong zonal jets tend to flatten eddy mixing

ellipses, inducing strong mixing anisotropy.

In the ACC region, the spatial structure of mixing ellipses

correlates tightly with topography and EKE patterns (Figures 3E, F).

Consistent with literature (e.g., Sallée et al., 2011), in the downstream

of large topography, such as the Kerguelen Plateau, the Southeast

Indian Ridge, the Pacific Antarctic Ridge, and the Campbell Plateau,

mixing suppression by the ACC jets locally breaks down and regional

mixing becomes notably intensified. Here topographic steering forces

the jet toward areas with decreased ambient potential vorticity

gradient (Witter and Chelton, 1998) and generates local hotspots of

mesoscale EKE downstream (Kong and Jansen, 2021), enhancing

lateral mixing (Sallée et al., 2011; Foppert et al., 2017). The

correlations between EKE and major/minor axis of mixing ellipses
FIGURE 3

Mixing ellipses in four key regions: (A) KE in 2005, (B) KE in 2008, (C) GSE in 2010, (D) Equatorial Region in 2010, (E) ACC in 2010. (F) Spatial pattern
of eddy kinetic energy of ACC in 2010 with the topography. Brown lines represent barotropic streamlines, as defined by yg = gf−1h, with h denoting
annual-mean sea surface height, where g is the gravitational acceleration, and f denotes the Coriolis parameter. The colorbar shows the major axis
length (m2/s), with axes of ellipses scaled down for visualization of their orientation relative to streamlines. The orange contours denote 500-, 1500-,
2500-, 3500-m bathymetry contours.
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are both equal to 0.78 ± 0.1 at 95% confidence level. This high

correlation value suggests that EKE plays a noticeable role in

modulating eddy mixing intensity, consistent with the mixing

length theory (Thompson and Garabato, 2014; Rosso et al., 2015;

Guan et al., 2022).

3.1.2 Spatio-temporal structure of
three attributes

The global variability of mixing ellipses can be effectively

captured by their attributes, including major/minor axes and

anisotropy. Consequently, to capture the spatial structure and

quantify the temporal variability of mixing ellipses, we analyzed

the climate-mean attributes and the standard deviation (STD) of the

annual-mean attributes during two periods 1994-2005

(Supplementary Figure S1 in the supporting information) and

2006-2017 (Figure 4) respectively.

The three climate-mean attributes exhibit highly uneven global

spatial distributions (Supplementary Figures S1A-S1C, Figures 4A-C).

Larger major (minor) axis length occurs in western boundary currents

and their extensions, reaching up to 4.6 × 105m2/s (1.1 × 105m2/s).

This phenomenon is also present throughout the entire equatorial

zone for major axis. Additionally, elevated minor axis length can be
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observed in the northern equatorial central Pacific 110°W-170°W, 0°-

15°N) during 2006-2017. In other quiescent regions (e.g., Southern

Ocean etc.), the amplitudes of axes are relatively small and mixing

tends to be isotropic.

The STD of the axes’ length shares a similar spatial distribution

to their climate-mean values (Supplementary Figures S1D-S1E;

Figures 4D, E). Mixing anisotropy exhibits high temporal

variability exclusively in the northern equatorial central Pacific

during 2006-2017 (Figure 4F). The normalized standard

deviations (NSTD), defined as the ratio between the STD values

and climate-mean values over the years 1994-2017, serve as a useful

metric to measure temporal variability. The NSTD of the axes’

length exceeds 0.6 in high-latitude and equatorial regions

(Figures 5A, B). The NSTD of mixing anisotropy has relatively

small magnitudes in off-equatorial regions (Figure 5C). The

probability density function (PDF) distribution of NSTD peaks at

approximately 0.37 for major axis, 0.4 for minor axis and 0.31 for

anisotropy (Figure 5D). The cumulative density function (CDF)

reveals that NSTD of major (minor) axis exceeds 0.4 in 51% (69%)

of the global ocean (Figure 5E). Our results illustrate that temporal

variability is non-negligible in most regions of the global

surface ocean.
FIGURE 4

The climate-mean values of (A) major axis length (B) minor axis length (C) anisotropy and the standard deviation (STD) of (D) major axis length
(E) minor axis length (F) anisotropy during 2006-2017 based on Lagrangian single-particle method.
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3.2 Representation and prediction of
mixing ellipse

This section assesses the performance of STN, CNN and RF

models (“12-Year model”) in representing and predicting mixing

ellipses, using factors derived from SMLT. Results predicted by the

STN, CNN and RF models are referred to as “STN-based”, “CNN-

based” and “RF-based”, respectively.

3.2.1 Representation skill
We compare the outputs of the machine learning models with

particle-based attributes during 1994-2005 (Supplementary Figure S1)

to evaluate the model’s representation skill. Among three models, RF

model best represents both themagnitude and spatial structure of climate-

mean values and STD values of mixing-ellipse attributes (Supplementary

Figure S2). To quantify the representative skill, we estimated the global

spatial correlation coefficients and NRMSE between particle-based

attributes and those from each model over the 1994-2005 period.
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Correlation coefficients for RF model exceed 0.95 for all three attributes,

with NRMSE values lower than 0.3 across all years. In comparison, both

methods CNN and STNmodels are inferior to RF in representingmixing

ellipses, with correlations (NRMSE) around 0.9 (0.4) for major axis, 0.8

(0.4-0.5) for minor axis and 0.7 (0.3) for mixing anisotropy.

To further assess the ability of models in representing the

temporal variability, we calculated the temporal correlation

coefficients and NRMSE between time series of particle-based

attributes and those predicted by the models for each grid point

from 1994 to 2005. Results indicate that the RF model performs well

across the global surface ocean, with zonally averaged correlations

for three mixing-ellipse attributes generally exceeding 0.9 cross

latitudes (not shown). The CDF in Supplementary Figure S3 reveals

that the correlation coefficients from RF model exceed 0.91 for

major axis, 0.91 for minor axis, and 0.96 for anisotropy in 85% of

the global ocean. The corresponding NRMSE values are below 0.24,

0.35 and 0.27, respectively. In contrast, the representative skills of

CNN and STN is significantly inferior to those of RF.
FIGURE 5

The normalized standard deviation (NSTD) of annual-mean particle-based attributes spanning from the year 1994-2017. Spatial pattern of NSTD of
(A) major axis length (B) minor axis length (C) anisotropy. (D) Probability density function (PDF) and (E) the cumulative density function (CDF) of the
NSTD from (A-C). The gray vertical lines in (D, E) indicate the NSTD value of 0.4.
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3.2.2 Prediction skill
To evaluate the model’s prediction skills, we compared the

outputs of machine learning models with particle-based attributes

during 2006-2017 (Figure 4). The STN model accurately predicts

the global climate-mean features of three attributes and the spatial

distribution of the axes’ STD (Figure 6). But for mixing anisotropy,

its temporal variability is underestimated. The predictive skill for

minor axis and anisotropy in the northern equatorial central Pacific

is weak, likely due to the influence of regional climate states. For

example, different phases of El Niño Southern Oscillation (ENSO)

may be averaged within the 12-Year model, resulting in reduced

predictive accuracy. We found that using a 2- or 3-year data as

training set, which better represents a single climate state, yields

more accurate predictions, as discussed further in Section 4.2.

Three machine learning models show varying performance in

predicting the temporal variations of three attributes. The RF model

performs best for the axes, while the STN model outperforms both

RF and CNN in minimizing the NRMSE between particle-based

time series and predicted time series of mixing anisotropy at each

grid point from 2006 to 2017. As shown in Figures 7A–D, the RF

model accurately predicts the time series variations of global major

and minor axis in the off-equatorial region (latitudes beyond ±15°).

The zonally averaged correlation of major axis generally ranges
Frontiers in Marine Science 10
from 0.55 to 0.8 across all the latitudes, while the correlation for

minor axis exhibits more fluctuation, with values ranging from 0.5

to 0.7 in mid-high latitudes and lower values near the equator.

Although all three models struggle to predict the temporal

correlation of anisotropy, the STN model successfully captures its

magnitude variation, with zonally averaged NRMSE remaining

below 0.23 across mid-high latitudes (Figures 7E, F). In contrast,

the RF and CNN models show higher zonally averaged NRMSE of

0.3 and 0.32, respectively. Given the small NSTD values of particle-

based anisotropy in mid-high latitudes (Figure 5C), temporal

variation in the equatorial region deserves further attention. We

also quantify the global percentage of temporal correlation

coefficients exceeding 0.5 and NRMSE below 0.4 for different

models predicting the mixing-ellipse attributes (Table 1).

The STN model shows clear advantages over the RF and CNN

models in predicting the spatial structure of three attributes,

particularly for mixing anisotropy (Figure 8). For the major axis,

all models achieve high performance, with global spatial correlation

coefficients above 0.85 and NRMSE around 0.4 for all years. Minor

axis shows correlation ranging from 0.51 to 0.8, with NRMSE

between 0.5 and 0.78. For mixing anisotropy, the correlation

ranges from 0.47 to 0.7, with NRMSE between 0.26 and 0.35. The

STN model increased the spatial correlation of annual anisotropy
FIGURE 6

The climate-mean values of (A) major axis length, (B) minor axis length, (C) anisotropy, and the corresponding STD values (D-F) during 2006-2017
based on STN method. Results show the predictive skill of the STN model.
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predictions by 0.08 compared to the RF and CNN models, while

reducing NRMSE by 0.06. In certain years, STN and CNN models

slightly outperform RF model, likely due to their use of predictor

images that incorporate non-local flow information, which aids in

predicting regions with larger mixing nonlocality (Guan et al.,

2022). Furthermore, the STN model enhances anisotropy

predictions by incorporating an adaptive spatial attention
Frontiers in Marine Science 11
mechanism to learn spatial transformations, offering an advantage

over traditional models.
4 Discussion

4.1 Feature importance analysis

Feature importance ranking is a tool to measure the

contributions of individual features (predictors) to the

performance of machine learning model (Lakshmanan et al.,

2015; Yu et al., 2021). We employed permutation feature

importance method to elucidate the relative importance of each

predictor in predicting the predictand (Breiman, 2001; McGovern

et al., 2019; Greenhill et al., 2024). Based on an already-trained

model with all features, we randomly permute the values of a

predictor multiple times, effectively breaking the statistical relation

between the predictor and the predictand, and then evaluate how

much the model performance deteriorates. A feature’s permutation

importance is evaluated by calculating the difference of the NRMSE
TABLE 1 Global percentage of correlation coefficients > 0.5 and NRMSE
< 0.4 for time series predictions of three attributes using machine
learning methods (refer to Figure 7).

Attributes
Percentage of

Correlations > 0.5
Percentage of
NRMSE < 0.4

STN CNN RF STN CNN RF

Major axis 72.1% 75.3% 66.9% 61.0% 73.9% 70.1%

Minor axis 54.7% 52.4% 50.8% 55.2% 53.4% 53.4%

Anisotropy 11.4% 10.8% 9.7% 81.9% 71.9% 74.0%
FIGURE 7

The correlation coefficients (left panel) and NRMSE (right panel) between particle-based and machine learning (ML)-based time series at global grid
points spanning from 2006-2017 for (A, B) major axis, (C, D) minor axis and (E, F) mixing anisotropy. (A-D) shows the predictive skill of RF model and
(E, F) shows the predictive skill of STN model. The zonal gray lines indicate those region within 15°N and 15°S. Dots in (A, C, E) indicate points where
the correlation coefficient passes the 95% confidence level.
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or correlation coefficients (R) between the experiment with features

intact and that with features permuted. In other words, we rank the

relative importance based on the following two metrics, DRMSE =

NRMSEpermute − NRMSEall and DR = Rall − Rpermute, where ·all
denotes the variable from the experiments with features intact and

·permute refers to the experiment with features permuted.

We evaluated the feature importance rankings for predicting

the major axis, minor axis, and anisotropy of mixing ellipses using

all three models. The values of DRMSE and DR for each model are

shown in Figure 9. The rankings based on these metrics are

consistent across the models. For the STN model (Figures 9A, B),

urms and Leddy have the greatest impact on predicting the major axis

and mixing anisotropy. This aligns with eddy mixing length theory

(Taylor, 1915), where eddy diffusivity is proportional to the product

of urms and mixing length. Previous studies have assumed that

mixing length scales with Leddy (Stammer, 1998; Eden and

Greatbatch, 2008; Bates et al., 2014) and Klocker and Abernathey

(2014) confirmed that this theory is reasonable for weak mean

flows. For the minor axis, urms and additional factor g, proportional
to urms/Leddy (Equation 11) in SMLT, ranks the first and second.

Among the four predictors, Cw−j jU ‖ consistently ranks as the least

important for predicting the axes but ranks third for anisotropy.

Interestingly, in the CNN model, g ranks as the second-most

important predictor for anisotropy, and in the RF model, it ranks

third. This difference likely arises from the distinct architectures and

data processing algorithms of these models.

Compared to the global result (Figure 9), the feature importance

rankings for predicting minor axis within the jet region show slight
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variations (not shown). The jet region is defined as the area where

Cw−j jU ‖ values rank in the top 10% globally. For instance, based on

DR values, the importance ranking of Cw−j jU ‖ rises from fourth to

third place in the RF model. The ratio of DRMSE values between |Cw

−|U|| and Leddy increases from 32.2%, 61.9% and 42.8% in the global

analysis to 53%, 72.5% and 99.7% in the jet region for STN, CNN

and RF, respectively. This finding is not surprising given that SMLT

is formulated to capture the cross-stream mixing suppression

phenomenon due to eddies propagating relative to the mean flow

( Cw−j jU ‖ ≠ 0).
4.2 Equatorial analysis

Although RF, CNN and STN models well predict the

spatiotemporal features of major axis throughout the ocean, they

struggle to capture the minor axis and anisotropy in the equatorial

region. We explored the following alternative settings of the models

(12-Year model), with no improvement found. One, we use zonal

and meridional eddy phase speed instead of along-stream eddy

phase speed as predictors. Two, recognizing that eddies can be

asymmetric (Liu et al., 2017; Tang et al., 2020), we use two new

predictors (dominant zonal length scale and meridional length

scale) to replace the single eddy size Leddy in the predictor group.

Three, we train the machine learning model only in the

equatorial region.

Instead, we found that model performance in predicting

temporal variation can be significantly enhanced by adjusting the
FIGURE 8

Spatial correlation and Normalized Root Mean Square Error (NRMSE) between particle-based attributes of mixing ellipses and those from RF, CNN
and STN methods. Results during 2006-2017 showcase the predictive skill for (A) major axis length, (B) minor axis length and (C) anisotropy,
respectively. Error bars of correlation coefficients, represented by the shaded region, are uncertainties at the 95% confidence level inferred from a
bootstrapping method (Guan et al., 2022). These uncertainties are too small to be clearly visible in the figures.
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temporal duration of the training set. The 2-Year model effectively

captures the magnitude and temporal variability of mixing-ellipse

attributes within the northern equatorial central Pacific (120°W-

170°W, 0°-15°N), though the 12-Year model does not (Figure 10).

Specifically, the spatially averaged correlation coefficients and

NRMSE values between particle-based minor-axis or anisotropy

time series and those predicted by 12-Year and 2-Year models are

shown in Table 2. For instance, results from the STN model show

an increase in correlation from 0.1 (0.01) to 0.58 (0.59) and a

decrease in NRMSE from 0.71 (0.63) to 0.58 (0.48) when predicting

minor axis (anisotropy).

Testing various training periods revealed that a 2- or 3-year

period yielding the best results, likely because it aligns with the

regional climate state. Previous studies have categorized ENSO

events into types such as low-frequency and quasi-biennial,

typically spanning 2-7 years per cycle (Hope et al., 2017; Santoso

et al., 2017; Wang and Ren, 2020; Wang et al., 2023). ENSO’s warm

phase (El Niño) and cold phase (La Niña) exhibit distinct dynamic

processes and spatiotemporal characteristics. Therefore, a 2- or 3-

year period likely represents a single ENSO phase or one climate

state. If the training dataset contains data from the same specific

climate state, prediction accuracy can be improved. Conversely, a

dataset including data from multiple climate states may average out
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effects, potentially reducing the performance of machine

learning models.

Several assumptions inherent in SMLT may also contribute to

the predictive results in the equatorial regions. One, in contrast to

the single-wavenumber limit, the realistic equatorial eddy field

comprises motions with a wide range of wavenumbers and phase

speeds, including westward Rossby waves, eastward Kelvin waves

and tropical instability waves (which contains Rossby and Yanai

modes; see, e.g., Liu et al. (2019)). Two, the constant mean flow

assumption, inherent in SMLT, is inconsistent with the presence of

strong alternating zonal currents here, such as the North Equatorial

Current and the North Equatorial Counter Current.

There are potential avenues to further improve the machine

learning prediction of mixing ellipses. One could incorporate eddies

and mean flow properties from surrounding regions as predictors to

take into account mixing nonlocality (Liu et al., 2023; Flierl and

Souza, 2024). More machine learning algorithms can be explored in

predicting mixing ellipses, such as the Adversarial Sparse

Transformer (Wu et al., 2020; Xue and Salim, 2023). In addition,

studying the underlying dynamical processes of equatorial eddy

mixing may help identify additional predictors (e.g., climate

indices) and design more physically informed machine

learning models.
FIGURE 9

Permutation tests of global feature importance for (A, B) STN, (C, D) CNN and (E, F) RF models. Feature importance is analyzed using two metrics:
(A, C, E) correlation coefficients difference (DR) and (B, D, F) NRMSE difference (DRMSE) between the experiment with features intact and that with
features permuted.
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5 Summary

In this study, we first estimated the spatio-temporal variability

of realistic eddy mixing ellipses at the global surface, focusing on

their major axis, minor axis and anisotropy, using the Lagrangian

single-particle method and satellite altimetry data. Our results

reveal that mixing ellipses have significant spatio-temporal

variability across the global ocean, and their morphology is

closely linked to the mean flow and EKE in eddy-rich and

energetic ocean regions.

Besides estimation, we evaluated the potential of machine

learning algorithms, STN, CNN and RF, in representing and

predicting particle-based mixing ellipses. Our results indicate that

RF outperforms both CNN and STN in representing the spatio-

temporal variability of mixing ellipses. Regarding the predictive
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skill, all three algorithms prove effective in predicting the spatio-

temporal features of global axes. For instance, the global spatial

correlation of annual-mean major (minor) axis predicted by STN

ranges from 0.85 (0.5) to 0.92 (0.81) for all years considered, and the

global spatially averaged temporal correlation coefficient is 0.62

(0.48) at the 95% confidence level. Furthermore, the STN model

significantly improved the accuracy of predicting the spatial

structure and magnitudes of mixing anisotropy, with spatial

correlation values between 0.52 and 0.7 and NRMSE below 0.26.

We also assessed the feature importance rankings of four

variables in predicting three mixing-ellipse attributes. Across

three models, the eddy velocity magnitude (urms) and eddy size

(Leddy) were consistently identified as the most important predictors

for the major axis and mixing anisotropy, while for urms and eddy

decorrelation time scale g were the top two predictors for predicting
TABLE 2 Regionally averaged correlation coefficients and NRMSE for time series predictions of mixing-ellipse attributes using different machine
learning models and training durations (refer to Figure 10).

Attributes Metrics

STN CNN RF

12-Year 2-Year 12-Year 2-Year 12-Year 2-Year

Major axis
Correlation
NRMSE

0.63
0.33

0.62
0.30

0.65
0.35

0.64
0.31

0.64
0.35

0.63
0.35

Minor axis
Correlation
NRMSE

0.1
0.71

0.58
0.58

0.08
0.73

0.59
0.56

0.09
0.72

0.56
0.60

Anisotropy
Correlation
NRMSE

0.01
0.63

0.59
0.48

0.04
0.68

0.56
0.51

-0.02
0.67

0.48
0.55
FIGURE 10

Time series correlation and NRMSE between particle-based attributes and that from STN-based 12-Year model or STN-based 2-Year model in the
region ranging from 120°W-170°W, 0°-15°N. (A, B, E, F, I, J) Correlation and (C, D, G, H, K, L) NRMSE. (A-D) Major axis, (E-H) minor axis and (I-L)
mixing anisotropy. Results from 12-Year model (A, C, E, G, I, K) and 2-Year model (B, D, F, H, J, L).
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minor axis, aligning with eddy mixing length theory. Additionally,

by adjusting the selection of training set, we found that training the

models with a temporal duration of 2 or 3 years, aligned with ENSO

timescale, improved predictions in the northern equatorial central

Pacific region compared to models trained with a 12-year duration.

This resulted in the spatially averaged correlation values for

predicting the minor axis and anisotropy increased by over 0.5,

while the NRMSE decreased by more than 0.15.

The significant variability of eddy mixing ellipses identified here

indicates the need of appropriately choosing subgrid eddy

diffusivity tensor and anisotropy in coarse-resolution models. Our

findings show the potential of using machine learning models to

predict eddy mixing ellipses. Based on instability theories, eddy

properties are linked with the large-scale ocean state (Smith, 2007;

Tulloch et al., 2011). Consistently, Xie et al. (2023) found that using

the large-scale fields readily available in coarse-resolution models as

predictors, machine learning models can well predict cross-slope

isopycnal eddy diffusivity. Next, one could explore using the large-

scale fields instead of eddy properties to predict eddy mixing

el l ipses . This effort would lead to pract ical ly useful

parameterization schemes of eddy ellipses and implement in

coarse-resolution models.
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