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Particle composition-based
water classification method for
estimating chlorophyll-a in
coastal waters from OLCI images
Siwen Gao1, Chao Zhou1*, Lingling Jiang2 and Jingping Xu1

1National Marine Environmental Monitoring Center, Ministry of Ecology Environment, Dalian, China,
2College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
The complex composition of seawater presents significant challenges for

accurately estimating biogeochemical data through optical measurements,

both in situ and via satellite data. To address the regional applicability of single

bio-optical or remote sensing algorithms caused by these challenges, we

explored a water optical classification method based on inherent optical

properties and particle composition. The ratio of organic particulate matter to

total suspended particulate matter concentration (POM/SPM) serves as an optical

discriminator of water bodies based on the proportions of organic and mineral

particles. The boundary value is determined by the relationship between the

particulate backscattering coefficient bbp(l) and POM/SPM. By analyzing in situ

data collected from the coastal waters of Qinhuangdao in the Bohai Sea, China,

we developed empirical algorithms to estimate both the POM/SPM ratio and

chlorophyll-a (Chl-a) concentration, the latter being a key parameter derived

from current ocean remote sensing that indicates phytoplankton abundance.

The evaluation of our algorithms demonstrates that accounting for POM/SPM

variations significantly improves Chl-a estimate accuracy across the optically-

complex coastal waters near Qinhuangdao compared to algorithms that do not

consider changes in particle composition, such as the well-known OC4Me

algorithm. Furthermore, we determined the distribution of monthly averaged

Chl-a concentration and POM/SPM ratio on the coast of Qinhuangdao, Bohai

Sea, in 2023. Our results show, for the first time, that the monthly average

variations of the POM/SPM ratio in the Bohai Sea and Chl-a concentrations

exhibit pronounced seasonal fluctuations.
KEYWORDS

satellite ocean color, ocean optical property, inherent optical property, chlorophyll-a,
particle composition, bio-optical algorithm
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1 Introduction

The intricate composition of seawater presents a significant

challenge for accurately estimating biogeochemical conditions

through various optical measurements, including in situ and

satellite data. The interaction between light and complex

assemblages of water constituents is closely tied to the

composition of suspended particulate matter, particularly the

proportion of organic and inorganic particles (Stramski et al.,

2023). Due to the variability of these particle compositions across

different marine regions, the optical properties of seawater exhibit

significant complexity and diversity (Xi et al., 2015; Reynolds et al.,

2016). In the open sea, organic particles such as plankton and

detritus predominate, whereas coastal waters contain particles from

river inflow, seabed disturbances, and precipitation, resulting in a

mix of organic and mineral particles under turbulent conditions

(Baumas and Bizic, 2024). Consequently, no single bio-optical or

remote sensing algorithm whether empirical, semi-analytical, or

analytical-can fully encompass the variety of aquatic environments

in coastal waters. These algorithms are highly dependent on specific

datasets and require adjustment, optimization, and validation when

applied to large-scale regions (Mélin and Vantrepotte, 2015).

To address the regional applicability of optical inversion

algorithms in ocean color remote sensing, the concept of water

optical classification has been introduced. This method is

independent of place and time and shows strong universality. It

involves establishing a classification method to distinguish different

water environments and selecting appropriate algorithms based on

these conditions. Methods include remote sensing reflectance

spectral clustering (Lubac and Loisel, 2007; Vantrepotte et al.,

2012), biological optical parameter thresholds (McKee et al., 2007;

Binding et al., 2009), and classification based on particle intrinsic

characteristics (Stramski et al., 2001; Sullivan et al., 2005). Particle

refractive index, size distribution, and backscattering ratio are

among the intrinsic characteristics closely linked to optical

properties. Some studies suggest that particles are concentric

shells with varying refractive indices (Boss et al., 2009). Inorganic

particles have higher refractive indices than organic particles

(Zaneveld et al., 1974; Aas, 1996; Stramski et al., 2004). Limited

research indicates that particles with a relatively high refractive

index significantly affect the backscattering coefficient and,

consequently, the remote sensing reflectance (Reynolds et al.,

2016; Uusõue et al., 2022). Therefore, optical classification of

water bodies based on particle intrinsic characteristics could be a

feasible solution. However, technical difficulties in measuring these

characteristics, such as refractive index, make this method

challenging to apply, leaving it largely in the field data analysis stage.

The backscattering coefficient (bb(l)) is crucial for quantifying
ocean color and influences the diffuse reflectance capacity of the

water column (Boss et al., 2004). It provides valuable information

about the abundance and types of suspended particles and is used to

estimate their refractive index (Twardowski et al., 2001; Babin et al.,

2003). Because seawater contains a mixture of different particle

types that are difficult to separate, the measured refractive index in

practical observations is largely influenced by particle composition

rather than individual components. Accordingly, light
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backscattering properties and their relation to particle

composition have been investigated (Vaillancourt et al., 2004),

including the ratio of Chlorophyll-a (Chl-a) to suspended

minerals (Chl-a/MSS) (Mckee and Cunningham, 2006), the ratio

of mineral to total suspended solid concentration (MSS/TSS)

(Bowers et al., 2014), the ratio of organic particulate matter to

total suspended particulate matter concentration (POM/SPM)

(Snyder et al., 2008) and the ratio of particulate organic carbon to

suspended particulate matter concentration (POC/SPM) (Woniak

et al., 2010). In summary, inherent optical properties are effectively

linked to the intrinsic characteristics of particulate matter

(refractive index) through the relationship between backscattering

characteristics and particle composition (Lain et al., 2023). By

utilizing this relationship to classify water bodies with distinct

properties and subsequently inversing the particulate matter

concentration, advanced remote sensing analysis based on the

intrinsic nature of particulate matter can be achieved. This

approach not only broadens the scope of inversion methods for

coastal particulate matter concentration but also has great potential

for significantly improving inversion accuracy. However, few

studies have applied this classification method to the inversion of

particulate matter concentration in satellite images, with focusing

on the inversion of suspended particle types or the differentiation of

water types (Loisel et al., 2023; Wang et al., 2023). As a result, it

remains challenging to verify the accuracy improvement in particle

concentration inversion based on the backscattering- particle

composition classification method.

Therefore, this study aimed to: (i) investigate the relationship

between backscattering and POM/SPM as a method for optically

distinguishing water bodies, (ii) develop algorithms for estimating

the POM/SPM ratio and Chl-a concentration from optical

measurements of remote-sensing reflectance (Rrs(l)), and (iii)

validate the backscattering-POM/SPM classification-based Chl-a

concentration estimation method. The selection of Chl-a as the

inversion index is attributed to the fact that Chl-a concentration

can, to a certain extent, reflect the abundance of marine

photosynthetic plankton or phytoplankton, which is also a key

product in current ocean remote sensing research. In this study, a

water classification method based on inherent optical properties

and particle composition algorithms was established. This

framework was built upon discerning the relationship between

the particulate backscattering coefficient (bbp(l)) and the organic

suspended matter to suspended particulate matter concentration

ratio (POM/SPM).
2 Materials and methods

2.1 In situ dataset

The Bohai Sea is located in the northern part of the east coast of

China. It is a semi-enclosed body of water, surrounded by the land

from 3 sides, and is divided into 4 parts: Liaodong Bay, Bohai Bay,

Laizhou Bay and the Central Bohai Sea. The study area was located

near the coast of Qinhuangdao in the northwest of the Bohai Sea, as

shown in Figure 1, which details the sampling stations’ locations.
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Several large rivers, including the Shi River, Dai River, and Yang

River, flow into the Qinhuangdao coastal waters, carrying a

substantial amount of inorganic and organic suspended matter.

As a result, the optical properties of this sea area exhibit typical

characteristics of Case II waters.

A total of 100 samples were collected from 2016-2018 and the

descriptive of data collection was listed in the Table 1. 73 samples

were used for the modeling dataset and 27 samples were used for the

validation dataset. In situ data included optical and biochemical

parameters of the ocean surface, such as Rrs(l), bb(l), bbp(l), and
the concentrations of SPM, POM, and Chl-a. Water samples for

biochemical parameters were collected at a depth of 0.5 m.

An Analyti-cal Spectral Device (ASD) FieldSpec spectral

radiometer with a spectral range from 350 to 2500 nm was used

to measure the downwelling solar irradiance (Ed(l)), the above-

water upwelling radiance (Lsfc(l)) and the diffuse sky radiance (Lsky
(l)), following the NASA Ocean Optics Protocols (Mueller et al.,

2003). The Lsfc(l) was observed to avoid the ship’s shadow and

sunlight pollution with an azimuth viewing direction of 135°C from

the sun and a zenith angle of 40°C . Before each cruise, the absolute

radiometric calibration was performed on the detector. The Rrs(l) is
calculated as Formula 1:

Rrs(l) =
Lw(l)
Ed(l)

=
Lsfc(l) − rLsky(l)

Ed(l)
(1)

where Lw(l) is the water leaving radiance and r is the

dimensionless air-water reflectance, which is always in the range of

0.022–0.05 (Lee et al., 1996; Tang et al., 2004) and was set at 0.028 for

this study (Mobley, 1999). The median was selected after repeated

measurement, and the Rrs(l) were resampled to 1 nm intervals.

The bb(l) was obtained using a six-channel backscattering

measuring instrument (HOBI Labs Hydroscat-6, HS-6), which

recorded the total volume-scattering function b(l) at a backward

angle of approximately 140° (Maffione and Dana, 1997). The

measured wavelengths are 412 nm, 442 nm, 488 nm, 550 nm, 620
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nm, and 700 nm, respectively. The bbp(l) was the measured value

corrected by sigma minus the backscattering coefficient of pure

water bw(l), as Formula 2:

bbp(l) = bb(l) − bw(l) (2)

SPM and POM were determined by the gravimetric method

(Administration of Quality and Technology Superision of China,

1998) through GF/F filters with 0.45 μm nominal pore sizes and

filtration equipment. GF/F filters are pre-combusted at high

temperatures (e.g., 450°C) to remove any organic material that

might interfere with measurements. After combustion, they are

rinsed with deionized water and dried. Measure 1L to 2L seawater

and filter it through a prepared GF/F filters. And the filters are

weighed before and after filtration using a precision balance capable

of measuring in filters. After weighing, the filters containing

collected particles are combusted again to determine POM. The

weight loss during combustion indicates the amount of organic

matter present, while the remaining weight represents inorganic

matter (PIM), as Formula 3:

POM = SPM − PIM (3)

Chl-a was measured using the fluorometric method

(Administration of Technology Supervision of China, 1991).

Water samples were filtered through Whatman GF/F glass

microfiber filters. The volumes of the seawater samples were 0.5L

to 1L. The filters were analyzed immediately with a laboratory

fluorometer (Turner Designs, TD-700), otherwise stored in the

refrigerator (−20°C) until analysis in the laboratory.
2.2 Satellite data

OLCI (Ocean and Land Colour Instrument) Level-2 Ocean

Color Full-resolution data (OLCI_WFR, 300-m) covering the study

areas were obtained from the EUMETSAT Data Store (https://
FIGURE 1

Location of sampling stations in the coastal waters of Qinhuangdao, Bohai Sea, China.
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data.eumetsat.int/search). The Level-2 OLCI data were pre-

processed with the Baseline Atmospheric Correction (BAC) to

obtain Rrs(l). The BAC is based on the NIR black pixel

assumption (Gordon and Wang, 1994a) and the bright pixel

atmospheric correction algorithm (Moore et al., 1999). OLCI

Level 2 CHL Concentration product includes Chl_OC4Me and

Chl_NN (neural net algorithm). The Chl_OC4Me product is

generated using ESA’s 4-band combination chlorophyll-a

algorithm (OC4Me) which applies a fourth-order polynomial

equation and a Maximum Band Ratio (MBR) between the

irradiance reflectance at the wavelength of 443, 490, 510, and 555

nm, and the algorithm is widely known and freely available to the

public (Morel et al., 2007).

For monthly products, cloud-free OLCI images were selected

and processing using spatial binning at 300 m resolution with the

nearest neighbor method, utilizing the Level 3-binning feature of

the Sentinel Application Platform (SNAP), and then the

aggregation of individual images into monthly products.
2.3 Match-up procedures

The match-ups between satellite data and the in situ dataset were

determined based on satellite overpass time and sampling location. A

one-day time window was selected, and a surrounding 3-by-3 pixel box

centered on the location of the in situ points was extracted. The pixel

box was discarded if fewer than six valid pixels were present, or if the

center pixel was invalid. Mean and standard deviation were calculated

for all satellite products with valid pixels in the pixel boxes. In situ data

were averaged if multiple measurements were available in the same

pixel. Through this procedure, 27 valid match-ups were obtained and

used as the validation dataset.
2.4 Water classification method of
backscattering-particle
composition algorithms

The backscattering coefficient at 550 nm was chosen as the

parameter to investigate the relationship between the particulate

backscattering coefficient and particle composition. At this

particular wavelength, the absorption coefficient is least affected
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by phytoplankton, meaning that particles reflected more light at this

wavelength than at any other wavelength in the visible spectrum

(Lee et al., 2002). Additionally, the data obtained at 550 nm are less

affected by atmospheric interference than at the other wavelengths,

making it a reliable choice for ocean color measurements (Gordon,

2021). The variation trend of bbp(550) with the organic particle

composition (POM/SPM) is shown in Figure 2. The highest value of

bbp(550) was associated with the proportion of POM/SPM having a

value of 0.23. Before reaching the peak, the bbp(550) increased along

with the rise of POM/SPM; however, then displayed a declining

trend as POM/SPM continued to increase. It is worth noting that

the turning point of the trend (POM/SPM=0.23) happens to fall

near the peak of the particle composition’s Gaussian kernel density

estimation which indicates that the majority of particulate matter is

assembled in this proportion. The opposite trend of the relationship

between particle composition and backscattering implies the

influence of particle intrinsic characteristics on scattering

properties, and due to the presence of particulate matter in

seawater as a mixture, as well as the influence of other particle

characteristic such as particle size, shape, and structure,

backscattering is not linearly proportional to particle

composition, which also indicates that backscattering is not

linearly related to the refractive index of particulate matter

(Snyder et al., 2008). The differences in sensitivities of particle

backscattering to composition of particulate assemblages provide a

means to study and classify particles (Boss et al., 2004). Thus, water

bodies could be classified into two types based on their optical

properties by POM/SPM ratio as inorganic-dominant and organic-

dominant particle assemblages. The samples exhibiting ratios below

0.23 were classified as assemblages dominated by inorganic particles

(N=29), while those with ratios exceeding 0.23 were classified as

assemblages dominated by organic particles (N=44).
2.5 Structure of backscattering-particle
composition classification-based Chl-a
concentration estimation algorithms

The backscattering-particle composition classification-based

Chl-a concentration estimation algorithm includes: (i)

backscattering-POM/SPM classification, (ii) POM/SPM

estimation algorithm, and (iii) Chl-a concentration estimation

algorithm for each water type (Figure 3).
2.6 Accuracy assessment

The statistics examined included minimum, maximum,

average, standard deviation (SD), and coefficient of variation

(CV) values:

SD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(xi − m)2

s
(4)

CV = SD
m � 100% (5)
TABLE 1 Descriptive of data collection.

DataSet
Data Collec-
tion Time

Number
of Samples

Modeling
Dataset

2016.05 7

2016.06 11

2016.07 10

2017.06 20

2017.09 25

Validation
Dataset

2018.09 27
frontiersin.org

https://data.eumetsat.int/search
https://doi.org/10.3389/fmars.2024.1499767
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gao et al. 10.3389/fmars.2024.1499767
To evaluate the performance of each algorithm quantitatively,

the slope, intercept, coefficient of determination (R²), root mean

square error (RMSE), median absolute percent difference (APDm),

mean absolute percentage error (MAPE), mean absolute error

(MAE), and Pearson correlation coefficient (r) between

algorithm-derived and measured variables were calculated.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oN

i=1(yi − xi)
2

N

s
(6)

APDm = medianoN
i=1

yi − xi
xi

����
����� 100% (7)

MAPE =oN
i=1

yi − xij j
xi

� 100% (8)
Frontiers in Marine Science 05
MAE =  o
N
i=1 yi − xij j

N
(9)

where N was the number of samples, xi was the measured value,

µ was the average value, and yi was the estimated value.
3 Results

3.1 Bio−optical characteristics of the in
situ dataset

The pigment and particle mass concentrations exhibited a limited

and broad range of variation in our field dataset (Table 2). The SPM

values ranged from 2.00 to 17.57 mg L-1, POM and Chl-a were 0.47–

9.71 mg L-1 and 0.25–50.85 mg m-3, respectively. Specifically, the Chl-a
FIGURE 3

Backscattering-particle composition classification-based Chl-a concentration estimation method.
FIGURE 2

Trend of backscattering coefficient with composition of organic particles.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1499767
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gao et al. 10.3389/fmars.2024.1499767
distribution differed significantly from the SD and CV values. Based on

this, we calculated the POM/SPM, Chl-a/SPM, and Chl-a/POM ratios.

The values of the POM/SPM ratio (Table 2) vary from about 0.08 to

0.64 which indicates that the particle assemblages range from being

totally dominated by inorganic particles (the lowest POM/SPM) to that

by the organic particles (the highest POM/SPM). The mean and

median values of POM/SPM are nearly identical (0.25 and 0.24,

respectively) and the data are evenly distributed with a standard

deviation of only 0.09. A wide range of Chl-a/SPM and Chl-a/POM

ratios (Table 2) was also observed, which suggests considerable

variability in the contribution of phytoplankton to the particle

assemblages. Overall, the changes in the particle characteristics shown

in Table 2 indicate different conditions in the water body of the study

area, with significant variations in the compositions of inorganic,

organic, and phytoplankton particles in different proportions.

However, the spectral shapes of Rrs(l) do not show significant

discrimination between the two particle-composition water types

(Figure 4). The peak observed near Rrs(550), a typical spectral

feature resulting from the weak absorption of Chl-a and

carotenoids and strong backscattering by particles in inorganic-

dominated water, was higher in the average spectra of inorganic-

dominated water than that in organic-dominated water

(Vantrepotte et al., 2012). This result is reasonably expected to be

reflected in the average bbp(l) spectra (Figure 5). From the

perspective of the spectral clustering method, this dataset does

not exhibit a clear taxonomic delineation; however, the

backscattering-particle composition classification demonstrates

distinct differences between water bodies. This suggests that the

widely employed spectral clustering method requires further

refinement. While such a classification may prove effective in

large-scale applications, effective water-type categorization within

small-scale regions, particularly in the coastal sea, may prove

elusive. Only through the establishment of an accurate and robust

water classification system can the precision of water optical

parameter inversion, including Chl-a concentration and even

non-optical parameter inversion, be reliably enhanced.
3.2 Rrs-based POM/SPM
estimation algorithms

The Rrs-based POM/SPM estimation algorithm was established

following Stramski’s (Stramski et al., 2023) the ratio of particulate

organic carbon to suspended particulate matter concentration
Frontiers in Marine Science 06
(POC/SPM) estimation algorithms because POC represents a

fraction of POM, and many studies have focused on monitoring

POM in the ocean by remote sensing of POC (Babin et al., 2003;

Tanioka et al., 2020). The relationship between POC/SPM and Rrs
(l) was found that a multiple regression model involving three

reflectance predictors spanning the spectral range from the blue

through the red bands, provides a reasonably good algorithm. The

coefficients of the POC/SPM algorithm were readapted using the

field data of the OLCI bands and POM/SPM values in this study.

Figure 6 shows the POM/SPM values derived from Formulas 10

plotted versus the measured POM/SPM.

POM
SPM

=   10(−3:20−1:87RB−0:49RBRG+0:13RBRR) (10)

where RB = log[Rrs(490)], RG = log[Rrs(560)], RR = log[Rrs(665)],

and N = 73.

The statistical parameters indicate that the algorithm we

developed provides a good estimate of POM/SPM with r of 0.73

and RMSE, MAE and APDm are 0.05, 0.04, 14.95%, respectively.
3.3 Particle composition-specific Chl-a
estimation algorithms

A variety of Rrs band combinations were tested and evaluated to

identify the optimal candidate algorithm, and the best-fit regression

functions for both water types were chosen to estimate the Chl-a

concentration. For each water type, the algorithms were applied to

the in situ samples, and the results are shown in Figure 7. It can be

seen that the organic-dominant water type covers a broader range

in Chl-a (0.25 to 50.85 mg m-3) than the inorganic-dominant water

type (0.66 to 7.13 mg m-3), and both algorithms produce a good fit

for Chl-a prediction with r of 0.99 and 0.86, respectively; the

organic-dominant water type estimation algorithm is almost

distributed along the 1:1 line, with a slope of 0.99. The Formulas

for the organic-dominant and inorganic-dominant water type Chl-a

estimation algorithms are as follows:

Chl − aorganic =   100:46+4:58Ra−19:91Rb (11)

Chl − ainorganic =   101:09  R2
c − 64:40Rc     +10:34 (12)

where Ra = log[Rrs(665)/Rrs(681)], Rb = log[Rrs(673)/Rrs(681)],

and Rc = log[(Rrs(708)–Rrs(754))/(Rrs(655)–Rrs(754))].
TABLE 2 Descriptive statistics of measured parameters (N=73).

Parameters Minimum Maximum Mean Median SD CV

SPM (mg L-1) 2 17.57 7.35 6.5 3.81 0.52

POM (mg L-1) 0.47 9.71 1.8 1.5 1.45 0.8

Chla (mg m-3) 0.25 50.85 4.1 2.48 7.35 1.79

POM/SPM (g:g) 0.08 0.64 0.25 0.24 0.09 0.37

Chl-a/SPM (g:g) 4.72×10-5 6.10×10-3 5.05×10-4 3.17×10-4 7.47×10-4 1.48

Chl-a/POM (g:g) 1.95×10-4 9.53×10-3 1.83×10-3 1.38×10-3 1.40×10-3 0.76
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4 Discussion

4.1 Accuracy of particle composition-
specific Chl-a estimation algorithms

The performance of the particle composition-specific Chl-a

estimation algorithms was examined. For comparison, the

OC4Me algorithm was applied, and the parameters were adjusted

based on data without employing water classification from the

present study. The two algorithms both exhibit high estimation

accuracy with r values higher than 0.9 indicating a strong

correlation between measured Chl-a concentration and derived

Chl-a concentration. Other statistics (RMSE, MAE, APDm) of

particle composition-specific Chl-a estimation algorithms are also

better than the adjusted OC4Me algorithm (Table 3). Moreover, an

underestimation of the adjusted OC4Me algorithm can be observed

for the in situ values less than 15 mg m-3 (Figure 8).
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4.2 Evaluation of particle composition-
specific Chl-a estimation algorithms for
OLCI images

An independent database was used to validate the accuracy of

the algorithms when applied to actual OLCI images (N = 27,

satellite synchronization data). After the OLCI data pre-

processing and match-up procedure, 27 match-ups were obtained,

and in situ samples were collected on September 17, 2018 (Figure 9).

The Chl-a concentration of these match-ups in Validation Dataset

ranged from 0.38 to 17.91 mg m-3 with a average value of 3.63 mg

m-3.

Figure 9 shows the application of Chl-a derived from particle

composition-specific Chl-a estimation algorithms (Figure 9A and

POM/SPM derived from Rrs-based POM/SPM estimation

algorithms (Figure 9C in the northeast part of the Bohai Sea

associated with the match-up dataset . Elevated Chl-a
FIGURE 4

Spectra of remote sensing reflectance, Rrs(l), for: (A) inorganic-dominated water type, (B) organic-dominated water type, (C) the average spectra for
each water type and standard deviation (shaded area).
FIGURE 5

Spectra of backscattering coefficient, bbp(l), for: (A) inorganic-dominated water type, (B) organic-dominated water type, (C) the average spectra for
each water type and standard deviation (shaded area)..
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concentrations are generally associated with relatively high POM/

SPM, indicating a significant or dominant contribution of organic

particles to SPM.

For comparison, Figure 9 shows the relative difference in the

percentage of Chl-a derived from the particle composition-specific

Chl-a estimation algorithms and the OLCI Chl_OC4Me product

(Figure 9B. The largest differences were generally observed in the

region of dominant organic particles, and the Chl_OC4Me product

was underestimated compared with the Chl-a derived from the

particle composition-specific Chl-a estimation algorithms. The

statistical parameters of the Chl-a algorithms and match-ups are
Frontiers in Marine Science 08
summarized in Table 4, which shows that the algorithm developed

in this study has a more accurate prediction of Chl-a values with

lower RMSE, MAPE, MAE, and APDm.
4.3 Demonstration of application to
satellite observations

Figures 10 and 11 show the monthly variations in Chl-a

concentration and POM/SPM on the coast of Qinhuangdao, Bohai

Sea. High Chl-a concentration in winter was the most significant
FIGURE 6

Scatter plot comparing the algorithm-derived POM/SPM ratio and measured POM/SPM ratio for Rrs-based POM/SPM estimation algorithm expressed
in Formula 10. The black line represents the 1:1 line, and the red line represents the corresponding linear regression line.
FIGURE 7

Scatter plots comparing the algorithm-derived Chl-a with a measured Chl-a for each water type: (A) the organic-dominant water type, (B) the
inorganic-dominant water type. The black line represents the 1:1 line, and the red line represents the corresponding linear regression line.
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seasonal difference; however, the POM/SPM did not change

accordingly. This disparity may be influenced by the complex

interplay among various factors, including nutrient availability,

temperature, sunlight exposure, and ocean currents (Behrenfeld,

2010; Boss and Behrenfeld, 2010; Ma et al., 2021; Hampton et al.,

2022). In particular, the coastal area of Qinhuangdao, an ice-free
Frontiers in Marine Science 09
harbor located by the northern part of mainland China, is notably

affected by the Yellow Sea warm current, which strengthens in winter

and diminishes in summer (Mask et al., 1998). In addition, it can be

note that the maps of Chl-a concentration in summer exhibit

significant image noise, while the POM/SPM images show no

obvious noise. It could be observed that, unlike the POM/SPM
TABLE 3 Accuracy verification statistics of different algorithms.

Algorithms Slope Intercept r RMSE (mgm-3) MAE APDm

Particle
composition-

specific algorithms
0.96 0.31 0.98 1.23 1.00 37.00%

Adapted
OC4Me algorithm

0.94 0.25 0.97 1.86 1.30 46.10%
FIGURE 8

Scatter plot of the derived and measured Chl-a data using the Particle composition-specific estimation algorithms and adjusted OC4Me algorithm.
FIGURE 9

(A) Chl-a derived from the Particle composition-specific estimation algorithms; (B) Relative percentage difference between (A) and OLCI
Chl_OC4Me product; (C) Dominant water type based on the backscattering-POM/SPM classification algorithms. These results were obtained from
OLCI image associated with the match-ups dataset.
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TABLE 4 Statistical metrics between Chl-a concentrations in the Bohai Sea match-up dataset and algorithm retrievals applied to OLCI data by
backscattering-particle composition classification-based algorithm and the OLCI standard OC4Me algorithm.

Algorithms RMSE (mg m-3) MAPE MAE APDm

Particle composition-
specific algorithms

4.61 156.90 73.88 3.08

OLCI Chl_OC4Me product 10.19 602.64 297.22 8.26
F
rontiers in Marine Science
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FIGURE 10

Distribution of monthly averaged Chl-a concentration in the coastal of Qinhuangdao, Bohai Sea in 2023.
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inversion formula, the Chl-a inversion formulas use near-infrared

(NIR) bands (708 nm and 754 nm) to develop the algorithms.

However, in optically complex Class II water bodies, the accuracy of

the NIR bands is relatively low due to the limitations of current

atmospheric correction algorithms (Li et al., 2022). Moreover, the BAC

algorithm applied to process OLCI Level 2 products combines the

Gw94 (Gordon and Wang, 1994b) and the BPAC (Moore et al., 1999)

models, switching between the two depending on the turbidity flag. In
Frontiers in Marine Science 11
the study area, seasonal factors, including terrestrial runoff that

introduces abundant nutrients and favorable temperature conditions,

promote rapid phytoplankton growth in coastal waters, leading to

significant changes in water quality. This may be attributed to the use of

different models of BAC algorithm in adjacent pixels, leading to

significant noise in the NIR bands of the image.

Figure12 provides a clearer representation of the Chl-a

concentration and the monthly average fluctuations in POM/SPM.
FIGURE 11

Distribution of monthly averaged POM/SPM ratio in the coastal of Qinhuangdao, Bohai Sea in 2023.
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From April to October, the Chl-a concentration increased as POM/

SPM increased, or decreased as POM/SPM decreased. However, from

November to March, the trend was reversed, and the Chl-a

concentration increased as the POM/SPM ratio decreased or

decreased as the POM/SPM ratio increased. Additionally, similar

changes in the monthly average Chl-a concentration variation in the

Bohai Sea were shown by Xia et al. (Xia et al., 2021). and Zhang

Kunlong (Zhang et al., 2023).
5 Conclusion

The intricate and variable nature of seawater constituents

in coastal waters presents significant challenges in establishing

single algorithmic approaches for estimating Chl-a and other

biogeochemically essential constituents based on optical

observations across diverse aquatic environments. To address

these challenges, we present a water optical classification method

for estimating Chl-a that considers the variability in the

composition of suspended particulate matter. The POM/SPM

ratio was used as an indicator of particle composition to

distinguish the optically differentiated water bodies with different

proportions of organic and inorganic particles. Using field data

from the coastal waters of Qinhuangdao (Bohai Sea) that exhibit a

broad range of water composition and optical properties, we

developed empirical algorithms to estimate POM/SPM and Chl-a

from the spectral remote-sensing reflectance of the ocean, Rrs(l).
The analysis showed significant improvements in Chl-a estimation

from particle composition-specific algorithms in optically complex

Qinhuangdao coastal waters compared with algorithms that do not

account for variations in particle composition, especially the

OC4Me Chl-a estimation algorithm used for global satellite
Frontiers in Marine Science 12
applications. We also demonstrated an example application to

satellite ocean color observations in the Qinhuangdao coastal

waters. The algorithm is not limited to specific regions but is

expected to be broadly applicable. Additionally, this study

established the IOPs-particle composition classification algorithm

using POM/SPM. Further improvements can be done by

integrating additional characteristics of water components

across a broader temporal and spatial scope, considering the

optical variations induced by water constituents in diverse

environments. In this study, the ability to estimate POM/SPM

provided a mechanism-based framework for specific estimation

algorithms for Chl-a. However, it’s worth noting that POM/SPM

can itself be a useful product for biogeochemical research. POM

serves not only as a key channels for the conversion of diverse

nutrients within marine ecosystems, but also as a key interplay

between dissolved organic matter (DOM) and POM in organic

carbon dynamics within aquatic environments, thus influencing

nutrient accessibility, pollutant bioavailability, and ecological

phenomena (Stramski et al., 2004; Winogradow et al., 2019; Jo

et al., 2021).

In summary, backscattering-POM/SPM classification provides

a framework for optical algorithms, which exhibits improved

performance in Chl-a concentration estimation for the water

continuum affected by significant changes in particle composition

and optical properties.
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