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Ltd., Guangzhou, China, 2Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai),
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A novel significant wave height prediction method for monsoon regions is

proposed, utilizing the VMD-CNN-BiLSTM model to enhance prediction

accuracy under complex meteorological conditions. Traditional numerical

models exhibit limitations in managing extreme marine conditions and fail to

fully integrate wind field information. Meanwhile, existing machine learning

models demonstrate insufficient generalization and robustness for long-term

predictions. To address these shortcomings, the predictive approach combines

Variational Mode Decomposition (VMD) with a hybrid deep learning model

(CNN-BiLSTM). VMD is employed to decompose the original wave height

sequence and extract key features, while CNN captures the spatial features of

wind field and wave height data. BiLSTM, in turn, models the temporal

dependencies. Experimental results reveal that the VMD-CNN-BiLSTM model

provides substantial advantages in prediction performance across all seasons,

including the entire year. Compared to traditional models, the proposed method

demonstrates significantly reduced Mean Absolute Error (MAE) and Root Mean

Square Error (RMSE), alongside an improved coefficient of determination (R²).

These findings confirm the effectiveness and reliability of the method under

complex meteorological conditions such as monsoons and typhoons.
KEYWORDS
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1 Introduction

Wave height prediction is a crucial issue in coastal and marine engineering. The larger

the wave height, the worse the sea conditions, significantly impacting the safe operation of

platform structures (Abed-Elmdoust and Kerachian, 2012). Therefore, forecasting wave

height in advance allows for timely assessment of platform safety levels and risk mitigation.
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However, due to the highly nonlinear and non-stationary statistical

characteristics of waves, analyzing and predicting wave height

is challenging.

Numerous efforts have been made in existing research on wave

height prediction. Numerical wave models are widely applied in

global sea state forecasting (Simmons et al., 2004). The principle of

numerical wave models is to obtain information such as wave height

and period by solving the wave spectrum equation of oceanic

physical processes. Bottcher et al. (2012) compared the wave

heights observed by buoys with the model predictions, concluding

that numerical prediction is a reliable method for wave height

forecasting. Advanced third-generation models, such as the Wave

Model (WAM) (Mentaschi et al., 2015), WAVEWATCH-III

(WW3) (Rogers et al., 2003), and Simulation Waves Nearshore

(SWAN) (Swain et al., 2019), are currently among the most

sophisticated numerical models. The WAM and WW3 models

have a similar structure, but WW3 uses more complex dissipation

source terms and wind input terms than WAM. Liu et al. (2019)

compared the performance of WAM andWW3 using data from the

South Indian Ocean, concluding that both methods can predict

significant wave height well. The SWAN model was developed to

address complex wave conditions in coastal areas. Liang et al. (2019)

validated the performance of SWAN through buoy measurements

in the northwest Pacific, northeast Pacific, and northwest Atlantic.

The experimental results showed that, under accurate boundary

conditions, the SWAN model could simulate coastal waves

effectively. However, the fixed energy spectrum equations with

fixed expressions used by these models may not fully represent

the complex and variable ocean environment. Specifically, the

accuracy of numerical wave predictions under extreme and highly

variable ocean conditions still needs improvement.

Machine learning is a data-driven approach that has recently

been successfully applied to wave height prediction (Yu and Wang,

2021). Based on long-term, accurate wave height measurements

obtained from buoys, satellites, and scatterometers, machine

learning methods predict future wave heights by learning the

inherent variability in the data (Fan et al., 2019). Deo et al. (2001)

explored a three-layer feedforward network to obtain significant wave

height outputs. Berbic et al. (2017) used artificial neural networks

(ANN) and support vector machines (SVM) to predict significant

wave heights over 0.5–5.5 hours, demonstrating that ANN and SVM

outperform numerical models in this range. Shen Lixiang et al. (2023)

proposed an Attention-LSTMmodel based on attention mechanisms

and multivariable inputs for short-term wave height prediction in the

Longkou sea area of Shandong. Pradnya and Londhe (2016) used

neural wavelet technology to predict extreme wave heights, showing

that multi-level decomposition of wave data helps improve prediction

accuracy. Recurrent neural networks (RNN) (Mikolov et al., 2021)

and their variant long short-term memory networks (LSTM) (Gers

et al., 2002) have unique advantages in solving prediction problems.

Zhang et al. (2021) proposed the N-LSTM model, combining

numerical forecasts with measured data, using LSTM and Gaussian

approximation modules to improve the accuracy of numerical

forecasts. Pushpam and Enigo V.S., 2020) applied RNN-LSTM to

predict significant wave heights, showing good performance within

24 hours. Kaloop et al. (2020) integrated wavelet, particle swarm
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optimization (PSO), and extreme learning machine (ELM) methods

into the wavelet PSO-ELMmodel for estimating coastal and deep-sea

wave heights, with evaluation results showing high prediction

accuracy. Hao et al. (2023) systematically analyzed the effects of

input length, forecast length, and model complexity on wave height

prediction using RNN/LSTM/GRU and other recurrent neural

networks. Minghao et al. (2024) introduced Rayleigh parameters in

wave height prediction, showing improvements in mid- to long-term

prediction capabilities for BPNN and LSTM. Yifan et al. (2024)

introduced Spearman correlation analysis into RNN/LSTM/GRU

models and proposed the LSTM-Attention model. These studies

achieved promising results using various neural network models for

wave height prediction. However, they have not fully incorporated

wind field information. As the key driver of wave formation and

evolution, wind field data is crucial for wave height prediction.

Ignoring wind field information may limit the model’s ability to

capture the complex relationships between wind and waves (Ahmed

et al., 2024). Yin et al. (2023) proposed an adaptive tidal level

prediction mechanism based on EMD and the Lipschitz quotients

method, combining harmonic analysis with a variable structure

neural network to automatically determine model parameters,

thereby improving the accuracy and adaptability of tidal level

prediction. Additionally, machine learning models often experience

a decline in prediction accuracy over long-term forecasts, particularly

when dealing with complex nonlinear time series wave data, limiting

the model’s generalization capability and robustness.

This study addresses the limitations in existing models,

particularly their inability to fully incorporate wind field

information for long-term wave height prediction, and proposes a

hybrid model based on VMD-CNN-BiLSTM for a typical wind-

wave region—the southeastern sea of China—aimed at improving

wave height prediction accuracy by comprehensively considering

wind field and significant wave height information. First, the model

uses Variational Mode Decomposition (VMD) to decompose the

wave height data, breaking down the complex non-stationary wave

height sequence into multiple relatively stationary mode functions,

facilitating subsequent feature extraction. Then, the decomposed

wave height modes and wind field data are input into a

Convolutional Neural Network (CNN) for feature extraction,

where CNN extracts local spatial features of the wind field and

wave height modes. Finally, the extracted features are fed into a

Bidirectional Long Short-Term Memory (Bi-LSTM) network to

capture the dependencies in the wave height time series, thereby

better understanding the intrinsic relationship between wind and

waves. Through this approach, the proposed model demonstrates

greater robustness and generalization ability in long-term wave

height prediction, providing a more reliable solution for significant

wave height forecasting.
2 WW3-SWAN numerical simulation

2.1 Model settings

The WW3 model (Tolman, 2009) was developed based on the

third-generation wave model WAM, with its governing equations
frontiersin.org
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modeled by solving the action balance equation over the wave

number-direction spectrum. The model uses the global digital

elevation model (DEM) dataset released by the General

Bathymetric Chart of the Oceans (GEBCO), with a resolution of

15″×15″, and wind field data at a height of 10 meters from the ERA5

reanalysis data by the European Centre for Medium-Range

Weather Forecasts (ECMWF), with a resolution of 0.25°×0.25°,

from January 1, 2017, 00:00 to December 31, 2021, 23:00. The extent

of the wind field should be greater than or equal to the extent of the

WW3 and SWAN numerical simulations. No additional data is

input into the boundary conditions of the WW3 model. The wave

spectrum grid of the WW3 model is set to 32×24, with a frequency

range from 0.0373 Hz to 0.7159 Hz, divided into 32 bands, and wave

direction divided into 24 directions. The calculation area of the

model covers the longitude range of 110°E to 130°E and the latitude

range of 10°N to 30°N, with a spatial resolution of 0.25°×0.25°. The

layout of the model region is shown in Figure 1.

The SWAN model was modified and improved by Booij et al.

(1996) from Delft University of Technology based on the third-

generation wave model WAM. The model discretizes the governing

equations using an implicit method, taking into account wave-wave

interactions and the breaking effects caused by depth changes

during wave propagation, making it effective in simulating the

evolution of nearshore waves. The computational range of the

SWAN model is from 115.59°E to 117.71°E in longitude and

from 21.78°N to 23.66°N in latitude, using an unstructured grid,

as shown in Figure 1B. Bathymetric data comes from the GEBCO

dataset, wind field data uses ERA5 reanalysis data, and the wave

spectrum data at open boundary points is obtained from the wave

spectrum output of the WW3 model. The simulation time range is

from 00:00:00 on January 1, 2017, to 23:00:00 on December 31,

2021, with an output time interval of one hour.

To verify the accuracy of the WW3-SWAN numerical model, a

MARK III Wave Rider instrument was deployed in the waters off

the Stone Tablet Mountain Cape, at the coordinate position (22°

55.7046′N, 116°31.4034′E), as shown in Figure 2. The Wave Rider

instrument has a wave height measurement range of ±20m. The

measured data were processed by the instrument’s built-in software,
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which then statistically generated hourly wave height observation

data. The observation period was from 00:00 on April 1, 2021, to

23:00 on November 18, 2021.
2.2 Data validation

Figure 3 shows a comparison between the significant wave

heights from the numerical model and the measured values. The

significant wave height values from the WW3-SWAN numerical

simulation are consistent with the observed values in terms of the

overall trend. However, due to the ERA5 reanalysis data

underestimating the intensity of typhoons in the Northwest Pacific

(Li and Hu, 2021), the numerical simulation slightly underestimates

the peak values of the significant wave heights.

Figure 4 shows the situation of some typhoons in the Western

Pacific in 2021, with longitude on the horizontal axis, latitude on the

vertical axis, and wind speed represented by the color scale. As shown

in Figure 4A, during the spring season, Typhoon Surigae formed on

April 10, 2021, with wind speeds rapidly increasing from 28 m/s to 60

m/s, and was upgraded to a super typhoon on April 17-18, 2021. The

typhoon’s center was located approximately 1,280 km southeast of

Manila, Philippines, in the Northwest Pacific Ocean (10.3°N, 131.9°E),

with maximum winds near the center reaching 15 on the Beaufort

scale (50 m/s). It transitioned into an extratropical cyclone on April

25. At 12:00 on April 18, 2021, the South China Sea was affected by the

typhoon, with wind speeds around 10 m/s in the area of the wave

monitoring site, leading to higher waves. Therefore, during the

typhoon period, the average significant wave height measured in

Figure 3A was 1.4m, slightly higher than the numerical simulation

value. InMay, with no typhoon influence, the average significant wave

height at the wave monitoring site was 0.66m, with relatively calm sea

conditions, and the numerical simulation values were closer to the

measured values at this time.

As shown in Figure 4B, during the summer season, Typhoon

Choi-Wan entered the South China Sea on June 3, 2021, with

maximum sustained winds near the center reaching 65 km/h. At

9:00 on June 4, 2021, wind speeds at the wave monitoring site
FIGURE 1

Calculation area of the WW3-SWAN model. (A) WW3-SWAN, (B) SWAN unstructured grid.
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reached 6-10 m/s, with a peak significant wave height of around 1.5

m. As shown in Figure 4C, Typhoon Lupit formed in Zhanjiang,

Guangdong, on August 2, 2021, and gradually approached the

coasts of Fujian and Guangdong. By 15:00 on August 6, 2021,
Frontiers in Marine Science 04
wind speeds from Typhoon Lupit along the Fujian-Guangdong

coast reached around 10 m/s, causing the wave height at the

monitoring site to reach a maximum of approximately 2.5 m.

Therefore, during the typhoon periods shown in Figure 4B, the
FIGURE 3

Comparison of WW3-SWAN SWH with the measured value. (A) Spring, (B) Summer, (C) Fall.
FIGURE 2

MARK III Wave instrument monitoring position.
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observed values of significant wave height were consistently higher

than the values simulated by the numerical model.

As shown in Figure 4D, during the autumn season, Typhoon

Kompasu formed in the Philippine Sea on October 8, 2021, and

steadily moved westward after entering the South China Sea, with

its center approaching the coastal areas of the South China Sea.

Therefore, as seen in Figure 3C, the measured wave heights

increased significantly during mid-October 2021, while the

simulated wave heights were slightly lower.

To further validate the accuracy of the numerical simulation

results in this study against the measured data, Mean Absolute Error

(MAE), Root Mean Square Error (RMSE), and the coefficient of

determination (R²) were used to quantitatively evaluate the accuracy

of the numerical results. The calculation formulas are shown in

Equations 1–3.

MAE =
1
no

n

i=1
xi − yij j (1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(xi − yi)

2

s
(2)
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R2 = 1 −
o
n

i=1
(xi − yi)

2

o
n

i=1
(xi − �y)2

(3)

In the formulas, xi represents the numerical simulation values,

yi represents the measured values, n is the total number of samples,

and �x and �y are the mean values of the numerical simulation and

measured values, respectively.

To evaluate the WW3-SWAN numerical simulation model,

Table 1 uses MAE, RMSE, and R² for a quantitative assessment of

model performance. Statistical analysis shows that the WW3-

SWAN model performs well across different seasons. The MAE

ranges from 0.1413 m to 0.2130 m, indicating that the average

deviation between the simulated and observed values is quite small.

RMSE, which is more sensitive to larger errors, is slightly higher,

ranging from 0.1828 m to 0.2844 m. This is mainly due to the

impact of extreme weather conditions like typhoons, which cause

deviations in significant wave height at peak values. The R² values

are notably high, between 0.7801 and 0.8493, indicating a strong

linear relationship between the simulated and observed significant

wave heights. The model performs best in the spring, with the
FIGURE 4

Typhoons in the Western Pacific during 2021. (A) Surigae, (B) Choi-wan, (C) Lupit, (D) Kompasu.
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highest R² value of 0.8493. In summer and autumn, frequent

typhoons lead to reduced accuracy in the numerical simulation.

Overall, the WW3-SWAN model reliably reflects the significant

wave height in the study area, capturing the magnitude and

temporal variation, and can serve as input data for the VMD-

CNN-BiLSTM model.
3 Forecasting models

3.1 VMD model

VMD (Variational Mode Decomposition) is an adaptive, fully

non-recursive signal processing technique that combines Wiener

filtering, Hilbert transform, and the Alternating Direction Method

of Multipliers (ADMM). As a non-stationary time series, significant

wave height is well-suited for decomposition using VMD. The VMD

decomposition process effectively transforms into an optimization

process. The two main components of VMD are constructing the

variational problem and solving it. Variational modes refer to the

modes obtained by solving the variational problem. VMD iteratively

searches for the optimal solution of the variational modes, adaptively

updating the optimal center frequency and bandwidth for each

Intrinsic Mode Function (IMF). VMD redefines the intrinsic mode

function, as shown in Equation 4. Compared to other decomposition

methods like Empirical Mode Decomposition (EMD) or Wavelet

Transform, VMD was chosen for its superior ability to reduce mode

mixing and provide more stable component separation under

complex wave conditions.

uk(t) = Ak(t) cos (fk(t)) (4)

Where k represents the mode number, Ak(t) is the amplitude of

the k-th mode, jk(t) is the phase of the k-th mode, and uk(t) is the

k-th mode function.

At this point, the variational problem constructed by VMD is

shown in Equation 5:

min
uk ,�wkf g o

K

k=1

∥ ∂t d (t) +
j
p t

∗ uk(t)
� �� �

e−j�wkt ∥22

( )

s : t :⋯o
K

k=1

ut(t) = f (t)

8>>>><
>>>>:

(5)

Where uk represents the corresponding mode function, and �wk

represents the center frequency of the corresponding mode.

By introducing Lagrange multipliers, the constrained

optimization problem above is transformed into an unconstrained

problem, as shown in Equation 6:
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L( ukf g, �wkf g) = ao
K

k=1

∥ ∂t d (t) +
j
p t

∗ uk(t)
� �� �

e−j�wkt ∥
2

2

+ ∥ f (t) −o
K

k=1

uk(t) ∥
2
2 + l(t), f (t) −o

K

k=1

uk(t)

* +
(6)

Where a represents the variance regularization parameter, and

l represents the Lagrange multiplier.

To solve this problem, the Alternating Direction Method of

Multipliers (ADMM) is used. The specific solving steps are

as follows:
1. Initialize uk1, �wk, lk
1 and the iteration number n.

2. Increase the variable n to 1 and enter the loop.

3. Update the variables according to Equation 7 until the

number of iterations exceeds k, then stop updating:

û k
n+1(w) =

f̂ (w)−o
i<k

û i
n+1(w) +o

i>k

û i
n(w) + l̂ n(w)=2

1+2a(w−�wk
n)

2

�wk
n+1 =

Z ∞

0
wjû k

n+1(w)j2dwZ ∞

0
jû k

n+1(w)j2dw

8>>>>>>>><
>>>>>>>>:

(7)

4. Update the Lagrange multipliers l

l̂ n+1(w) = l̂ n(w) + t f̂ (w) −o
K

k=1

û k
n+1(w)

 !
(8)

5. If the condition of Equation 9 is met, the loop ends; if not,

return to step 2.
o
K

k=1

∥ û k
n+1(w) − û k

n(w) ∥22
∥ û k

n(w) ∥22
< ∈ (9)

By constructing and solving the variational problem, VMD can

effectively decompose non-stationary data. However, the number of

modes after VMD decomposition needs to be manually selected.

Multiple tests are required to find the most appropriate number

of modes.
3.2 CNN model

CNN are an effective deep learning model widely used for feature

extraction in image processing and spatio-temporal data. Through

mechanisms like local receptive fields and weight sharing, CNNs can

effectively capture local spatial features in the data. In this forecasting

model, CNN is used to extract the spatial features of wind fields and

wave heights, which will serve as inputs for subsequent time series

modeling. CNN architecture is constructed by stacking three main

types of layers: convolutional layers, pooling layers, and fully

connected (FC) layers. Each convolutional layer contains a set of

learnable filters, which aim to automatically extract local features

from the input matrix. These filters perform convolution operations

based on two important concepts: weight sharing and local

connections, which help reduce computational complexity and
TABLE 1 Numerical simulation error.

Season MAE/m RMSE/m R2

Spring (April and May) 0.1540 0.2067 0.8493

Summer (June, July and August) 0.1413 0.1828 0.7910

Fall (September, October and November) 0.2130 0.2844 0.7801
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enhance model performance. The pooling layer follows the

convolutional layer, performing down-sampling. A notable feature

of the pooling layer is its ability to reduce the dimensionality of

feature maps, thus preventing overfitting. Typically, FC layers are

used in the final layers of CNN architecture, and their role is to learn

nonlinear combinations of features extracted by convolutional layers,

generating the final output. Since wave height and wind field data

usually exhibit significant spatio-temporal dependencies, CNN can

effectively extract local features and patterns from this data through

its receptive fields. Therefore, CNN is selected to extract features from

wind fields and wave heights in this study.

Figure 5 illustrates the specific process of wind field and wave

height data processed through a one-dimensional Convolutional

Neural Network (1D-CNN). The input data, representing a sample

at a certain time from the dataset, is preprocessed and fed into the

convolutional layer of the CNN in sequence form. In the

convolutional layer, multiple filters (also known as convolutional

kernels) slide over the input sequence, extracting local temporal

features through local connectivity and weight sharing. After the

convolution operation, the data moves to the pooling layer for

downsampling. By selecting the maximum value (max pooling) or

the average value (average pooling) within a window, the

dimensionality of the feature map is reduced. This not only

decreases the computational complexity of the model but also

effectively prevents overfitting. After processing by the pooling

layer, the dimensionality of the feature map is significantly reduced,

preserving key features while lowering computation costs. Finally,

these processed feature maps are flattened into a one-dimensional

vector, which serves as input for subsequent fully connected layers or

other models (such as LSTM or BiLSTM) for the final prediction task.
Frontiers in Marine Science 07
3.3 BiLSTM model

Additionally, since the current wave height is not only related to

the current wind field conditions but also influenced by historical

wind field and wave height changes, traditional neural networks

struggle to capture this long-term dependency. LSTM, with its

special architecture, can effectively retain and utilize information

from long-term time series, allowing it to capture complex temporal

patterns in the data. Moreover, LSTM can solve the vanishing

gradient problem found in conventional Recurrent Neural

Networks (RNN), making it more stable and accurate in

predicting long sequences. Therefore, in wave height forecasting

tasks, LSTM becomes a natural choice to better model the temporal

dependency and dynamic changes in the data.

A typical LSTM unit contains three types of gates: the input gate

it, forget gate ft, and output gate ot, as shown in Figure 6. In each

gate, the state of the memory cell is controlled through element-wise

multiplication and the Sigmoid function. The inputs to the LSTM

model are the input data at the current state xt and the output of the

hidden state from the previous layer ht-1.

The input data first passes through the forget gate, which

determines which information should be discarded or retained.

The equation for the forget gate is as follows:

ft = s(Wf · ½ht−1, xt � + bf ) (10)

Here, s represents the Sigmoid activation function, andWf and

bf represent the weights and biases of the forget gate, respectively.

The current input xt and the previous hidden state ht-1 are fed into

the Sigmoid function. By transforming values between 0 and 1, the

forget gate determines which information needs to be updated,
FIGURE 5

Flow chart of the one-dimensional CNN model.
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where 0 represents unimportant information and 1 represents

important information.

Next, the data passes through the input gate, with the

calculation formula as follows:

it = s (Wi · ½ht−1, xt � + bi) (11)

Then, the current input xt and the hidden state ht-1 are fed into

the hyperbolic tangent function (tanh). At this point, the cell state is

calculated and updated to the new cell state. The formula is as

follows:

Ĉ t = tanh(Wc · ½ht−1, xt � + bc)

Ct = ft ⨀Ct−1 + it ⨀ Ĉ t

(
(12)

Here, tanh is the hyperbolic tangent activation function, and ⊙
denotes the element-wise multiplication operation, with Ct being

the new cell state.

Finally, the output gate selects the next hidden state. The new

cell state Ct and the new hidden state ht are passed to the next time

step. The formula for the output gate is as follows:

ot = s (Wo · ½ht−1,Ct � + bo)

ht = ot ⨀ tanh(Ct)

(
(13)

A unidirectional LSTM can only process information flow in

one direction, whereas a bidirectional LSTM (BiLSTM) enhances

the model’s ability to understand wave height and wind field

temporal evolution by analyzing both forward and backward
Frontiers in Marine Science 08
information in parallel. BiLSTM consists of two LSTM layers

operating in opposite directions, as illustrated in Figure 7.

The horizontal dashed line represents the time axis flow of the

time series data, while the vertical slanted lines depict the

information transmission paths between network layers.
3.4 VMD-CNN-BiLSTM model

The VMD-CNN-BiLSTM model is shown in Figure 8. VMD

decomposes the wave height data into several Intrinsic Mode

Functions (IMFs), breaking down the non-stationary wave height

time series into relatively stationary subcomponents. The CNN

network extracts local features from wind speed and IMFs, while the

BiLSTM network models the wave time series data to accurately

predict future wave heights. The detailed process is as follows:
1. Data collection and preprocessing: Gather datasets that

include wind field and wave height data, and perform

preprocessing steps like data cleaning and normalization

to ensure the data is suitable for model training.

2. Dataset splitting: Divide the dataset into training and

testing sets to ensure that the training set has enough

data for model learning, while the testing set is used to

evaluate the model’s performance.

3. VMD decomposition: Apply VMD to decompose the wave

height data. The original wave height data is decomposed
FIGURE 7

Bi-LSTM structure diagram.
FIGURE 6

LSTM structure diagram.
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Fron
into several IMFs, each representing different frequency

components of the data. This decomposition helps CNN

better extract multi-scale features from the wave data.

4. Feature extraction via CNN: Apply a multi-layer

Convolutional Neural Network (CNN) to process the input

data, extracting spatial features from the wind field and IMFs.

The CNN layers help identify patterns and relationships

between spatial data points that affect wave heights.

5. Temporal feature extraction via Bi-LSTM: Pass the spatial

features extracted by CNN into a bidirectional Long Short-

Term Memory network (Bi-LSTM), which extracts the

temporal features from the data. The Bi-LSTM layer captures

time dependencies, allowing the model to account for how

event sequences and timings affect wave height variations.

6. Feature merging and fully connected layers: Merge the

features extracted by CNN and Bi-LSTM and pass the

merged features through fully connected layers for learning.

7. Output layer: After the last fully connected layer, a single

neuron output layer is used to produce the final wave

height prediction.
4 Wave height prediction

The southeastern seas of China are influenced by the monsoon

climate, with prevailing northerly winds in winter and

predominantly southerly winds in summer. Waves, influenced by

these wind fields, exhibit a seasonal distribution characterized by

lower effective wave heights in spring and summer, and higher

effective wave heights in autumn and winter (Qiu et al., 2019). As
tiers in Marine Science 09
shown in Figure 9, during spring and summer, the effective wave

heights in the southeastern sea area range mainly from 0.2 to 1.2

meters. In autumn, the effective wave heights significantly increase,

with the mean value ranging from 0.6 to 1.6 meters. In winter, the

mean wave height increases further, with the maximum average

reaching approximately 2.3 meters. Therefore, when using the

VMD-CNN-BiLSTM model to predict effective wave heights, it is

necessary to predict the wave heights for each season separately.
4.1 VMD decomposition

Before being input into the prediction model, the wave height

dataset was normalized to a range between 0 and 1, which accelerates

the model’s convergence and improves prediction accuracy.

Due to the influence of the monsoon climate and typhoons in this

sea area, the effective wave height sequence fluctuates greatly,

requiring data processing. This paper uses Variational Mode

Decomposition (VMD) to decompose the original sequences of

wind fields and effective wave heights into several relatively smooth

components. Taking the spring period from 2017 to 2021 as an

example, with a data time interval of 1 hour, the VMD decomposition

results are shown in Figure 10.

From the decomposition, we can observe that the wind field

(Figure 10A) and the effective wave height (Figure 10B) sequences

are decomposed into five components (IMF1 to IMF5),

transitioning from high-frequency to low-frequency components.

To compare the impact of VMD decomposition of wind fields

and effective wave heights on wave height prediction, two cases were

designed: Case 1 includes seven vectors, namely the wind field,

IMF1 to IMF5 of the effective wave height, and the original effective
FIGURE 8

CNN-BiLSTM Flowchart.
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wave height; Case 2 includes 12 vectors, specifically IMF1 to IMF5

of the wind field, the wind field, IMF1 to IMF5 of the effective wave

height, and the original effective wave height.

According to the data in Table 2, the prediction results of Case 1

and Case 2 show significant differences across different seasons.
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In all seasons, the errors in Case 1 are generally smaller than those

in Case 2, indicating that decomposing only the effective wave

height better captures its intrinsic features, while introducing the

IMF components of the wind field increases the model’s complexity,

leading to greater errors. Notably, the computation time for Case 1
FIGURE 10

VMD decomposition of significant wave height sequence. (A) Wind, (B) SWH.
FIGURE 9

Seasonal distribution of significant wave heights over five years. (A) Spring, (B) Summer, (C) Fall, (D) Winter.
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is significantly shorter than for Case 2, especially in winter, where

the CPU time for Case 2 is more than 10 times that of Case 1. This

further suggests that introducing the IMF components of the wind

field not only increases the model’s computational complexity but

also significantly prolongs the computation time. Therefore, in the

subsequent predictions, to simplify the computation and improve

model efficiency, only the effective wave height data, which has a

more significant impact on the predictions, will be decomposed.
4.2 Univariate prediction

This experiment used data from spring, summer, autumn, and

winter between 2017 and 2021 as model driving data, with data

from 2017 to 2020 used as the training set and data from 2021 as the

test set. In the univariate model, only significant wave height is used

as the input parameter for the BiLSTM, CNN-BiLSTM, and VMD-

CNN-BiLSTM models.

Figure 11 compares the univariate predictions of BiLSTM,

CNN-BiLSTM, and VMD-CNN-BiLSTM models with the WW3-

SWAN simulation values. As shown in Figure 11, the bidirectional

LSTM (BiLSTM) is capable of considering both past and future

information and performs well in predicting the overall trend,

especially in periods with smaller fluctuations. However, in

regions of sharp changes in wave peaks and troughs (as indicated

by the black boxes in Figure 11), BiLSTM shows significant errors

compared to the WW3-SWAN values. This may be due to

BiLSTM’s tendency to over-smooth the predictions during

periods of sharp fluctuations. In contrast, the CNN-BiLSTM

model is more effective at capturing the short-term fluctuations of

wave peaks, particularly in areas of peak changes, outperforming
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BiLSTM. However, CNN-BiLSTM is less effective at capturing

troughs, possibly due to limitations in its ability to extract local

features. By decomposing the significant wave height data using

VMD, the model can effectively extract important frequency

components, and combined with CNN’s ability to extract local

features, it significantly improves prediction accuracy in areas of

sharp changes in wave peaks and troughs. Overall, the VMD-CNN-

BiLSTM model performs best in capturing changes in wave peaks

and troughs.

Figure 12 and Table 3 compare the error metrics of the three

models (BiLSTM, CNN-BiLSTM, and VMD-CNN-BiLSTM) in

univariate significant wave height prediction, including mean

absolute error (MAE), root mean square error (RMSE), and

coefficient of determination (R²). The left y-axis of Figure 11

represents the specific values of MAE, RMSE, and R² for each

model, while the right y-axis shows the relative values of each model

compared to BiLSTM. Negative values of MAE and RMSE indicate

that the model performs better than BiLSTM, while positive values

indicate poorer performance; for R², larger positive values indicate

better prediction accuracy. The results show that the VMD-CNN-

BiLSTM model’s error is significantly lower than the other two

models, especially in regions of sharp changes in wave peaks and

troughs. Across all seasons, the VMD-CNN-BiLSTM model

demonstrates the best prediction performance, particularly in the

autumn and winter seasons, where complex wave height changes

caused by typhoons and strong monsoons are present. For example,

in the spring season, the MAE of the VMD-CNN-BiLSTM is 0.0159

meters, a 51.23% reduction compared to BiLSTM; across the entire

year, the RMSE of the VMD-CNN-BiLSTM is 0.0256 meters, a

62.30% reduction compared to BiLSTM. Furthermore, the R² of the

VMD-CNN-BiLSTM is the highest across all seasons and in annual

statistics, reaching 0.9979 in the spring, a 1.04% improvement

compared to BiLSTM. This indicates that the VMD-CNN-

BiLSTM model has a stronger correlation between the predicted

results and the actual observations, reflecting the actual wave height

changes more accurately. Therefore, the MAE and RMSE of the

VMD-CNN-BiLSTM model are significantly lower than those of

other models across different seasons, indicating superior

performance in capturing wave peaks and troughs. The higher R²

value further demonstrates the model’s advantage in trend

prediction, particularly in handling complex fluctuations.
4.3 Multivariate forecasting

Due to the influence of the monsoon climate in the region, this

study conducted a multivariate prediction research to further

improve prediction accuracy. In the experiment, both wind speed

and significant wave height were used as parameters for the

prediction model, considering the impact of the wind field.

Similarly, data from spring, summer, autumn, and winter between

2017 and 2021 were used as model driving data, with data from

2017 to 2020 as the training set and data from 2021 as the test set.

Figure 13 presents the comparison curves of multivariate

predictions from BiLSTM, CNN-BiLSTM, and VMD-CNN-BiLSTM

models with WW3-SWAN simulation values. The figure shows that
TABLE 2 VMD decomposition signal impact.

Season Evaluation Case 1 Case 2

Spring

MAE/m 0.0147 0.0214

RMSE/m 0.0202 0.0285

R2 0.9981 0.9962

CPU time/s 308 3544

Summer

MAE/m 0.0112 0.0197

RMSE/m 0.0147 0.0258

R2 0.9980 0.9938

CPU time/s 332 3345

Fall

MAE/m 0.0228 0.0340

RMSE/m 0.0306 0.0491

R2 0.9971 0.9925

CPU time/s 311 3597

Winter

MAE/m 0.0197 0.0273

RMSE/m 0.0268 0.0363

R2 0.9977 0.9958

CPU time/s 254 5098
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the monsoon climate significantly affects the wind field and wave

height variations in the Southeast China Sea, especially in summer and

autumn, where the frequent occurrence of typhoons exacerbates the

complexity of wave height changes. Therefore, considering multivariate

factors such as the wind field is crucial for improving the accuracy of

wave height predictions. Spring is a transitional period from the winter

to summer wind directions, with complex wind field changes,

especially during the impact of typhoon “Shuriki,” where wind speed

and wave height fluctuations significantly increase. Figure 13A shows

that, compared to univariate predictions, multivariate predictions more

accurately capture the overall trend of spring wave heights. Notably, the

VMD-CNN-BiLSTM model, by effectively integrating instantaneous

changes in the wind field, can accurately predict wave peak and trough

changes, with its prediction curve highly aligning with WW3-SWAN
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simulation values, demonstrating high prediction accuracy. In summer,

the prevailing southeast monsoon leads to a relatively stable wind field.

Figure 13B indicates that, compared to univariate predictions, the

VMD-CNN-BiLSTM model performs particularly well when

considering wind field factors, with its prediction curve closely

matching the WW3-SWAN simulation values, especially during

August 17 to August 20, when VMD-CNN-BiLSTM accurately

captures the characteristics of wave troughs. Autumn is a transitional

period from summer to winter winds, with frequent typhoons and

significant wave height changes. Figure 13C shows that the VMD-

CNN-BiLSTM model better utilizes the intense changes in wind field

data to accurately capture extreme wave peak values. The model

performs excellently under extreme weather conditions such as

typhoons, with its prediction curve closest to the WW3-SWAN
FIGURE 11

The WW3-SWAN simulated and predicted values of SWH of univariate. (A) Spring, (B) Summer, (C) Fall, (D) Winter.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1503552
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shen et al. 10.3389/fmars.2024.1503552
simulation values. In winter, the Northeast monsoon prevails in the

Southeast China Sea, with strong winds and long durations, resulting in

higher overall wave height levels and frequent fluctuations. Figure 13D

shows that in winter, the VMD-CNN-BiLSTM model effectively

captures the overall trend and local fluctuations of wave heights,

with its prediction curve highly consistent with the WW3-SWAN

simulation values, demonstrating the best prediction performance.

Figure 14 and Table 4 show the error performance of

multivariate significant wave height prediction models (BiLSTM,

CNN-BiLSTM, and VMD-CNN-BiLSTM) in different seasons and

annual statistics, including mean absolute error (MAE), root mean

square error (RMSE), and coefficient of determination (R²), as well

as the ratios of each model relative to BiLSTM. The influence of the
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Southeast China Sea monsoon climate and typhoons was

considered to evaluate each model’s performance under complex

meteorological conditions. The data in Figure 14 and Table 3

indicate that, within the same season, the VMD-CNN-BiLSTM

model has significantly lower errors than the other two models.

Particularly, after considering multivariate factors such as the wind

field, the prediction performance of VMD-CNN-BiLSTM has

significantly improved. Seasonal differences in prediction

performance indicate that VMD-CNN-BiLSTM performs

exceptionally well in autumn and winter, accurately capturing the

drastic wave height changes brought by typhoons and strong

monsoons. VMD-CNN-BiLSTM shows optimal performance in

MAE and RMSE across all seasons, indicating that this model
TABLE 3 Statistics of univariate SWH prediction error.

Season Error BiLSTM CNN-BiLSTM VMD-CNN-BiLSTM

Spring

MAE/m 0.0326 0.0259 (-20.55) 0.0159 (-51.23)

RMSE/m 0.0514 0.0396 (-22.96) 0.0210 (-59.14)

R2/% 0.9876 0.9926 (0.51) 0.9979 (1.04)

Summer

MAE/m 0.0315 0.0265 (-15.87) 0.0150 (-52.38)

RMSE/m 0.0471 0.0418 (-11.25) 0.0201 (-57.32)

R2/% 0.9794 0.9838 (0.45) 0.9962 (1.72)

Fall

MAE/m 0.0715 0.0660 (-7.69) 0.0242 (-66.15)

RMSE/m 0.0979 0.0863 (-11.85) 0.0325 (-66.80)

R2/% 0.9701 0.9767 (0.68) 0.9967 (2.74)

Winter

MAE/m 0.0460 0.0470 (2.17) 0.0213 (-53.70)

RMSE/m 0.0635 0.0654 (2.99) 0.0292 (-54.02)

R2/% 0.9873 0.9865 (-0.08) 0.9973 (1.01)

Annual

MAE/m 0.0449 0.0388 (-13.58) 0.0187 (-58.35)

RMSE/m 0.0679 0.0558 (-17.82) 0.0256 (-62.30)

R2/% 0.9836 0.9889 (0.54) 0.9977 (1.43)
The values in parentheses represent the percentage improvement of each model’s performance indicators compared to BiLSTM.
FIGURE 12

The WW3-SWAN simulated and predicted values of SWH of multivariate. (A) Spring, (B) Summer, (C) Fall, (D) Winter.
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significantly outperforms BiLSTM and CNN-BiLSTM in

multivariate prediction accuracy. For example, in spring, the

MAE of VMD-CNN-BiLSTM is 0.0147 meters, a 51.48%

reduction compared to BiLSTM; in annual statistics, the RMSE of

VMD-CNN-BiLSTM is 0.0244 meters, a 61.81% reduction

compared to BiLSTM. Additionally, the R² value of VMD-CNN-

BiLSTM is the highest across all seasons and annual statistics,

reaching 0.9981 in spring, a 0.79% improvement compared to

BiLSTM, indicating stronger correlation and consistency in

multivariate predictions. The inclusion of wind speed significantly

improved the predictive performance of the VMD-CNN-BiLSTM

model, particularly under complex meteorological conditions in

autumn and winter, resulting in lower MAE and RMSE, as well as

higher R². This indicates that the model is more effective at
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capturing the complex relationship between wind fields and wave

heights, thereby enhancing the accuracy and stability of wave

height predictions.
5 Conclusion

This study employs Variational Mode Decomposition (VMD)

to extract significant features of significant wave height as intrinsic

mode functions, combines Convolutional Neural Networks (CNN)

to capture complex internal mappings of wind and waves, and

integrates with Bidirectional Long Short-Term Memory (BiLSTM)

networks to establish the VMD-CNN-BiLSTM model. The research

focuses on the Southeast China Sea, with datasets provided by
FIGURE 13

The WW3-SWAN simulated and predicted values of SWH of multivariate.
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ECMWF and WW3-SWAN simulations. The case study and

prediction results lead to the following conclusions:
Fron
1. Compared to models like BiLSTM and CNN-BiLSTM, the

VMD-CNN-BiLSTM model is able to more accurately

capture the peaks and smooth trends of wave height,

resulting in higher prediction accuracy.

2. After incorporating wind field data, the MAE and RMSE of

each prediction model decrease. Specifically, the VMD-

CNN-BiLSTM model’s MAE and RMSE are reduced to
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0.0174 meters and 0.0244 meters respectively for annual

statistics, with the coefficient of determination (R²)

increasing to 0.9979, outperforming other prediction models.

3. The VMD-CNN-BiLSTM model exhibits optimal prediction

performance across all four seasons, particularly in winter under

the influence of strong northeastmonsoons and during summer

and autumn when typhoons and extreme weather events occur.

Its prediction performance significantly surpasses that of

BiLSTM and CNN-BiLSTM models, demonstrating the

model’s excellent adaptability to complex sea conditions.
TABLE 4 Statistics of multivariate SWH prediction error.

Season Evaluation BiLSTM CNN-BiLSTM VMD-CNN-BiLSTM

Spring

MAE/m 0.0303 0.0234 (-22.77) 0.0147 (-51.48)

RMSE/m 0.0455 0.0337 (-25.93) 0.0202 (-55.60)

R2/% 0.9903 0.9947 (0.44) 0.9981 (0.79)

Summer

MAE/m 0.0298 0.0329 (10.40) 0.0112 (-62.42)

RMSE/m 0.0404 0.0409 (1.24) 0.0147 (-63.61)

R2/% 0.9848 0.9844 (-0.04) 0.9980 (1.34)

Fall

MAE/m 0.0697 0.0476 (-31.71) 0.0228 (-67.29)

RMSE/m 0.0932 0.0699 (-25.00) 0.0306 (-67.17)

R2/% 0.9729 0.9847 (1.21) 0.9971 (2.49)

Winter

MAE/m 0.0465 0.0328 (-29.46) 0.0197 (-57.63)

RMSE/m 0.0631 0.0437 (-30.74) 0.0268 (-57.53)

R2/% 0.9875 0.9940 (0.66) 0.9977 (1.03)

Annual

MAE/m 0.0444 0.0367 (-17.34) 0.0174 (-60.81)

RMSE/m 0.0639 0.0551 (-13.77) 0.0244 (-61.81)

R2/% 0.9855 0.9892 (0.38) 0.9979 (1.26)
The values in parentheses represent the percentage improvement of each model’s performance indicators compared to BiLSTM.
FIGURE 14

Multivariate significant wave height prediction error, (A) MAE, (B) RMSE, (C) R2.
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