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An observation-based method to
estimate carbonate system
variations in the Labrador Sea
Claire Boteler1*, Michael Dowd1, Eric C. J. Oliver2

and Douglas W. R. Wallace2

1Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada, 2Department of
Oceanography, Dalhousie University, Halifax, NS, Canada
The ocean carbonate system consists of pH, alkalinity, inorganic carbon and the

partial pressure of carbon dioxide, and during the current era of anthropogenic

change, its dynamics are key for understanding changes in the ocean and its

ecosystem over time. The focus of this study is to estimate the carbonate system

in the Labrador Sea with time series methods, using direct observations from the

ocean surface and interior, and chemical relationships between variables. Interior

ocean observations are minimal for some of these variables, however,

connections between the variables rooted in chemistry were used to create

pseudo-observations using CO2SYS, increasing the information available. A state

space model was designed that combined GLODAP and SOCAT observations

along with pseudo-observations in a time series estimate of the carbonate

system. The Labrador Sea between 1993 and 2016 shows increasing rates for

DIC (0.57-1.16 µmol kg−1 year−1) and fCO2 (0.70-2.45 µatm year−1), as well as

acidification via pH trends (0.0007-0.0018 year−1). These ranges describe the

scale of rates that are occurring at various depths through the water column,

though they do not change linearly with depth. Largest rates are found at the

surface for DIC, 500-1500 m for fCO2, and 500-1500 m for pH. Total alkalinity

also decreased and is correlated with the freshening of salinity. With the core

carbonate variables estimated, other aspects of the carbonate system are

calculated using CO2SYS, such as the aragonite and calcite saturation states,

the Revelle factor, and the carbonate species. Our method also calculates

uncertainties that vary over time and depth based on the availability of

observations and their variance, which has lowered the uncertainty for pH by

71% and for fCO2 by 64% compared to time-independent methods.
KEYWORDS

carbonate system, acidification, North Atlantic, time series, Kalman smoother, GLODAP,
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1 Introduction

In the current era of increased CO2 emissions and ocean

acidification, it is important to understand the temporal changes

in the ocean carbonate system variables, i.e. dissolved inorganic

carbon (DIC), total alkalinity (TA), pH, and the fugacity of carbon

dioxide (fCO2). Opportunistic sampling and sparse observations

through space and time make it difficult to estimate the trends and

variations in the ocean carbonate system, especially in the ocean

interior. As a result, the literature has focused mainly on temporally

averaged spatial climatologies (Bennington et al., 2022; Broullón

et al., 2020; Lauvset et al., 2016; Takahashi et al., 2014; Sabine et al.,

2004). Part of the reason for this emphasis is that carbonate

variables are not consistently measured through time. Large data

gaps in time induce large uncertainties, which favor estimation of

decadal-scale trends, but not on finer time scales. We seek to

improve the time resolution of the carbonate variables to a

monthly scale by using observation-based methods. Here, we

refer to observation-based, or observation-centric, methods as

statistical approaches using direct observations of the ocean

carbonate system from moorings, cruises, floats or underway

sensors, as opposed to numerical model estimates. By

amalgamating multiple observation sources and by using the

chemical equilibrium relationships between variables, we can

exploit the observation-based information to its fullest. We

develop a methodology that produces a monthly time-depth

gridded product of the carbonate system, with uncertainties that

vary over time. Our application is focused on carbonate system

variables in the Labrador Sea and how they have changed over the

last 24 years.

The ocean carbonate variables (DIC, TA, pH, and fCO2) have

often been examined individually. Surface ocean fCO2 is used to

calculate the CO2 air-sea flux, thus quantifying the magnitudes of

the ocean carbon sink (Landschützer et al., 2016). Moving into the

water column, DIC has been used to investigate the spatial

distribution and storage rate of anthropogenic CO2 (Müller et al.,

2023; Gruber et al., 2019). With the increase of anthropogenic CO2

in the ocean, pH measurements quantify ocean acidification and the

impact on marine life (Rastrick et al., 2018). Finally, total alkalinity

has been used to understand the ocean’s buffering capacity in

response to changes in pH (Middelburg et al., 2020). TA is also

often used with one of the other carbonate variables to then estimate

the rest of the carbonate system (Carter et al., 2017).

A few studies have examined the carbonate variables from a

multivariate perspective (Gregor and Gruber, 2021; Carter et al.,

2021; Bittig et al., 2018; Sauzède et al., 2017). While these

multivariate studies estimated the four carbonate variables, the

variables themselves were analyzed independently, as in without

correlation or connection between the carbonate variables. This is

important since the carbonate variables are related (and

constrained) through chemical equilibrium equations (Sarmiento

and Gruber, 2006). CO2SYS is a family of algorithms with

implementations in MATLAB (Sharp et al., 2020), Python

(Humphreys et al., 2023) and R (Gattuso et al., 2022), that solves

the chemical equilibrium equations to calculate the state of the

carbonate system that consists of the four measurable variables
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(DIC, TA, pH, and fCO2), but also includes the aragonite saturation

state (Ω), DIC speciation and the Revelle factor. Few observation-

based methods have incorporated the chemical connection between

carbonate variables within the analysis method, but it is often done

as a data processing step to fill in gaps in a set of observations prior

to being analyzed (Lauvset et al., 2021; Mackay and Watson, 2021)

to transform the results to another variable (Jiang et al., 2019), or as

a consistency check (i.e. CONTENT, Bittig et al., 2018).

We used two observation-based data sources for carbonate

variables: GLODAP with subsurface bottle sampled data (Lauvset

et al., 2022) and SOCAT with surface fCO2 data from underway

systems on ships (Bakker et al., 2016). There is also BGC-ARGO

profiling floats with subsurface pH data (Bittig et al., 2019). It is

most common to use one data source (e.g. GLODAP) as input data

for studies, and the others (e.g. SOCAT and/or BGC-ARGO) as

validation or comparison data (Bittig et al., 2018). Few papers have

incorporated multiple data sources as inputs into their analysis,

with the exception of Feely et al. (2023); Iida et al. (2020); Gregor

and Gruber (2021) and ECCO-Darwin, which is a data-assimilative

biogeochemical model that used SOCAT, GLODAP, SOCCOM and

BGC-ARGO data as observational constraints in their model

(Carroll et al., 2022). Combining multiple data sources is

challenging, as different observation types will have different

measurement uncertainties, as well as spatial and temporal

sampling schemes. Research on these carbonate variables often

reflects the spatial distribution of their observations, with

relatively little analysis on fCO2 in the interior ocean (Fiedler

et al., 2013), but significant work analyzing fCO2 in the surface

waters (Chau et al., 2024; Bennington et al., 2022; Gloege et al.,

2022; Yasunaka et al., 2019; Du et al., 2015; Zeng et al., 2014;

Landschützer et al., 2013).

In this study, we estimate monthly time series of the four

carbonate system variables in the Labrador Sea from 1993-2016

using a fusion of GLODAP and SOCAT data. We used a state space

model approach that produced time-varying uncertainties based on

data availability and data type. We also improved our effective

observation availability by combining direct observations with

pseudo-observations derived from observation data with CO2SYS.

This methodology could be generalized to different regions,

temporal or spatial scales, with the caveat that data availability

and its temporal resolution is a limiting factor for obtaining

meaningful results.
2 Data

Our region of interest is the Labrador Sea, which we define as

the region south of 65° N and west of 40° W within the Atlantic

Arctic (ARCT) Longhurst biogeochemical province (Longhurst,

2007) (Figure 1). Within the Longhurst province, biogeochemical

properties are assumed to be homogeneous. The Labrador Sea in the

northwest Atlantic is a key area for anthropogenic carbon storage

due to its association with deep convection (Raimondi et al., 2021).

Two datasets were used in this study: GLODAPv2.2022

(Lauvset et al., 2022) and SOCAT2022 (Bakker et al., 2022, 2016).

In our study region, these datasets provide complementary
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observations: GLODAP has direct observations of DIC, TA, pH,

fCO2, temperature, salinity and oxygen in the interior ocean for

depths 0-4500 m from 1981-2021; and SOCAT has surface fCO2

from 1990-2021. This version of GLODAP in the North Atlantic

has large data gaps of multiple years before 1991 and after 2016. Our

analysis will span 1993-2016 to minimize gaps larger than a year

where no data for any carbonate variables exist. However, 1993 was

chosen as a start date to mimic other oceanographic reanalysis data

products with the same start date. Large gaps at the beginning and

end of the time series will cause the overall decadal trend to be

underestimated. We included SOCAT data from all cruises (flags A-

D), but only GLODAP and SOCAT data with a WOCE flag 2

(good), thus removing the interpolated data for the GLODAP

carbonate variables. The GLODAP and SOCAT observations

within the Labrador Sea were separated into 20 depth layers and

then averaged monthly. Layer divisions were chosen to have an

approximately equal number (∼500) of individual DIC

observations from GLODAP in each layer. This is related to near-

surface DIC observations occurring in 40 months (14% of time

series). The top of the depth layers in this study are: 0 m, 20 m, 53

m, 104 m, 209 m, 357 m, 505 m, 683 m, 890 m, 1100 m, 1360 m,

1580 m, 1830 m, 2090 m, 2370 m, 2590 m, 2810 m, 3000 m, 3200 m,

and 3380 m.

Variables are sometimes reported for different ocean

conditions, i.e. in situ ocean vs. laboratory temperature and

pressure. Ocean conditions are defined by potential temperature

(T), practical salinity (S) and pressure (P). We converted all

variables to in situ ocean conditions to ensure compatibility

across datasets. Subsurface ocean observations of fCO2 are often

standardized to laboratory conditions (P=0 dbar, T=20°C, and S=35

PSU), as is the case in the GLODAP dataset, since fCO2 is not

conservative to changes in T, S or P (Sarmiento and Gruber, 2006).

Meanwhile, SOCAT reports surface fCO2 at in situ conditions (P=0

dbar, T between −1.8 and 21.8°C, and S between 17.65 and 35.47
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PSU). In order to make these two datasets comparable for use in the

same analysis, GLODAP fCO2 was converted to in situ conditions

using chemical equilibrium equations (CO2SYS) and its

corresponding input parameters: DIC, TA, T, S and P. The

equilibrium constants used in CO2SYS are as described later in

Section 3.1. pH was reported on total scale and in situ conditions

by GLODAP.

GLODAP observations of the ocean interior are obtained from

research cruises, and in our study region, observations are

seasonally biased towards months May-July (63% of observations

in the top 5 m are from May-July). The most sampled variable in

GLODAP is DIC, followed by TA. Within GLODAPv2.2022, fCO2

through the water column is rarely measured, but fCO2 is more

frequently available at the surface (notably between 2003-2012)

owing to the ships of opportunity that collect the SOCAT data. The

SOCAT data does not have a seasonal sampling bias (i.e. in the top 5

m there is a similar number of observations in each month). The

sampling density of pH in GLODAP has been low at 0.08% of

months, but with BGC-ARGO, pH availability since 2018 in the

Labrador Sea has increased to a full 100% monthly coverage. Extra

pH data from BGC-ARGO was considered to be included in the

main results, but further investigation and quality control are

needed, as we found the BGC-ARGO pH data has unexpected

increasing trends in the Labrador Sea from 2018 to 2022. Instead,

pH results with BGC-ARGO data are in the Supplementary

Material (Supplementary Figure S19) and serve to demonstrate

how the state space model is able to adapt to changes in time series

characteristics present in observations.

We also carried out data augmentation, that when DIC and TA

were available, fCO2 and pH were calculated by CO2SYS, as

denoted by CO2SYS(DIC, TA). CO2SYS solves the chemical

equilibrium equations for the carbonate system (Lewis and

Wallace, 1998) (see Section 3.1 for more details). The pseudo-

observations fill in gaps when direct, monthly observations are not
FIGURE 1

Geographical location of observations in the Labrador Sea study region: data within the Atlantic Arctic Longhurst Province and west of 40° W (blue
shaded area). Two data sources used are: (A) GLODAPv2.2022 with profiles of observations (black dots) of at least one carbonate variable, and (B)
SOCAT.2022 with fCO2 data points. Data near the coast where bathymetry is less than 400 m were removed (grey line).
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available, and this greatly increases the effective availability of fCO2

information. Note, that the data augmentation was performed after

monthly averaging the data, as further described in Section

3.2 Implementation.

Since the datasets differ in time range, depth range, and spatial

and temporal sampling schemes (Figure 1), we checked how their T, S

and fCO2 data compared. The following comparisons were done as

time series plots: (i) T and S of GLODAP and SOCAT, (ii) fCO2

direct from SOCAT vs fCO2 calculated via CO2SYS(DIC,TA) and

GLODAP data. In the top 20m, for temperature and salinity, SOCAT

has a larger standard deviation than the others, but after being

monthly averaged the three data sets have equivalent overall mean

and standard deviations across our time period of interest

(Supplementary Figure S20). The fCO2 calculated from GLODAP

DIC and TA were compared to fCO2 observations from SOCAT, and

the calculated fCO2 had poor precision but were sufficient for our

analysis. 37 observations were able to be co-located within a month,

in the top 5 m and the closest points within 5° of one another. The

differences (Supplementary Figure S16) showed an average bias of

1.56 μatm, with GLODAP calculated values slightly overestimating

the fCO2 on average and there is also a large RMSE of 50.26 μatm

representing a large error between the calculated fCO2 and the closest

direct measurement within the month. Part of this bias would be due

to measurement uncertainty of the input variables (DIC and TA) and

the uncertainty in the equilibrium constants used in CO2SYS

(Álvarez et al., 2020; Millero, 2007). The equilibrium constants are

valid only for a set range of temperature and salinity values, however,

in the subpolar region of the Labrador Sea, our temperatures do

sometimes go below the recommended range.
3 Methods

The goal of the analysis is to estimate the state of ocean

carbonate variables through time and over depth for the domain

of interest of the Labrador Sea. xt is the state of the carbonate system

at a given time t, and is as a column vector of length nx = 4L, where

L is the number of depths-layers (see Section 2). The state vector

contains all the variables DIC, TA, pH and fCO2 at each depth-layer

through the water column (from surface to deep). The analysis

times range from t = 1,…, nt on a regular interval (in our case,

monthly). Estimation of the state vector over time makes use of all

available observations, and the framework used for the analysis is a

state space model. This is comprised of two equations: an

observation Equation 1 and a persistence Equation 2, which are

defined below. Once these are defined and their parameters

specified, the carbonate state is then estimated through time using

the Kalman fi l ter/smoother algorithm (Anderson and

Moore, 1979).

The observation equation relates the state (xt) to available

observations of the carbonate system through the following

equation:

yt = Atxt + vt : (1)
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Here, yt  is a column vector that contains the observations of

the carbonate system at time t. This vector is of length nyt and the

length varies at each time step with the number of observations

available at time t. The yt vector includes observations of the

different carbonate variables from multiple datasets including the

pseudo-observations (see Supplementary Material). At is an nyt �
nx observation indicator matrix comprising 1’s and 0’s to match

each observation in yt with its corresponding term in the state

vector, xt . At allows the simultaneous use of observations from

multiple datasets, even observations at the same time t. It is

also notable that At varies over time, reflecting the fact the

variables that are sampled will change over time. To complete

the relationship between the mean state (xt) and the direct

observations (yt), we include observation error, vt ∼N(0,Sv,t),

that follows a multivariate normal distribution with variance-

covariance matrix Sv,t.
The persistence equation allows the carbonate state to have a

memory (or be auto-correlated) in time. It is represented as a

random walk process Sv,t

xt = xt−1 + wt : (2)

Specifically, this means that the new carbonate state (xt) follows

the previous state (xt−1) but with some random perturbation or

persistence error added. The persistence error ((wt ∼N(0,Sw))

follows a multivariate normal distribution with variance-

covariance matrix Sw. The random walk, a widely used

formulation in other statistical models (e.g. Markov Chain Monte

Carlo), was chosen as the simplest model possible to achieve a non-

parametric temporal persistence of the state that adapts to available

observations, without the mean-reverting quantities of an auto-

regressive model. The degree to which the state can change from

one time to the next is controlled by the magnitude of the diagonal

elements of Sw. This covariance matrix was structured to also allow

for correlations between adjacent depth-layers, but not between the

different carbonate variables (so it has a block-diagonal structure).

Unlike the observation error covariance matrix Sv,t which changes

over time based on which observations are available, the persistence

error covariance matrix Sw is fixed in time.

The state space model is defined by Equations 1 and 2, both of

which provide information for estimating the carbonate state

through time. This linear, Gaussian framework is robust and

reliable, and its properties are well understood and interpretable.

The Kalman filter/smoother algorithm provides the optimal

solution for the state space model and yields the state of the

carbonate system (xt). Specifically, it provides estimates for the

monthly mean values of DIC, TA, pH, and fCO2 at all depths, and

each of their time-varying variances. The latter can then be used to

produce error bars or confidence intervals. The algorithm uses

Equations 1 and 2 in a sequential, or recursive, estimation

procedure. This relies on the Kalman filter, which operates as a

forward-in-time recursion such that at each time step t, an estimate

of the new state vector (the four variables at the L depths) is

available via a one-step ahead prediction using (2). This persistence

estimate is then updated to be closer to any available observations. If
frontiersin.org
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there are no observations at time t, the observations Equation 1 is

not used, only the persistence Equation 2. The Kalman smoother

then further refines these estimates through a backwards-in-time

recursion. The ratio of the variances for the observation error

(diagonal elements of Sv,t) to the persistence error (diagonal

elements of Sw) is a key quantity that dictates how closely the

state estimates follow the observations. The smaller the Sv,t :Sw

ratio the closer our estimates are drawn to the observations

otherwise the more the estimate will ignore the observations and

predict a constant unchanging line. This is discussed in more detail

in the Supplementary Material, along with details of the Kalman

filter/smoother algorithm.

The Sv,t matrix was estimated based on the variance of

observations, and the Sw matrix used maximum likelihood

estimation. For details of how the matrix terms were estimated,

the reader is referred to the Supplementary Material.
3.1 Pseudo-observations

We augmented our pH and fCO2 data using chemical equilibrium

relationships between carbonate variables to create pseudo-

observations, designated y*t . These can be used together with direct

observations, yt , of other variables in the observation Equation 1.

Pseudo-observations improve the state estimate for variables when

direct observations are missing. The pseudo-observations for pH and

fCO2 at time t also implicitly act as a constraint that encourages the

carbonate state estimates to be in a chemically balanced state with DIC

and TA through time. The notation y*t ½pH� will be used throughout,

where y*t represents the vector of pseudo-observations, and inside the

square brackets identifies the relevant variables being referenced from

the vector (e.g. pH and/or fCO2).

Given observations of DIC and TA (or yt ½DIC,   TA�), CO2SYS
calculates the remaining two variables, producing pseudo-

observations of pH and fCO2 (y*t ½pH, fCO2�), i.e.

y*t ½pH, fCO2� = CO2SYS(yt ½DIC, TA�,yt) : (3)

When calculating with CO2SYS, yt represents the set of in situ

ocean parameters at time t: potential temperature, practical salinity

and pressure/depth. To solve chemical equilibrium equations,

CO2SYS used the following equilibrium constants: K1 and K2

from Lueker et al. (2000), Kf from Perez and Fraga (1987), Ks

from Dickson (1990), and the concentration of total boron from

Uppström (1974). Calculations were performed on the total scale

for pH. In this work, the CO2SYS calculations were performed

using the Seacarb package in R (Gattuso et al., 2022).

We also calculated pseudo-observations of TA with a regression

relationship with salinity. The linear regression y*t ½TA� = bTA : SSt was

used withmonthly salinity data (St) to predict pseudo-observations of

TA (y*t ½TA�) when direct observations of TA (yt ½TA�) were not

available, time series showing their frequency of occurrence are in the

Supplementary Material (Supplementary Figure S13). Least squares

regression was used to estimate the conversion parameter bTA : S for

each layer individually, though all values were found to be close to the

average bTA : S of 66, (minimum 65.87, maximum 66.90). This is
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similar to the value (bTA : S = 67) used by Olsen et al. (2020) for

global data.

The pseudo-observation uncertainties within the matrix Sv,t

were determined with the error calculations from CO2SYS, except

for the pseudo-observations of TA which used the regression

prediction variance. Details of the Sv,t matrix are in the

Supplementary Material. Meanwhile, a key aspect to note is that

the pseudo-observation errors are larger than the errors for direct

observations, thus when estimating the state the Kalman smoother

algorithm will favour (i.e. draw closer to) direct observations than

pseudo-observations.
3.2 Implementation

To implement the methodology, the following steps were taken:

(i) Region selection and depth-layer assignment - pre-process

the datasets by removing coastal and shelf regions (i.e. bathymetry

less than 400 m), separating each dataset into L depth layers;

(ii) In situ observations - convert variables (i.e. fCO2 from

GLODAP) to in situ conditions with GLODAP data DIC, TA, T, S,

and P as inputs, nutrients were set to 0;

(iii) Monthly average - use the individual observations in each

layer to create monthly average time series for each layer;

(iv) Pseudo-observations - Predict TA from monthly salinity

(y*t ½TA� = bSt) when direct observations (yt ½TA�) are not

available. Then use either direct or pseudo-observations of TA

with DIC in CO2SYS to calculate pseudo-observations of pH and

fCO2 (y*t ½pH, fCO2� = CO2SYS(yt ½DIC,   TA�,  yt)).

(v) Specify parameters - determine Svt based on the variance of

observations and determine Sw using maximum likelihood with

the Kalman filter. The initial mean state was set to the first

monthly GLODAP observation, and this ideal scenario was used

for DIC, T and S. For variables where there was no direct

observation for a few years and where the observation variability

was larger than the trend, such as for TA, the initial condition was

the mean of the first 6 pseudo-observations. This also worked for

fCO2. For pH, and variables with a large gap of no direct

observations and a prominent decadal trend, an initial analysis

run was performed to determine an average trend 0.002 year−1 and

this was used with the first direct GLODAP observation, which

was then used to trace back an appropriate initial mean state for

pH. The initial variance for all variables was chosen by running

the analysis with an arbitrary value, and then extracting the

steady-state variance it approaches.

(vi) Kalman smoother - Using the Kalman filter results with

optimal parameters determined from (v), the Kalman smoother

algorithm implemented Equations 1 and 2 with observations (yt)

and pseudo-observations (y*t ) to estimate the state of the carbonate

system (xt) monthly through time, as well as a time-varying

uncertainty that is used for confidence intervals.

These steps are in more detail in the Supplementary Material.

Note this analysis was performed with a monthly time step, but in

principle, any time interval could be used. Also note that the state

estimation for temperature, salinity and oxygen were also calculated

following the same methodology.
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Using a subset of the carbonate state estimates (DIC and TA)

along with the state of temperature (T) and salinity (S), other

aspects of the carbonate system were calculated: the aragonite

saturation, calcite saturation, Revelle factor, as well as the

carbonate, bicarbonate and carbonic acid concentrations.

Furthermore, for each variable, the annual rate of increase was

estimated from linear least squares regression, using bootstrapping

to determine its significance (see Supplementary Material).

Finally, note that the analysis was also performed on total

alkalinity but for interpretation and discussion, this was then

converted to salinity-normalized Total Alkalinity (nTA)

nTA =
TA − TAS=0

S
Sref + TAS=0 (4)

where Sref = 35 PSU and TAS=0 = 728:3 μmol kg−1 (Friis et al.,

2003). We have also used the fugacity of CO2 (fCO2) instead of the

partial pressure of CO2 (pCO2). pCO2 is often analyzed rather than

fCO2 at near-surface, as their differences are usually <1.5 μatm. fCO2

is, however, more appropriate for measurements through the water

column as it is targeted at real gases, whereas pCO2 is the equivalent

for ideal gases. They are related via the fugacity coefficient, which is a

function of the ocean state, thus accounting for the pressure effect

with depth. At low pressure pCO2 and fCO2 are approximately equal.

The analysis was performed using R code (R Core Team, 2021)

with RStudio (RStudio Teams, 2022), with the assistance of

packages for date/time organization: lubridate (Grolemund and

Wickham, 2011), and for assistance with plots: fields (Nychka et

al., 2022), cmocean (Thyng et al., 2016), scales (Wickham and

Seidel, 2021), and maps (Becker et al., 2021). For accessing and

downloading BGC-ARGO data: argoFloats (Kelley et al., 2022a) and

oce (Kelley et al., 2022b). CO2SYS calculations were performed with

seacarb (Gattuso et al., 2022).
4 Results

The state of the carbonate system (i.e. the four variables DIC,

TA, pH and fCO2) was estimated monthly from 1993-2016 for the

20 depth-layers from 0 m - 3500 m using the state space model.

These results are presented as time-depth plots for each variable

(Figures 2–5). The estimated time series for the surface layer and an

intermediate depth-layer were plotted in full to contrast their

differences due to oceanic variability and observation sparsity,

while all time series are presented Supplementary Figures S10-

S13. Depth profiles of the calculated annual rates of increase

(Supplementary Figure S18) visualizes the numbers that are listed

on the right side of Figures 2A–5A. The results for each variable are

presented in turn.

DIC increases with depth, as expected, and there is a general

increase of DIC over time as shown by the depth-weighted column

mean (Figure 2). The time series of the near-surface waters

(Figure 2B) have larger variability than the sub-surface waters

(Figure 2C). The waters deeper than 100 m show linearly

increasing trends of DIC at rates of 0.57 to 0.76 μmol kg−1 year−1.

However, examining the individual time series for each depth

(Supplementary Figure S10), for depths 200-800 m and for most
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below 1800 m the estimated DIC is unchanging in the 1990s and

increasing after 2000. These deep water results are consistent with the

anthropogenic increase presented in Boteler et al. (2023) and later

shown by Olivarez et al. (2024) to be a delayed effect of the Pinatubo

1991 eruption. The intermediate waters however were unexpected,

though a similar change in trend is seen in oxygen (Supplementary

Figure S9a) which goes from a lack of trend in the 1990s to a decline

in oxygen in the 2000s. Note also that the state space model is

resistant to outliers with only a small divergent of the mean state

towards the observation, as seen at the end of 2010 (Figure 2C). A list

of cruises that contributed to outliers in monthly averaged DIC

observations is provided in the Supplementary Material.

At the near surface (top 50 m), there is a small seasonal cycle in

DIC with lower values in the summer due to biological production

and a shallow mixed layer. There is also a pronounced 4-year cycle,

which could be an artifact of the data, be actual inter-annual

variability, or be a combination. The 4-year cycle is also seen in

the near-surface temperature and oxygen time series

(Supplementary Figures S7b, S9b). It could be related to biological

activity as well as related to the North Atlantic Oscillation (NAO)

and Atlantic Multidecadal Oscillation (AMO). The NAO and AMO

have 4 year and 4-5 year periodic signals, respectively, as identified

in a spectral analysis and F-test of the frequencies (Thomson, 1982).

By visually comparing them, we see that high DIC values (years

2000 and 2004) coincide with moments of high NAO index. The

other years of high DIC (years 1996, 2009, and 2014) are just a year

out of phase with both the NAO and a high AMO index.

fCO2 shows that it is steadily increasing over time at rates

between 0.70 and 2.45 μatm year−1 (Figure 3), which we generally

attribute to the atmospheric CO2 increase of ∼1.93 μatm year−1

(Lebehot et al., 2019), with the near-surface fCO2 increase being

quite close to that of atmospheric CO2. The time-depth plot also

shows that fCO2 increases with depth as a consequence of the

increase in pressure, as expected. At the near-surface, fCO2 is

increasing at a rate of 1.48±0.04 μatm year−1, which agrees with

other ocean observation-based estimates (1.47 ± 0.06 μatm year−1)

and is close to the model-based estimates (1.9 ± 0.09 μatm year−1)

(Lebehot et al., 2019). It is however interesting to note that at depths

of 1000-2000 m, the rate of fCO2 increase is faster than the

atmosphere, between 1.72 and 2.2 μatm year−1. It is likely the

deep convection in the Labrador Sea is taking the winterfCO2 down

to the intermediate waters.

The fCO2 near-surface time series in Figure 3B shows the

presence of direct observations from both GLODAP and SOCAT,

as well as pseudo-observations. Between 2005 and 2012, the high

frequency of SOCAT observations reveals a seasonal cycle peaking

around February (Supplementary Figure S15), which is similar to

other pCO2 products in the Labrador Sea (Takahashi et al., 2002;

Rödenbeck et al., 2013; Zeng et al., 2014; Arruda et al., 2024). The

increasing trend in the near-surface is more obvious for fCO2 than

for DIC as the fCO2 seasonal cycle presented here has an amplitude

smaller than the increasing trend. This amplitude is however

smaller than expected but it is based on the current data and the

uncertainty parameters chosen. The monthly fCO2 data between

2005 and 2012 have such a large scatter that a larger observation

error would be preferred, but in that case the mean state estimate
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resulted in a linear line passing through them. We reduced the

observation error to show that the seasonal cycle can be shown to be

at the correct phase, though with an underestimated amplitude.

The width of the confidence interval shows the uncertainty of

the mean state, but note that this uncertainty is not necessarily equal

to the spread of the data. Figure 3B and Figure 4B show confidence

intervals that are narrower than the spread of the data. The width of

the confidence interval is based on three factors: frequency of data,

observation error, and persistence error. The persistence error was

estimated using maximum likelihood. The first two are based on the

data and are illustrated in Figure 3B for the confidence interval

narrow between 2005 and 2012 due to the increased frequency of

SOCAT data and the small observation error for SOCAT within Sv,t

(see Supplementary Material).
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Of the four variables analyzed, fCO2 sub-surface benefited the

most from the use of pseudoobservations, and without them, the

fCO2 time series estimates would not be possible. In the deeper

waters (Figure 3C) GLODAPv2 observations are available only one

time, and the rest are pseudo-observations that were calculated

using CO2SYS.

In the Labrador Sea, ocean acidification (i.e. declining pH) is

occurring at rates between −0.0018 and −0.0007 year−1 (Figure 4).

In the near-surface (top 20 m) we see higher mean pH values

(pH > 8.14), but of the lowest rate of ocean acidification. This rate is

smaller than other estimates for the region and time frame (−0.0014

year−1 Chau et al. (2024) and −0.002 year−1 Lauvset et al. (2015))

and may be due to our data which has a larger variance than change

over time. Through the water column, the pH value lowers with
FIGURE 2

Results from analysis of DIC. (A) Time-depth plot of mean DIC concentration (µmol kg−1). Note that the depth axis has nonlinear spacing.
Observations in months 6-11 are indicated with a ‘S’ and months 12-5 with a ‘W’. The aragonite saturation horizon (Ω = 1) is shown by a thick black
line. The depth-weighted column mean for each month is shown by the horizontal colorband at the top. The mean of each depth-layer is shown by
the colorband to the right. The annual rates of increase shown on the right were calculated as linear least squares regression over 1993-2016, where
black numeric slopes (µmol kg−1 year−1) are statistically significant, and grey slopes are not. (B) A time series of DIC at 0 m with the estimated mean
(black line), 95% confidence intervals (grey area) and direct observations of monthly averaged GLODAP (red dots). Sampling times for the
observations are shown along the x-axis (colored ticks). (C) A time series of DIC at 2090 m following panel (B).
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depth, but the rate of ocean acidification does not change linearly

with depth (Supplementary Figure S18). The rate of ocean

acidification is stronger for depths 50 to 2000 m. Below 2000 m

around the aragonite saturation horizon (Ω = 1; solid line), the rate

of ocean acidification is slower than the waters above or below it.

Total Alkalinity deeper than 50 m has minimal variability, but

above 50 m lowers after 2006 (Figure 5A), which was found to be

correlated with a decrease in salinity. This strong correlation

between TA and salinity allowed us to calculate pseudo-

observations of TA, but it also makes interpretation of TA

difficult since its changes are related to salinity. Hence we use

salinity-corrected alkalinity to aid in interpretation. Salinity

normalized total alkalinity (nTA) (Friis et al., 2003) removes the

expected variability of salinity, allowing us to distinguish changes in

alkalinity that are not related to changes in salinity. After salinity-

normalization, the trends in the top 50 m have been reduced by
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more than half, and in the top 20 m the trend is no longer

statistically significant, indicating the trend was due to the

changes in salinity (Figure 5B). Overall, nTA fluctuates less than

±10 μmol kg−1 about the mean, which typically is considered a

negligible variation. There are a few high nTA values (nTA >2315

μmol kg−1) with most occurring around 2010 at 46°W and 52°N.

Specifically, there is a single TA observation in May 9, 2010 (https://

doi.org/10.25921/zp3g-cm29; doi: 10.5285/cf2d9ba9-d51d-3b7c-

e053-8486abc0f5fd) that did not appear as an outlier when

looking at the original GLODAP data as a time series (i.e. it was

within the acceptable range of all the observations, Supplementary

Figures S2–S5). However, by being a TA = 2315.8 μmol kg−1 and no

other observations in that month to balance it out, after monthly

averaging the data it stood out as a potential outlier. There was

enough variability in the surrounding years that we left this

observation in, so as to not force the data into perfection.
FIGURE 3

Results from analysis of fCO2 (µatm). (A) Time-depth plot of fCO2, (B) time series of fCO2 at 0 m, and (C) time series of fCO2 at 2090 m. Format the
same as Figure 2, with the addition in panels (B, C) of direct observations of monthly averaged SOCAT (purple triangles) and pseudo-observations
(blue X).
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However, we note that this high TA value has cascading effects on

other calculated quantities, as will be seen in the Revelle factor.

Using the estimated state for DIC and TA with CO2SYS, we

calculated further derived quantities of the carbonate system: the

aragonite and calcite saturation state, the Revelle factor and the

speciation of DIC (Figure 6). We see in Figure 6E that for every

depth-layer the aragonite saturation state is steadily decreasing. At

the near-surface there is also some seasonality that is correlated with

that of DIC. The same time-depth characteristics are also seen for

calcite saturation. The calcite saturation has a range of 1.18 to 3.81,

thus the saturation horizon (when Ω = 1) is not shown. The

aragonite saturation horizon (Ω = 1), as shown on previous plots

(Figures 2–5), is seen to go from our 16th depth-layer (2590-2810

m) to our 15th (2370-2590 m), with this shoaling between depth-

layers occurring around 2003. Considering these depth-layers span

220 m each, the shoaling could be up to a max width of 440 m over

24 years, relating to an increase of 18 m year−1.
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The Revelle factor was calculated from the TA and DIC results,

gDIC= 3TA·DIC−2DIC2

(2DIC−TA)(TA−DIC) (Sarmiento and Gruber, 2006). For all

depths after 2005, the Revelle factor increases, indicating that

fCO2 becomes more sensitive over time to changes in DIC. This

increase is paused in 2010, but this is related to the anomalous high

TA value. Time series of the top few layers (Supplementary Figure

S14) show in more detail these changes in the Revelle factor. For the

near-surface this implies a lowering of the ocean’s capacity to take

up more atmospheric carbon. Since the Revelle factor is calculated

from TA, this increased sensitivity is a reflection of the freshening in

the area (Supplementary Figure S8). For the interior ocean, the

Revelle factor has been used to determine the concentration of

anthropogenic DIC (Terhaar et al., 2022; Sabine et al., 2004).

Our state space model also calculates 95% confidence intervals

for all the carbonate variables. Hereafter, confidence intervals are

referred to as uncertainties, though sometimes the related 95%

margin of errors are reported instead (distance from mean estimate
FIGURE 4

(A) Time-depth plot of pH, (B) time series of pH at 0 m, and (C) time series of pH at 2090 m. Format the same as Figure 2, with the addition in
panels (B, C) of pseudo-observations (blue X).
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to upper uncertainty bound) as in Figure 7. The uncertainties

produced from our time-correlated method are lower than the

uncertainties from using CO2SYS on DIC and TA values which

treat the carbonate variables as being independent through time,

rather than auto-correlated (see Table 1 for a detailed comparison).

Overall, our time-correlated method has lowered the uncertainty by

more than 64%. Our uncertainty estimates are driven by the data

distribution over time, as dictated by the opportunistic sampling

protocol. In other words, the uncertainties varied over time based

on the presence/absence of observations (Figure 7) and the average

variability of observations within that depth-layer. In the near-

surface waters of DIC, TA and pH the uncertainty is higher due to

larger variability of the data. For fCO2 at the surface, between 2005

and 2012 the uncertainty is reduced due to the presence of SOCAT

data. The fCO2 between 700-1600 m also has higher uncertainty
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than the waters above or below due to the pseudo-observations

having larger variability.
5 Discussion

We developed and implemented a multivariate, time series

method to estimate the depth-time variability of the carbonate

system in the Labrador Sea. This incorporated the four carbonate

variables: DIC, TA, pH and fCO2. Our method takes into account

the temporal memory of the carbonate system, and as a

consequence is able to considerably lower the uncertainty of pH

by 71% and by 64% for fCO2, compared to methods that assume

independence in time. The estimated time series of DIC and TA

were also used to calculate other aspects of the carbonate system,
FIGURE 5

Results from the analysis of TA and salinity-normalized TA (nTA) (µmol kg−1). (A) The time-depth plot of TA and (B) time-depth plot of nTA. Format
the same as Figure 2A.
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such as the aragonite and calcite saturation state, the Revelle factor

and the speciation of DIC (i.e. carbonic acid, bicarbonate and

carbonate). Our results for the carbonate system quantify their

variations with depth and highlight temporal trends that are

assumed to be due to anthropogenic sources: increases in DIC

(0.57 to 1.16 μmol kg−1 year−1) and fCO2 (0.70 to 2.45 μatm year−1),

as well as the acidification of pH (-0.0018 to -0.0009 year−1).

We used a statistical time series method that amalgamates

multiple data sources and takes account of their unique features.

As well as direct observations from GLODAP and SOCAT,

CO2SYS was used with DIC and TA observations to calculate

pseudo-observations. The pseudo-observations more than doubled

the amount of information on pH and fCO2, which allowed for

more detailed and realistic estimates of their depth-time variability,

including the estimation of anthropogenic trends of pH and fCO2.
Frontiers in Marine Science 11
Using pseudo-observations also made pH and fCO2 estimates

chemically balanced with the rest of the carbonate system. DIC

and TA were chosen to be in our CO2SYS calculation as we

prioritized variables that were abundant over time, but as ARGO

data continues to increase, pH could be considered instead of TA as

the second input variable for CO2SYS. Using an input combination

of one T, P-dependent (pH or fCO2) and one non-dependent (DIC

or TA) variable provides lower bias uncertainty for CO2SYS

outputs (Raimondi et al., 2019). The distribution of data through

time is also considered in the estimation of the uncertainties. Our

time-varying uncertainties are smaller in the presence of

observations, and larger in the data gaps. This is seen in Figure 7

where there are vertical bands of lower uncertainty at times when

observations are present. Our results were on monthly time steps,

but any interval could be used that is deemed reasonable given the
FIGURE 6

Results of the carbonate species, Revelle factor and saturation states. The time-depth plots of the estimated mean (color intensity) for (A) carbonic
acid (H2CO

�
3), (B) bicarbonate (HCO3

–), (C) carbonate (CO3
–2), (D) Revelle factor (E) aragonite saturation with the saturation horizons (Ω = 1) shown

by a thick black line, and (F) calcite saturation.
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observation distribution. If the gaps between observations are large

(i.e. more than a year) then the state estimate will have flat

unchanging sections between observations due to the Kalman

filter based estimation procedure.

The mean and variance of the carbonate state are not constant

over time due to anthropogenic sources of CO2. DIC observations

analyzed using a 1-year sliding window showed that not only is the

mean state increasing over time and has inter-annual variability, but

the standard deviation (or standard error) of those observations is

also increasing over time in the near-surface and shows inter-

annual variability for multiple depths (Supplementary Figure S17).

This behavior could provide insight into the changes in the DIC

seasonal cycle reported by Landschützer et al. (2018). The change of

DIC standard error over time could be modelled by having our
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observation error (Sv,t) change over time. Improvements can be

made in the estimation of the observation error parameter (Sv,t), a

key quantity in the analysis.

While the Kalman Smoother is resistant to outliers (i.e. the state

estimate does only a blimp towards them and does not go directly to

them, Figure 2C), we found it was necessary to remove some

extreme outliers. The motivation was because the small blip in

our DIC estimates due to an outlier in 2015 around 700 m had a

larger impact on our calculated quantities of the Revelle factor,

bicarbonate and carbonate, which showed a local maximum at this

depth. While no other outliers stood out after the monthly

averaging, other suspected outliers in the original GLODAP data

were removed as described in the Supplementary Material along

with a list of the data and its cruise information.

Spatio-temporal estimates of the carbonate system have been

produced by other methods, ranging from machine learning (Bittig

et al., 2018) to Earth System Models (Carroll et al., 2020). The

leading observation-based method for the estimation of the

carbonate system is CANYON-B (Bittig et al., 2018). It uses a

Bayesian neural network approach that employs non-linear

relationships to estimate monthly spatial climatologies of the four

carbonate variables and nutrients. Machine Learning methods are

dependent on the data they are trained on. CANYON-B may find

limitations in the training of their model in regions like the

Labrador Sea, where the data has been mostly collected at the

same time each year (e.g. AR7W from Labrador to Greenland each

May). The CANYON-B framework employs year-to-year

correlation whereas our method uses more localized time

correlation (month-to-month). For validation of results, it is

common to train the model on one data source (like GLODAP)

and test on another (i.e. SOCAT or ARGO) (Bittig et al., 2018).

Meanwhile, ECCO-Darwin (Carroll et al., 2020) used multiple data
FIGURE 7

The uncertainty estimate (95% margin or error) for (A) DIC, (B) fCO2, (C) TA and (D) pH.
TABLE 1 Comparing uncertainties from two methods for pH and fCO2

(minimum, average, and maximum).

pH
min, average, max

fCO2

min, average, max

CO2SYS(DIC and
TA Observations)
(Independent
Direct Observations)

0.014, 0.027, 0.092 11.2, 23.3, 88.5

This Method
(Time Correlated)

0.004, 0.005, 0.012 2.1, 8.4, 28.7

% Reduction of
Average Uncertainty

71% 64%
The first method used independent observations of DIC and TA in CO2SYS, and its
uncertainty is calculated from uncertainty propagation (Orr et al., 2018; Gattuso et al.,
2022). Second is the state space method, the time-correlated method presented in this work.
Its uncertainties are the time-varying standard error of the state, as estimated from the
Kalman smoother algorithm. The percent reduction between the two methods is given as
(State Space−CO2SYS)

CO2SYSj j � 100.
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sources (i.e. GLODAP, SOCAT, ARGO) as observational

constraints for their Earth System Model. Iida et al. (2020) also

used multiple data sources (GLODAP, SOCAT, Satelite Data) with

multiple linear regression and chemical relationships to estimate the

carbonate system. Using multiple data inputs was a feature we also

implemented in our observation-centric framework.

Our results yield time-varying uncertainties that are on average

64-71% lower compared to time independent methods such as

calculations with CO2SYS on independent observations (see

Table 1). There are multiple metrics for uncertainties. The time-

varying uncertainties are defined as 95% confidence intervals that

are calculated as part of the statistical model using the Kalman

smoother algorithm. The time-independent CO2SYS calculates

uncertainties using Gaussian propagation (Orr et al., 2018). From

our method for the years 1993-2016, the carbonate system variables

have the following average uncertainties: 5.14 μmol kg−1 for DIC,

4.51 μmol kg−1 for TA, 0.005 for pH and 8.36 μatm for fCO2. When

CO2SYS is used on time-independent observations, the estimated

pH has an average uncertainty of 0.03 and fCO2 uncertainty of 24

μatm. Carter et al. (2021) estimated spatial climatologies for the

carbonate system using a mixed estimation of linear regression

method (i.e. LIRv3) and neural networks, and in the North Atlantic

their uncertainties averaged: 7.7 μmol kg−1 for DIC, 5.0 μmol kg−1

for TA, and 0.009 for pH. The neural network based Canyon-B

uncertainty estimates averaged at: 8.6 μmol kg−1 for DIC, 5.7 μmol

kg−1 for TA, and 0.008 for pH. Compared to our uncertainties,

Carter et al. (2021) and Bittig et al. (2018) are slightly larger for DIC

and lower for TA, but overall they are comparable values.

Our pH in the top 20 m shows the acidification in the Labrador

Sea at a rate of 0.0009 year−1, which is almost half the rate of other

studies of the Labrador Sea of -0.0014 to -0.0016 year−1 (Chau et al.,

2024), meanwhile our sub-surface waters do have more comparable

rates of -0.0015 to -0.0018 year−1. With the large variance of surface

pH observations, the signal-to-noise ratio is much higher in the

surface waters than interior ocean (Figures 4B, C). This large

observation variance paired with sporadic pH GLODAP

observations, means our results are showing a steady decline as

opposed to a seasonal cycle, as reported in the neighboring Irminger

Sea, Bates et al. (2014) that peaks in the summer and spans 8.07 to

8.15 for years 1982-2006. The pseudo-observations we calculate for in

the surface layer have larger uncertainty than the direct observations,

which already have large variability themselves. This is an issue for
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pH and the fCO2 seasonal cycle has a smaller amplitude than

expected. A limitation of using pseudo-observations in the surface

is that they add more uncertainty to a system, making it harder to

distinguish process-driven variability like seasonal cycles from

natural noise of observation; a limitation that other methods

overcome by using global climatologies within their analysis. While

the pseudo-observations have their surface limitations, their use in

sub-surface hints at inter-annual variability, with a slow acidification

between 2004 and 2010 before resuming (Supplementary Figure S12),

though further analysis with more data should be performed.

Our estimated time series for the carbonate system in the Labrador

Sea produces comparable results to others (Chau et al., 2024; Feely

et al., 2023; Gregor and Gruber, 2021). The average across time of our

near-surface layer is summarized in Table 2. The other studies ran

global analyses but by extracting the Labrador Sea from their results, we

find our DIC, TA, fCO2, aragonite saturation and calcite saturation are

close or overlapped with their values. Our average surface pH of 8.16 is

on the high end of the other studies. These studies we compare with

overlap in time span, and overlap with data inputs. Gregor and Gruber

(2021) uses GLODAP TA, SOCAT pCO2 and global climatologies to

calculate the other variables using CO2SYS and Geospatial Random

Cluster Ensemble Regression. Chau et al. (2024) uses SOCAT fCO2,

pCO2 climatology and CMEMS data in CO2SYS and a neural network

ensemble approach (CMEMS-LSCE-FFNN). Feely et al. (2023) uses

SOCAT and DIC, TA and pH from GLODAP and the Common

Online Data Analysis Platform in North America (CODAP-NA) and

pools all into one observational database before it was interpolated

using Data Interpolating Variational Analysis.

Our average TA results below 100 m were 2302 μmol kg−1,

which is the same as Broullón et al. (2019) reported for an annual

mean TA in the Labrador Sea for X based on GLODAPv2.2019 data.

In the surface layer, Broullón et al. (2019) reports a TA of 2300 μmol

kg−1, but our estimated TA is lower at 2278 μmol kg−1. The

variability seen in TA is correlated with salinity, as confirmed by

the salinity-normalized TA (Figure 5). The freshening of the

Labrador Sea in this timeframe has not been shown before,

actually it has been described as having no change while the

eastern North Atlantic in the 2010s had a notable freshening and

cooling event (Holliday et al., 2020). We see cooler surface waters in

the Labrador Sea in the 2010s compared to 2000s and these cooler

waters are suggested to play a role in this eastern freshening Fox

et al. (2022). But returning to the Labrador Sea, the freshening we
TABLE 2 Average over time for near-surface carbonate variables for this study are compared against three other studies where the Labrador Sea
values are extracted from presented results: Gregor and Gruber (2021) see their Figure 10, Chau et al. (2024) see their Figures 3, 6, 9, and A5 and Feely
et al. (2023) see their Figures 3-5.

Study Years DIC TA fCO2 pH Aragonite Calcite

(µmol kg−1) (µmol kg−1) (µatm)

This Study 1993-2016 2090 2284 329 8.16 2.1 3.3

Gregor and
Gruber (2021)

1985-2018 2080-2110 2280-2300 320-330 8.10-8.16 1.85-2.0 3.0-3.2

Chau et al. (2024) 1985-2021 2095-2120 ∼2275 - 2320 ∼330 8.10-8.15 ∼2.0 ∼3.3

Feely et al. (2023) 2011-2020 ∼300-350 8.10-8.15 ∼1.75-2.25 ∼2.75-3.25
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see as of 2006 comes earlier than expected, as an ocean simulation

has estimated around 13 years for the subpolar North Atlantic to

adjust to the increase of annual Greenland freshwater discharge

which increased as of 2000 (Dukhovskoy et al., 2021). Ocean

simulations have also shown that freshwater from the Arctic

could cause freshening in the Labrador Sea (Zhang et al., 2021).

Using an Earth System model, Jiang et al. (2019) predicts

surface pH changing from 8.1 to 7.75 for 2000 to 2100 Jiang et al.

(2019), see their Figure 6), implying a declining pH of 0.0035 year−1,

4 times larger than our estimate. For a surface Revelle factor in the

year 2000, our results agree with (Jiang et al., 2019) that the Revelle

factor is around 15 in the Labrador Sea. Our aragonite saturation

horizon in 2004 is found at 2370 m, which is very close to the 2300

m reported by Azetsu-Scott et al. (2010) using 2003-2005 Labrador

Sea data. Our max increase of aragonite saturation horizon of 440 m

from 1993-2016 agrees with Tanhua et al. (2007) who reported a

400 m increase in the North Atlantic from pre-industrial to 2004

and projected a 700 m increase from pre-industrial to 2050. The

aragonite saturation horizon is increasing at a faster rate in the

North Atlantic than in the Pacific, which was reported to have

increased at 1-2 m year−1 (Feely et al., 2012).

Carbonate (CO3
–2) is rarely discussed in observation-based work.

Using CO2SYS to calculate carbonate from our DIC and TA, our

carbonate estimate for the year 1994 is 143 μmol kg−1 in the top 20 m,

which is similar to Orr et al. (2005), whose biogeochemical model

estimated an average surface carbonate to be around 160 μmol kg−1 at

60°N for the year 1994, and our 2010 carbonate estimate of 134 μmol

kg−1 is similar to the 120-140 μmol kg−1 Jiang et al. (2023) estimated

for the Labrador Sea. Our near-surface carbonate has a seasonal cycle

but also a declining trend of -1.06 μmol kg−1 year−1 (intercept of

151.1), projected forward to the year 2100 would yield a carbonate

value of 38 μmol kg−1, which is close to the SSP3-7.0 projections of

Jiang et al. (2023) (see their Figure 8).

Examining the individual time series of DIC for each depth

(Supplementary Figure S10) we see the effects of the Pinatubo 1991

eruption. Our estimated DIC below 1800 m is unchanging in the

1990s and increasing after 2000. These deep-water results are

consistent with anthropogenic carbon results in Boteler et al.

(2023) and has since been shown by Olivarez et al. (2024) that

the Pinatubo 1991 eruption had a delayed effect of not showing an

increase in ocean carbon until after the year 2000 (using pCFC-12).

This temporal pattern of an unchanging 1990s and increase after

2000 was also reported for our DIC between 200-800 m, which may

have a separate biological reason for our oxygen results at those

depths are also showing a change in trend around the year 2000. A

longer time series would help in de-tangling its processes for the

various depths, as this multi-decadal variability might also be in the

surface layers but hidden within the seasonal cycle. The near-

surface DIC as well as oxygen also have a 4-year cycle that seems

related to the North Atlantic Oscillation (NAO) and Atlantic

Multidecadal Oscillation (AMO).

The fCO2 in the near-surface was estimated to be increasing at a

rate of 1.48 μatm year−1. This is lower than the atmospheric CO2

increase of ∼1.9 μatm year−1 but the same as other observation based

estimates for the surface North Atlantic of 1.47 ±0.06 μatm year−1 for

years 1992-2014 (Lebehot et al., 2019) and Atlantic increase of 1.67
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±0.02 μatm year−1 for years 1990-2018 (Gregor and Gruber, 2021). The

near-surface fCO2 values always remain below atmospheric partial

pressure and with the ocean increasing at a slower rate, the gradient

between atmospheric and ocean CO2 is increasing. Moving to the

deeper waters, sub-surface measurements of fCO2 are rare, but they

could prove useful for tracking the anthropogenic increase of CO2 in

the ocean. While DIC is a popular choice for estimating the

anthropogenic change in the ocean interior, fCO2 has a lower range

of values and variability through the water column than DIC, making it

more sensitive to anthropogenic changes through time and easier to

identify variations within the ocean interior. Similar temporal variability

to fCO2 was also seen in the Revelle factor, which is described as the

sensitivity of fCO2 to the changes in DIC, and has been used to infer

anthropogenic carbon in the ocean interior. The Revelle factor showed

a steady rate of increase in the waters deeper than 100 m (Figure 6D).

More sub-surface measurements of fCO2 would be useful to further

investigate the Revelle factor and fCO2 and how their roles in

quantifying anthropogenic change are distinctive or overlapping.

6 Conclusion

In summary, we present an observation-centric method to

estimate the mean state carbonate system and its uncertainties for

the Labrador Sea for the period of 1993-2016. The state space model

framework allowed for the multivariate estimation of the carbonate

system, and for the fusion of multiple data sources: GLODAP cruise

data, SOCAT ships of opportunity, and calculated pseudo-

observations via CO2SYS. Our analysis focused on estimating

time-depth distributions and temporal trends at multiple depth

layers through the water column in the Labrador Sea for carbonate

system variables. Our analysis was transparent, making no

assumptions or model constraints on the variables to let the data

drive the estimation, the changes over time, the uncertainties, and

thus the story of the carbonate system.
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Our carbonate system time series data product created in this

study is freely available at https://doi.org/10.17632/jzp4dz77t4.1.

Three data sources were used in this work and are available online.

GLODAPv2.2022 data product (Lauvset et al., 2022; Olsen et al.,

2016; Key et al., 2015) with data available at https://doi.org/10.

25921/1f4w-0t92. SOCATv2022 data product (Bakker et al., 2016)

with data available at https://www.socat.info/index.php/data-

access/. BGC-ARGO (Bittig et al., 2019) has information

regarding its data access at https://biogeochemical-argo.org/data-

access.php, but we accessed the data via the R package argoFloats

(Kelley et al., 2022a). For comparison we also used the North

Atlantic Oscillation (NAO) Index values NAO (North Atlantic

Oscillation, 2020) at https://www.cpc.ncep.noaa.gov/products/

precip/CWlink/pna/norm.nao.monthly.b5001.current.ascii and the

Atlantic Multidecadal Oscillation (AMO) (AMO, 2020) at

https://psl.noaa.gov/data/timeseries/AMO/. Some GLODAP were

identified and removed as potential outliers, and a data file of the list

is available in the Supplemental Material.
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Broullón, D., Pérez, F. F., Velo, A., Hoppema, M., Olsen, A., Takahashi, T., et al.
(2020). A global monthly climatology of oceanic total dissolved inorganic carbon: A
neural network approach. Earth System Sci. Data 12, 1725–1743. doi: 10.5194/essd-12-
1725-2020

Carroll, D., Menemenlis, D., Adkins, J. F., Bowman, K. W., Brix, H., Dutkiewicz, S.,
et al. (2020). The ECCO-darwin data-assimilative global ocean biogeochemistry model:
estimates of seasonal to multidecadal surface ocean pCO2 and air-sea CO2 flux. J. Adv.
Modeling Earth Syst. 12, e2019MS001888. doi: 10.1029/2019MS001888

Carroll, D., Menemenlis, D., Dutkiewicz, S., Lauderdale, J. M., Adkins, J. F., Bowman,
K. W., et al. (2022). Attribution of space-time variability in global-ocean dissolved
inorganic carbon. Global Biogeochemical Cycles 36. doi: 10.1029/2021GB007162

Carter, B. R., Bittig, H. C., Fassbender, A. J., Sharp, J. D., Takeshita, Y., Xu, Y.-Y., et al.
(2021). New and updated global empirical seawater property estimation routines.
Limnol. Oceanogr.: Methods 19, 785–809. doi: 10.1002/lom3.10461

Carter, B. R., Feely, R. A., Mecking, S., Cross, J. N., Macdonald, A. M., Siedlecki, S. A.,
et al. (2017). Two decades of Pacific anthropogenic carbon storage and ocean
acidification along Global Ocean Ship-based Hydrographic Investigations Program
sections P16 and P02. Global Biogeochemical Cycles 31, 306–327. doi: 10.1002/
2016GB005485

Chau, T.-T.-T., Gehlen, M., Metzl, N., and Chevallier, F. (2024). CMEMS-LSCE: A
global, 0.25°, monthly reconstruction of the surface ocean carbonate system. Earth
System Sci. Data 16, 121–160. doi: 10.5194/essd-16-121-2024

Dickson, A. G. (1990). Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s)
+ HCl(aq), and and the standard acidity constant of the ion HSO4- in synthetic sea
water from 273.15 to 318.15 K. J. Chem. Thermodynamics 22, 113–127. doi: 10.1016/
0021-9614(90)90074-Z

Du, Z., Fang, L., Bai, Y., Zhang, F., and Liu, R. (2015). Spatio-temporal visualization
of air–sea CO2 flux and carbon budget using volume rendering. Comput. Geosciences
77, 77–86. doi: 10.1016/j.cageo.2015.01.004

Dukhovskoy, D., Yashayaev, I., Chassignet, E., Myers, P., Platov, G., and
Proshutinsky, A. (2021). Time scales of the Greenland freshwater anomaly in the
subpolar North Atlantic. J. Climate. 34, 8971–8987. doi: 10.1175/JCLI-D-20-0610.1

Feely, R., Jiang, L.-Q., Wanninkhof, R., Carter, B., Alin, S., Bednarsěk, N., et al.
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