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Plankton play an indispensable role in the biogeochemical processes of marine

ecosystem. However, unraveling the intricate interactions among biodiversity,

trophic linkages, and biotic-abiotic interplay between phytoplankton-

zooplankton remains a significant challenge. Here, we conducted field studies

in the neritic area of the Bohai Sea during autumn 2023 and spring 2024 to

explore seasonal variations of both phytoplankton and zooplankton through

microscope. Our analysis revealed a sharp decline in trophic interactions across

phytoplankton and zooplankton, with an abundance ratio in autumn 2023 being

5.5 times higher than in spring 2024. Additionally, dominant plankton species (Y ≥

0.02) exhibited obvious differences between the two seasons, with higher

species diversity observed in autumn. Moreover, each dominant zooplankton

species had distinct preferred food items in both seasons, with Rhizosolenia

setigera being favored by Noctiluca scintillans and Acartia pacifica. Furthermore,

a multivariate biota-environment analysis indicated that each dominant plankton

species had unique correlation with specific environmental parameters,

highlighting how plankton can fully exploit external environmental conditions

to survive in seasonal variations. Ultimately, our findings emphasize significant

seasonal dynamics and provide a solid foundation for assessing the potential

impacts of environmental changes on plankton in coastal marine realm.
KEYWORDS

plankton, biodiversity, trophic linkage, biotic-abiotic interplay, seasonal variations,
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Introduction

Compared to terrestrial ecosystems, oceans exhibit highly

complicated environmental conditions over temporal scales,

making them particularly vulnerable to both variable currents and

intense anthropogenic disturbances, especially in the temperate sea

for which experience four distinct seasons (Zhang et al., 2024).

These fluctuating environmental conditions can significantly

influence the structure of plankton communities and the

associated biotic-abiotic interactions (Chapin III et al., 1997;

Murphy et al., 2020; Anderson et al., 2021; Benedetti et al., 2021;

Heneghan et al., 2023; Chust et al., 2024). For instance, the

prolonged summer periods in the Arctic Ocean, driven by the

global warming, have already shifted plankton communities toward

ecosystems dominated by smaller species (e.g., Daufresne et al.,

2009; Verberk et al., 2021; Wang et al., 2024a). Therein, the

plankton community, encompassing phytoplankton and

zooplankton, is deeply constrained by alien environment,

especially for distinct seasonal marine areas.

In the marine realm, plankton form the foundation of the food

web, showcasing immense species diversity and unique genetic

variations that provide essential ecological functions and services

(De Vargas et al., 2015; Cordier et al., 2022; Omstedt, 2024). As

highlighted previously, phytoplankton play a crucial role by taking

up CO2 and releasing O2 through photosynthesis, supporting

heterotrophic organisms, while zooplankton serve as the basis for

higher trophic levels, such as fish, through predator-prey

relationships (Blanchard et al., 2017; Eddy et al., 2021; Baricevic

et al., 2024). Plankton are irreplaceable in nutrient cycling and

energy flow processes within marine ecosystems (Yi et al., 2024).

Albeit a myriad of prevailing studies emphasizing ecological

importance of plankton biodiversity and biogeography in

disentangling marine biogeochemical cycles, substantial researches

tends to focus separately on the ecological roles of phytoplankton

and zooplankton (e.g., Oziel et al., 2020; Wang et al., 2020; Darnis

et al., 2022; Segaran et al., 2023; Tagliabue et al., 2023). To date,

there is a lack of comprehensive representations of trophic linkages

between phytoplankton and zooplankton based on data-driven

statistical analyses from field surveys.

Regarding biotic-abiotic interplay, a prevailing viewpoint

suggested that physiological constraints dictate the range of

suitable environmental conditions for each plankton species

(Chust et al., 2024). Over recent decades, escalating global climate

change has imposed significant impacts on marine ecosystems,

challenging holopelagic species to develop relevant adaptive

strategies (Stabeno et al., 2012; Yasumiishi et al., 2020; Carvalho

et al., 2021; Atkinson et al., 2024). For example, warming and

acidification can directly affect metabolic processes, leading to

changes in plankton physiology and behavior, such as growth,

body size, reproduction, and survival (McFeeters and Frost, 2011;

Weydmann et al., 2012; Cripps et al., 2015; Garzke et al., 2015;

Murphy et al., 2020; Wang et al., 2023a, 2023b). In this sense, albeit

continuous attempts to explore the environment-plankton

interaction for uncovering the ecological importance of various

outer parameters (temperature, salinity, pH, dissolved oxygen,

nutrient, etc.) on the plankton physiological condition (Serreze
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et al., 2009; Screen and Simmonds, 2010; Mandal et al., 2024; Noh

et al., 2024), our understanding of their environmental affinities in

seasonal temperate coastal seas remains insufficient.

Hence, focusing on the diversity of eukaryotic plankton species,

trophic linkages, and biotic-abiotic interactions in a finer scale of

the neritic seas across different seasons could enhance our

understanding of plankton responses to complex seasonal

environmental changes. The Bohai Sea, also known as Bohai Gulf,

is the innermost gulf of the Yellow Sea along the coast of Northeast

and North China, characterized by distinct seasonal variations,

making it an ideal location for studying plankton responses to

seasonal environmental shifts. Here, we hypothesize that plankton,

including both phytoplankton and zooplankton, will exhibit

significant seasonal community structure variations driven by

differing environmental factors. Through synthesizing

observational seasonal plankton data and employing available

methodologies, the objective of this study is to: 1) disclose

variations in biodiversity; 2) uncover trophic linkages between

phytoplankton and zooplankton; and 3) assess biotic-abiotic

interplay. Ultimately, our findings will provide a crucial baseline

for evaluating the dynamics and functional roles of both

phytoplankton and zooplankton in future biogeochemical cycles

in coastal seas.
Materials and methods

Field sampling and analysis

Plankton samples, including both phytoplankton and

zooplankton, were collected in an inner bay of the Bohai Sea

(Figure 1) aboard the fishing boat “Jintangyu02066” on

November 14, 2023 (autumn), and April 17, 2024 (spring),

respectively. The offshore distances of all stations range from 2.34

Km (station 7) to 15.39 Km (station 4). The seafloor of all stations

located at neritic area of the Bohai Sea were shallower than 5.0 m.

Phytoplankton samples were gathered using a standard net III

(diameter 37.0 cm, mesh size 76 mm), trawled from a depth of

0.5 m off the bottom to the surface at each site, and preserved in acid

Lugol’s solution (1.5% final concentration). Zooplankton samples

were collected using a standard net II (diameter 31.6 cm, mesh size

160 mm), also trawled from bottom to surface. After each tow,

zooplankton specimens were fixed in a formaldehyde solution (2%

final concentration) for subsequent analyses. Collectively, a total of

48 samples were collected and preserved in darkness at 4°C. In the

laboratory, both phytoplankton and zooplankton samples were

identified to the lowest taxonomic level using a binocular

dissecting microscope (Olympus SZX16), referencing Guo (2004);

Sun et al. (2015); Wang and Song (2017), and Zhang et al. (2019).

Seawater temperature (°C) and salinity were measured using a

WTW Cond 3210 SET 1 portable water quality analyzer (Xylem,

Munich, Germany). Chlorophyll a (Chl a) concentration was

determined by filtering 1 L of seawater through a Whatman GF/F

glass fiber filter and stored at -20°C. Plankton retained on the filter was

extracted in 90% (vv−1) acetone, and fluorescence was measured

following the JGOFS protocol (Knap et al., 1996) using a Turner
frontiersin.org
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Trilogy fluorometer Model 10 (Turner Designs, US). A PHSJ-3F pH

analyzer was used for the pH measurement. For dissolved oxygen

(DO), samples were collected in an iodine flask, treated with alkaline

potassium iodide and manganese sulfate, and titrated with a standard

sodium thiosulfate solution. Additionally, 100 mL water samples for

nutrient analysis (ammonium-NH4+, nitrate-NO3
−, nitrite-NO2

− and

phosphate-PO4
3−) were filtered through a Whatman GF/F glass fiber

membrane (0.7 mm), fixed with chloroform, and stored at -20°C.

Nutrient concentrations were analyzed using a SEAL QuAAtro

nutrient analyzer (Germany) (Ma et al., 2019, 2023). Zinc ions (Zn2

+) were measured by inductively coupled plasma mass spectrometry,

with concentrations determined using an atomic absorption

spectrophotometer (SpectrAA FS220, Australia).
Data processing

The dominance index (Y) of species in plankton (including

phytoplankton or zooplankton) was calculated using the following

formula (Xu and Chen, 1989):

Y = (ni=N)� fi

where ni is the number of individuals of species i in all samples,

fiis the occurrence frequency of species i in all samples and N is the

total number of all taxa. Species with Y ≥ 0.02 represented as the

dominant species in plankton assemblage. Furthermore, all

stations located at neritic area of the Bohai Sea with seafloor

shallower than 5.0 m, thus we treat all environmental variables

obtained from surface layer (1 m) can represent whole water

column in our results for environment-plankton analysis.

Moreover, the average value of each parameter was represented as

mean ± SD in the following text.
Frontiers in Marine Science 03
Distributional data, including sampling maps, phytoplankton,

zooplankton, and environmental variables, were visualized using

ODV (Ocean Data View, Version 4.7), Surfer (Version 13.0),

Grapher (Version 12.0), and OriginPro 2021 (Version 9.6). In

addition, the Biota-Environment analysis was conducted based on

Spearman ’s correlation between log-transformed abiotic

parameters and square root-transformed abundance data (t-test),

utilizing both PRIMER (Version 5.0) and OriginPro 2021 (Version

9.6). Furthermore, the slope of the phytoplankton-zooplankton

(DK) was carried out to quantize their ecological interaction.
Results

Seasonal environmental features, plankton
abundance and trophic interaction

Most environmental parameters, except for NO2
− and PO4

3−,

exhibited distinct seasonal variations in the neritic area of the Bohai

Sea (Figure 2). In spring 2024, average values for temperature (16.6

± 1.0°C), pH (8.1 ± 0.1) and NO3
− (0.2 ± 0.1 mg/L) were higher by

7.3°C, 0.2, and 0.1 mg/L, respectively, compared to autumn 2023.

Additionally, Chl a concentrations were significantly higher at

stations 1−5 in spring 2024 than in autumn 2023, while they were

nearly equal at other stations (Figure 2). Furthermore, salinity

(average 28.4 ± 0.2), DO (average 10.2 ± 0.2 mg/L), NH4+

(average 0.1 ± 0.0 mg/L), and Zn2+ (average 17.8 ± 7.3 mg/L)
were lower in most stations during spring 2024 compared to

autumn 2023, where values were 27.9 ± 0.2, 8.0 ± 0.2 mg/L, 0.0 ±

0.0 mg/L, and 9.6 ± 4.5 mg/L, respectively (Figure 2).

Total phytoplankton abundance at each station ranged from 6.6 to

40.2 × 106 cells/m3 (average 18.4 ± 9.8 × 106 cells/m3) in autumn 2023,
FIGURE 1

Survey stations in the neritic area of the Bohai Sea at both autumn 2023 and spring 2024.
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compared to 0.3–3.0 × 106 cells/m3 (average 1.0 ± 0.8 × 106 cells/m3) in

spring 2024, indicating an average value 18.4 times higher in autumn.

Similarly, zooplankton showed higher abundance in autumn 2023,

with average value (852.1 ± 421.1 ind/m3) being 3.4 folds higher than

that in spring 2024 (253.4 ± 180.5 ind/m3) (Figure 2). The trend of

increased plankton abundance in autumn 2023 coincided with
Frontiers in Marine Science 04
variations in salinity, dissolved oxygen, NH4
+, and Zn²+ (Figure 2).

In terms of trophic interactions, average abundance ratio of

phytoplankton: zooplankton was 2.2× 104: 1 and 0.4× 104: 1 in

autumn 2023 and spring 2024, respectively (Figure 3). Additionally,

the phytoplankton-zooplankton slope in autumn 2023 (DK = -9.96) was

steeper than in spring 2024 (DK = -8.27) (Figure 3).
FIGURE 3

Variations in both abundance ratio and trophic linkage between phytoplankton and zooplankton at different seasons.
FIGURE 2

Seasonal variations in environmental variables and plankton (including phytoplankton and zooplankton) total abundance.
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Notable seasonal variations for dominant
plankton composition

Overall, a total of 64 phytoplankton species (32 genera) from 3

phyla, and 26 zooplankton species (20 genera) from 7 phyla were

recorded in the neritic area of the Bohai Sea during autumn 2023

and spring 2024 (Tables 1, 2). Among them, phytoplankton species

richness was higher in autumn 2023 (57 species) compared to

spring 2024 (33 species) (Table 1), while zooplankton showed little

variation between the two seasons (Table 2). Besides, in autumn

2023, there were 49 species in the phylum Bacillariophyta (86.0%), 1

species in Chrysophyta (1.8%), and 7 species in Pyrrophyta (12.2%),

whereas spring 2024 featured only Bacillariophyta species (Table 2).

Based on the dominance index (Y ≥ 0.02), phytoplankton species

and 7 zooplankton species were identified in both seasons (Figure 4;

Tables 1, 2), with 9 phytoplankton species noted in autumn 2023

and 4 phytoplankton species in spring 2024 (Table 1). For

zooplankton, 6 species were dominant species in autumn 2023

and 5 in spring 2024, respectively (Table 2).

Dominant species of both phytoplankton and zooplankton

exhibited clear seasonal variation (Figure 4; Tables 1, 2). Among the

targeted co-occurring phytoplankton, only Chaetoceros curvisetus and
Frontiers in Marine Science 05
Pseudo-nitzschia pungens were dominant in both seasons. In autumn

2023, dominant species included Eucampia zodiacus (Y = 0.18), C.

lorenzianus (Y = 0.07), Coscinodiscus subtilis (Y = 0.04) and C.

asteromphalus (Y = 0.02), while Rhizosolenia setigera (Y = 0.40) and

Skeletonema costatum (Y = 0.17) were dominant species at spring 2024

(Figure 4; Table 1). For zooplankton, four species (Acartia pacifica,

Calanus sinicus, Aidanosagitta crassa, and Noctiluca scintillans) were

identified in both seasons (Table 2). Copepodite (Y = 0.04) and

Nauplius (Y = 0.03) were the dominant species in autumn 2023,

whereas Polychaete larva (Y = 0.04) was the dominant taxon in

spring 2024 (Figure 4; Table 1).

Additionally, the abundance proportions (AP) of all dominant

phytoplankton were ≥ 87.8% (average 91.6 ± 1.9%) in autumn 2023

and ≥ 56.2% (average 83.6 ± 10.5%) in spring 2024, respectively.

Similarly, dominant zooplankton species exhibited AP values of ≥

87.9% (average 94.0 ± 3.6%) and ≥ 42.8% (average 88.3 ± 14.7%)

during these seasons (Figure 4). In autumn 2023, the top three

dominant phytoplankton species were C. castracanei (AP = 34.3%),

E. zodiacus (AP = 17.8%) and Ceratium macroceros (AP = 9.1%). In

contrast, those species shift to R. setigena (AP = 40.3%), C.

curvisetus (AP = 22.7%) and S. costatum (AP = 16.7%) in spring

2024 (Figure 4A). Similarly, the dominant zooplankton species in
TABLE 1 List of phytoplankton composition, maximum abundance (Amax), occurrence frequency (OF) and its dominance index (Y) in study area at
both autumn 2023 and spring 2024.

Phylum Genus Species 2023 Autumn 2024 Spring

Amax (ind/m
3) OF (%) Y Amax (ind/m

3) OF (%) Y

Bacillariophyta Actinocyclus Actinocyclus octonarius 166563 91.7 <0.01 2700 8.3 <0.01

Bacteriastrum Bacteriastrum sp. 10588 8.3 <0.01

Cerataulina Cerataulina pelagica 12031 8.3 <0.01

Chaetoceros Chaetoceros affinis 38800 41.7 <0.01

C. borealis 10588 8.3 <0.01

C. castracanei 15329722 100 0.34

C. compressus 2843611 100 0.05

C. curvisetus 2497222 100 0.04 1124500 91.7 0.21

C. densus 204531 41.7 <0.01 114700 41.7 <0.01

C. diadema 232926 58.3 <0.01 78000 8.3 <0.01

C. lorenzianus 2360278 100 0.07 8100 8.3 <0.01

C. tortissimus 12100 16.7 <0.01

Coscinodiscus Coscinodiscus apiculatus 9300 8.3 <0.01

C. argus 64063 25 <0.01 2800 8.3 <0.01

C. asteromphalus 1208333 100 0.02 28700 50 <0.01

C. debilis 28700 8.3 <0.01

C. deformatus 19219 25 <0.01

C. gigas 64063 50 <0.01 16100 16.7 <0.01

C. granii 89688 91.7 <0.01 15700 41.7 <0.01

C. jonesianus 5100 8.3 <0.01

(Continued)
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TABLE 1 Continued

Phylum Genus Species 2023 Autumn 2024 Spring

Amax (ind/m
3) OF (%) Y Amax (ind/m

3) OF (%) Y

C. oculus-iridis 64063 75 <0.01 4000 25 <0.01

C. radiatus 8375 8.3 <0.01 57300 41.7 <0.01

C. subtilis 2875833 100 0.04 4000 8.3 <0.01

C. wailesii 15882 16.7 <0.01 86000 50 <0.01

Coscinodiscus sp1 8500 16.7 <0.01

Cyclotella Cyclotella sp. 217500 75 <0.01

Ditylum Ditylum brightwellii 48333 83.3 <0.01 13000 58.3 <0.01

Eucampia Eucampia zodiacus 7405234 100 0.18 37300 41.7 <0.01

Guinardia Guinardia flaccida 659844 91.7 0.01

G. striata 402778 91.7 <0.01 18700 41.7 <0.01

Lauderia Lauderia annulata 66300 91.7 <0.01

Leptocylindrus Leptocylindrus danicus 469000 100 <0.02 19500 33.3 <0.01

Meuniera Meuniera membranacea 185278 33.3 <0.01

Nitzschia Nitzschia acicularis 13000 8.3 <0.01

N. closterium 6200 33.3 <0.01

N. longissima 10455 16.7 <0.01 8100 25 <0.01

N. lorenziana 7000 8.3 <0.01 15500 16.7 <0.01

Odontella Odontella sinensis 24394 8.3 <0.01

Paralia Paralia sulcata 139425 16.7 <0.01 430000 16.7 <0.01

Pieurosigma Pieurosigma pelagicum 24167 16.7 <0.01

Pinnularia Pinnularia sp. 4956 8.3 <0.01

Planktoniella Planktoniella blanda 5400 8.3 <0.01

Pleurosigma Pleurosigma acutum 7000 16.7 <0.01

Pleurosigma sp. 4225 8.3 <0.01

Proboscia Proboscia alata 36094 25 <0.01

Pseudo-
nitzschia

Pseudo-
nitzschia pungens

2601944 100 0.07 86000 91.7 0.03

Rhizosolenia Rhizosolenia alata 161111 100 <0.01

R. setigera 241667 100 <0.01 1347300 100 0.40

R. styliformis 14000 16.7 <0.01

Schroederella Schroederella delicatula 739922 100 0.01 143300 58.3 0.01

Skeletonema Skeletonema costatum 372879 58.3 <0.01 630700 100 0.17

Stephanopyxis Stephanopyxis
palmeriana

14000 8.3 <0.01

Synedra Synedra sp. 5294 8.3 <0.01

Thalassionema Thalassionema
frauenfeldii

94091 33.3 <0.01

T. longissima 15882 16.7 <0.01 86000 8.3 <0.01

Thalassiosira Thalassiosira eccentrica 38438 50 <0.01

(Continued)
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TABLE 1 Continued

Phylum Genus Species 2023 Autumn 2024 Spring

Amax (ind/m
3) OF (%) Y Amax (ind/m

3) OF (%) Y

T. rotula 288750 75 <0.01

Chrysophyta Dictyocha Dictyocha fibula 161111 91.7 <0.01

Pyrrophyta Ceratium Ceratium furca 89688 75 <0.01

C. fusus 56389 66.7 <0.01

C. macroceros 3705000 100 0.09

C. tripos 83636 83.3 <0.01

Glenodinium Glenodinium sp. 69697 16.7 <0.01

Prorocentrum Prorocentrum micans 4225 8.3 <0.01
F
rontiers in Marine
 Science
 07
 fron
phytoplankton in bold black were dominant species with Y ≥ 0.02.
TABLE 2 List of zooplankton species composition, maximum abundance (Amax), occurrence frequency (OF) and its dominance index (Y) in study area
at both autumn 2023 and spring 2024.

Phylum Genus Species 2023 Autumn 2024 Spring

Amax (ind/m
3) OF (%) Y Amax (ind/m

3) OF (%) Y

Arthropoda Acartia Acartia hongi 12.7 8.3 <0.01 25 58.3 0.01

A. pacifica 266.7 66.7 0.06 185.7 100 0.19

Calanopia Calanopia thompsoni 7.1 16.7 <0.01

Calanus Calanus sinicus 83.6 75 0.03 442.9 100 0.34

Centropages Centropages tenuiremis 12.7 8.3 <0.01 16.7 83.3 <0.02

Ditrichocorycaeus Ditrichocorycaeus affinis 107.7 41.7 <0.01 3.6 25 <0.01

Labidocera Labidocera euchaeta 11.1 8.3 <0.01 16.7 58.3 <0.01

L. rotunda 23.8 33.3 <0.01

Oithona Oithona similis 88.9 41.7 <0.01 4.2 33.3 <0.01

Paracalanus Paracalanus parvus 7.7 8.3 <0.01 7.1 41.7 <0.01

Pseudodiaptomus Pseudodiaptomus
arabicus

1.9 16.7 <0.01

– Nauplius 110.3 75 0.03 8.3 58.3 <0.01

– Copepodite 96.3 83.3 0.04 16.7 8.3 <0.01

Acetes Acetes chinensis 1.7 8.3 <0.01

Brachyura Brachyura zoea larva 50 75 0.03

Cirripedia Cirripedia nauplius 6.4 8.3 <0.01

Leucon Leucon sp. 36.8 8.3 <0.01

Macruran Macruran larva 3.3 33.3 <0.01

Neomysis Neomysis orientalis 9.52 25 <0.01

Pseudevadne Pseudevadne tergestina 14.3 8.3 <0.01

Annelida – Polychaete larva 21.2 16.7 <0.01 33.3 100 0.04

Chaetognatha Aidanosagitta Aidanosagitta crassa 427.7 100 0.17 37 91.7 0.03

Chordata – Fish egg 3.6 8.3 <0.01

(Continued)
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autumn 2023 were Noctiluca scintillans (AP = 54.4%) and A. crassa

(AP = 16.6%), which changed to C. sinicus (AP = 34.3%) and N.

scintillans (AP = 22.2%) in spring 2024 (Figure 4B. Overall,

compared to phytoplankton, zooplankton exhibited less variation

in dominant species across seasons, indicating a stronger

community stability (Figure 4; Tables 1, 2).
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Seasonal dynamics in both interspecific
and trophic level relationships

Dominant phytoplankton and zooplankton species showed

varying correlations in both interspecific and trophic level

relationships during autumn 2023 and spring 2024 (Figure 5). In
TABLE 2 Continued

Phylum Genus Species 2023 Autumn 2024 Spring

Amax (ind/m
3) OF (%) Y Amax (ind/m

3) OF (%) Y

Ciliophora Favella Favella panamensis 76.9 16.7 <0.01

Cnidaria Rathkea Rathkea octopunctata 144.8 33.3 0.01

Protozoa Noctiluca Noctiluca scintillans 1142.9 100 0.54 203.6 83.3 0.18
fro
zooplankton in bold black were dominant species with Y ≥ 0.02; – means uncertain genus classification.
FIGURE 4

Seasonal variations in both abundance and abundance proportion of dominant phytoplankton (A) and zooplankton (B) species. Each color indicated
one dominant phytoplankton or zooplankton species.
ntiersin.org

https://doi.org/10.3389/fmars.2024.1498869
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhao et al. 10.3389/fmars.2024.1498869
terms of interspecific relationships, most dominant phytoplankton

species displayed significant positive correlations, indicating mutually

beneficial coexistence, except for S. costatum-C. curvisetus, which

exhibited a significant negative correlation, indicating competitive

interactions in autumn 2023 (Figure 5A). In spring 2024, significant

positive correlations were observed among C. asteromphalus-P.

pungens, C. curvisetus-E. zoodiacus, S. costatum- P. pungens/R.

setigena/C. asteromphalus, suggesting mutually beneficial coexistence

(Figure 5B). Targeted zooplankton, only A. crassa-C. sinicus showed a
Frontiers in Marine Science 09
significant positive correlation, indicating mutual coexistence in

autumn 2023 (Figure 5A). However, in spring 2024, the interspecific

relationships among C. sinicus/Brachyura zoea larva-A. pacifica, A.

crassa-N. scintillans, Polychaeta larva-C. sinicus were mutually

beneficial, all exhibiting significant positive correlations. Conversely,

the relationship between A. crassa-A. pacifica was competitive,

showing a significant negative correlation (Figure 5B).

As for trophic level relationships in phytoplankton (prey)-

zooplankton (predator), Spearman’s rank correlation indicated
FIGURE 5

Spearman’s rank correlation between dominant phytoplankton and zooplankton species in autumn 2023 (A) and spring 2024 (B). *: p < 0.05, t-test.
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significant positive correlations for R. setigera-N. scintillans, C.

compressus-C. sinicus, E. zodiacus-A. crassa in autumn 2023,

while C. macroceros-N. scintillans, C. castracanei-A. pacifica

exhibited negative correlations (Figure 5A). In spring 2024,

significant positive correlations were observed between R. setigena

and A. pacifica, as well as P. pungens/C. asteromphalus/S. costatum

with Polychaeta larvae, while R. setigena-A. crassa, P. pungens-

Nauplius, E. zoodiacus-Brachyura zoea larva exhibited negative

correlations (Figure 5B). Specifically, these patterns suggest that

each zooplankton species has unique preferred food items in both

autumn 2023 and spring 2024, with R. setigera being a favored food

source for both N. scintillans and A. pacifica.
Biotic-abiotic interplay and its
seasonal variations

Plankton dominant species displayed varied responses to

environmental parameters during autumn 2023 and spring 2024

(Figures 6, 7; Tables 3, 4). Regarding phytoplankton-abiotic

interactions, only E. zoodiacus, P. pungens and C. asteromphalus

exhibited similar trends with environmental variables, suggesting

they may prefer overlapping niches and face strong competition

(Figure 6; Tables 3). Additionally, C. castracanei, R. setigena, C.

compressus and S. costatum thrived in high-temperature and high-pH

conditions, contrasting with E. zoodiacus, P. pungens, C. lorenzianus,

C. asteromphalus, C. subtilis, and C. curvisetus (Figure 6). Meanwhile,

each species exhibited distinct trends in response to nutrient

availability, reflecting their varying utilization efficiencies. Notably,

all species, except R. setigena and S. costatum, showed an increasing

trend with Zn²+ (Figure 6).

Regarding zooplankton-abiotic interplay, our results revealed

that N. scintillans, Nauplius and Copepodite exhibited similar

trends in response to the complex environmental variables of

temperature, salinity, Chl a, dissolved oxygen (DO), and pH,

indicating strong competition among these species (Figure 7).

Except above-mentioned three species, A. crassa, A. pacifica and

Polychaete larva also benefited from low temperature and high DO

conditions. Notably, only C. sinicus and Brachyura zoea larva

displayed an increasing trend with rising temperature (Figure 7;

Tables 4). Furthermore, with the exception of A. pacifica, A. crassa,

and Nauplius, other species displayed unique responses to nutrient

variables (Figure 7; Table 4). Specifically, all species, except C.

sinicus, demonstrated an increasing trend with Zn²+ (Figure 7).

To further quantify the physical-biological interplay in the neritic

area of the Bohai Sea during autumn 2023 and spring 2024, we

conducted principal component analysis (PCA) using abundance of

phytoplankton, zooplankton and their dominant species to assess abiotic

influences (Figure 8). The PCA revealed that two principal components

effectively distinguished the environmental conditions across the two

seasons, accounting for a substantial proportion of biotic variation ≥

71.0% in autumn 2023 and ≥ 71.1% in spring 2024 (Figure 8).

Furthermore, each dominant species (both phytoplankton and

zooplankton) exhibited unique correlations with specific

environmental parameters throughout the seasonal variations
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(Figure 8). For instance, A. crassa showed a significant positive

correlation with PO4
3-. However, at spring 2024, its significant

positive correlation shifted to with both temperature and DO

(Figure 8). This phenomenon demonstrates that plankton can

effectively leverage external environmental factors to survive

seasonal changes.
Discussion

This study provides a holistic paradigm and epitome of field-

based significant divergences in both phytoplankton and

zooplankton communities and its interplay with environmental

factors during autumn 2023 and spring 2024 spanning a finer

scale located at neritic area of the Bohai Sea. Unlike existing global

models for plankton, which often rely on predefined parameters

(Spalding et al., 2012; Anderson et al., 2021; Benedetti et al., 2021;

Heneghan et al., 2023; Tagliabue et al., 2023; Atkinson et al., 2024),

the seasonal dynamics of plankton traits observed through ship-

borne field surveys are shaped by a dynamic feedback loop

between microbes and their environment, influenced by unique

physicochemical conditions, as hypothesized. However, it is

important to note that our study area may not fully represent the

diverse adaptive strategies of plankton seasonal variations across

temperate coastal regions.
Remarkable seasonal divergences in
plankton trophic interaction
and composition

Marine eukaryotic plankton, including both phytoplankton and

zooplankton, represents a vast diversity of organisms that serve as

essential food sources for commercial fish through fundamental

trophic level transfers (prey-predator interactions) (Cordier et al.,

2022; Omstedt, 2024). Consequently, the bioindex reflecting the

abundance ratio of phytoplankton to zooplankton is crucial for

exploring and understanding plankton trophic interactions. Previous

studies reported abundance ratios in pico-, nano-, and microplankton

of approximately 106: 103: 1 in the Mediterranean Sea (Tanaka and

Rassoulzadegan, 2002) and the Tropical North/West Pacific Ocean

(Sohrin et al., 2010;Wang et al., 2023c), forming a pyramid shape from

low to high trophic levels (Trebilco et al., 2013). Our findings regarding

the phytoplankton-to-zooplankton ratio align with this pattern.

Furthermore, the abundance ratio in autumn 2023 was 5.5 times

higher than in spring 2024 (Figure 3), and the steeper phytoplankton-

zooplankton slope collectively indicates that the plankton community

in the former season experienced lower feeding pressure on

zooplankton and stronger environmental resistance than in the latter

season (De Vargas et al., 2015; Cordier et al., 2022).

Plankton species diversity plays a vital role in regulating

ecosystem processes and resource utilization efficiency, thereby

influencing marine ecosystem functioning and biogeochemical

cycling (Chapin III et al., 1997). Similarly, a higher diversity of

functionally similar species enhances the stability of resistance and
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resilience in marine ecosystem processes (Ibarbalz et al., 2019;

Benedetti et al., 2021; Chust et al., 2024). Consistent with

observational studies using both optical microscopy (Marić et al.,

2012; Godrijan et al., 2013) and metabarcoding (Piredda et al., 2017;

Armeli et al., 2019), species diversity of both phytoplankton and

zooplankton was higher in autumn 2023 compared to spring 2024

(Table 2), showing clear seasonal variations. Furthermore,
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considering the significantly higher plankton abundance

(Figure 3), it can be logically concluded that the plankton

community in autumn 2023 exhibited greater resistance and

resilience to harsh environmental conditions than in spring 2024.

As for prey-predator interactions, the fatty acid composition of

phytoplankton is recognized as a crucial factor influencing food

quality for higher trophic levels (Becker and Boersma, 2003;
FIGURE 6

Correlation between environmental variables and dominant phytoplankton species at both autumn 2023 and spring 2024.
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Boersma et al., 2009; Chen et al., 2010; Peng et al., 2024). Among

various phytoplankton species, diatoms are particularly noted for

their high levels of unsaturated fatty acids, which are essential for

the cell differentiation, growth, reproduction, immune function,

and other biological processes of zooplankton (Wichard et al., 2008;

Yeung et al., 2020; Peng et al., 2024). Thus, it is reasonable to

suggest that higher diatom abundance contributes to increased

zooplankton populations, as observed in autumn 2023 (Figure 3).

Additionally, our findings indicate that all phytoplankton species in

spring 2024 belonged to the phylum Bacillariophyta (Table 2),

aligning with Murphy et al. (2020), which found that warming

significantly enhances the ecological importance of diatoms.

Moreover, the minimal variation in both total and dominant

zooplankton species between autumn 2023 and spring 2024

(Figure 3; Table 2) may be attributed to their strong selective

feeding abilities (Serandour et al., 2023).
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Ecological role of environmental
parameters played in seasonal
plankton variations

Physicochemical factors, e.g., temperature, salinity, Chl a, nutrients,

pH, dissolved oxygen, heavy metal, are crucial in reshaping complex

plankton compositions through bottom-up control (resource

limitation) (Power, 1992; Pörtner and Farrell, 2008; Wang et al.,

2023c, 2024b; Lennartz et al., 2024). Specifically, temperature

enhances species biodiversity by modulating temperature-dependent

metabolic processes (Vázquez-Domıńguez et al., 2007; Archibald et al.,

2022). However, our results indicate that only a few phytoplankton and

zooplankton species showed a positive correlation with temperature

(Figure 8). We speculate that in specific locations, the surrounding

environmental conditions may exceed the temperature thresholds for

these species (Holding et al., 2013; Stuart-Smith et al., 2015), potentially
frontiersin.o
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Correlation between environmental variables and dominant zooplankton species at both autumn 2023 and spring 2024.
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explaining the observed loss of both biodiversity and abundance in

spring 2024. Moreover, previous studies suggest that higher trophic

levels are generally more vulnerable to elevated temperatures, as the

metabolic demands of consumers are more sensitive to warming,

leading to decreased consumer fitness (Lopez-Urrutia et al., 2006;

Rall et al., 2010). However, our findings do not align with

aforementioned viewpoint, as both species composition and total

abundance of zooplankton showed little variation between autumn

2023 and spring 2024 (Figure 3), despite an average temperature

increase of 7.3°C from autumn 2023 to spring 2024 (Figure 2).

Nutritional availability is crucial for influencing phytoplankton

concentrations, as it is closely linked to increased primary

productivity in terms of both quantity (abundance) and quality (lipid

unsaturation) (Premakumari et al., 2024). This productivity then

transfers to higher trophic levels through essential prey-predator

interactions (Šolić et al., 2010; Våge and Thingstad, 2015; Holm et al.,

2022). Our results indicate that dominant phytoplankton species

exhibited distinctly different trends in response to nutrients in

autumn 2023 and spring 2024 (Figure 6). This variability can be

explained by two factors: 1) each species has a unique nutrient affinity

(Strom and Fredrickson, 2008), and 2) avoid harmful competition

(Sommer, 1989; Litchman et al., 2004; Kenitz et al., 2013). Regarding

zooplankton, DO is a vital limiting factor for survival and growth, as

heterotrophs must oxidize large compounds from their environment to
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release energy for biological processes (Fenchel, 2014; Qian et al., 2023).

Our findings support this perspective (Figure 7).

In recent decades, anthropogenic CO2 emissions have induced

global warming, triggering unprecedented and lasting impacts on

marine ecosystems worldwide (Yasumiishi et al., 2020; Carvalho

et al., 2021; Wang and Wu, 2022). This poses threats to biodiversity

and ecological functions, particularly through poleward dispersal

(Ershova et al., 2015; Hastings et al., 2020; Møller and Nielsen, 2020;

Wang et al., 2022), changes in phenology and adaptation (Poloczanska

et al., 2013; Atkinson et al., 2015), and mean body size miniaturization

(Li et al., 2009; Daufresne et al., 2009; Qian et al., 2023). For surface-

dwelling species in large marine environments, poleward dispersal is a

prominent aspect of plankton’s response to global warming (Hastings

et al., 2020). Whereas at a specific location, plankton face two options:

1) enhance their temperature tolerance through long-term adaptive

evolution (Ward et al., 2019) or 2) extirpation. In this perspective, our

study on plankton seasonal variations provides a fundamental

benchmark for understanding the adaptive strategies of

phytoplankton and zooplankton to rapid warming. Meanwhile, our

results indicate that several dominant plankton species exhibited a

positive correlation with temperature during the warmer spring of 2024

(Figures 6, 8). Thus, we deduce that these “winner” plankton species,

with strong adaptation abilities (Casoli et al., 2020; Boutin et al., 2023),

are likely to dominate the neritic area of the Bohai Sea in the future.
FIGURE 8

Variations in principal component analysis (PCA) between environmental parameters and plankton (including phytoplankton, zooplankton, and
dominant species) at both autumn 2023 and spring 2024. The x-axis is the first PCA axis, and the y-axis is the second PCA axis. Environmental
variables and ciliates are indicated by black and green (phytoplankton)/orange (zooplankton) lines, respectively. Grey dots are sampling points.
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TABLE 3 Spearman’s rank correlation between dominant plankton (including phytoplankton and zooplankton) species and environmental parameters
(T, S, Chl a, DO, pH, PO4

3-, NO3
-, NO2

-, NH4
+, Zn2+) in autumn 2023.

Type species Environmental variables

T
(°C)

S Chl a
(mg/
L)

DO
(mg/
L)

pH PO4
3-

(mg/
L)

NO3
-

(mg/
L)

NO2
-

(mg/
L)

NH4
+

(mg/
L)

Zn2+

(mg/
L)

Phytoplankton Chaetoceros castracanei 0.519 -0.131 0.291 0.217 0.380 0.236 -0.287 -0.329 -0.021 0.105

C. compressus 0.177 -0.106 -0.064 0.021 0.074 0.236 -0.510 -0.198 -0.179 0.252

C. curvisetus 0.300 -0.201 -0.085 0.266 0.324 0.077 -0.133 -0.400 0.116 -0.014

C. lorenzianus 0.018 -0.244 -0.106 -0.042 -0.338 0.127 -0.210 -0.280 -0.018 0.007

Ceratium macroceros 0.145 -0.113 0.163 0.210 0.261 0.282 -0.559 -0.411 -0.235 0.049

Coscinodiscus
asteromphalus

0.198 0.035 -0.064 -0.112 -0.327 0.236 0.252 0.181 0.602* 0.035

C. subtilis -0.053 -0.106 -0.284 -0.175 -0.377 0.236 -0.245 -0.212 0.235 0.056

Eucampia zoodiacus 0.353 -0.470 -0.121 0.119 -0.028 0.254 -0.462 -0.499 -0.109 -0.119

Pseudo-nitzschia pungens -0.159 0.074 -0.298 -0.371 -0.254 0.416 -0.259 -0.181 0.161 -0.112

Rhizosolenia setigera -0.304 0.187 0.021 -0.343 -0.394 -0.176 0.238 -0.336 0.235 0.336

Skeletonema costatum 0.136 -0.143 0.074 0.123 -0.215 -0.099 -0.189 0.415 0.022 0.007

Zooplankton Acartia pacifica -0.673* 0.710** -0.206 -0.445 0.029 -0.070 0.153 0.521 -0.021 -0.082

Aidanosagitta crassa 0.269 -0.166 0.078 -0.315 0.116 0.444 -0.825** -0.301 -0.480 -0.042

Calanus sinicus -0.219 -0.105 -0.275 0.138 0.099 0.208 -0.744** -0.241 -0.281 -0.346

Copepoda nauplius 0.032 0.249 0.250 -0.416 0.053 0.131 -0.275 -0.146 -0.272 0.310

Copepodite -0.362 0.667* 0.206 -0.425 0.187 -0.122 0.456 0.171 -0.007 0.070

Noctiluca scintillans -0.028 0.396 0.397 -0.175 -0.063 -0.577* 0.385 0.297 0.256 0.538
F
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**: p < 0.01, *: p < 0.05, t-test.
TABLE 4 Spearman’s rank correlation between dominant plankton (including phytoplankton and zooplankton) species and environmental parameters
(T, S, Chl a, DO, pH, PO4

3-, NO3
-, NO2

-, NH4
+, Zn2+) in spring 2024.

Type species Environmental variables

T
(°C)

S Chl a
(mg/L)

DO
(mg/L)

pH PO4
3-

(mg/L)
NO3

-

(mg/L)
NO2{sp}{/sp}

-

(mg/L)
NH4

+

(mg/L)
Zn2+

(mg/L)

Phytoplankton Chaetoceros curvisetus 0.588* 0.170 0.214 -0.280 0.242 0.460 -0.448 -0.556 -0.091 -0.608*

C. lorenzianus 0.044 0.000 0.044 0.480 -0.263 0.177 0.131 0.091 0.306 0.480

Coscinodiscus
asteromphalus

0.131 0.309 0.458 0.306 0.448 0.081 0.019 0.169 0.060 -0.090

C. subtilis 0.131 -0.221 -0.262 -0.480 -0.394 -0.133 0.480 0.091 -0.480 0.044

Eucampia zoodiacus 0.336 -0.265 -0.094 -0.008 -0.078 -0.028 0.000 -0.308 -0.226 -0.250

Pseudo-
nitzschia pungens

-0.221 -0.222 -0.088 0.238 0.012 -0.371 0.599* 0.378 -0.263 0.193

Rhizosolenia setigena 0.361 0.770** 0.743** 0.014 0.523 0.425 -0.133 -0.134 0.336 -0.063

Skeletonema costatum 0.039 0.273 0.385 0.531 0.284 0.142 0.343 0.185 0.189 0.210

Zooplankton Aidanosagitta crassa 0.067 -0.638* -0.641* 0.168 -0.407 0.021 0.580* -0.025 -0.077 -0.014

Acartia pacifica 0.459 0.688* 0.701* 0.154 0.463 0.443 -0.287 -0.280 0.441 0.063

Brachyura zoea larva 0.141 0.543 0.310 -0.113 0.389 0.307 0.056 -0.132 0.606* -0.077
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Conclusions

This study provides a comprehensive assessment of plankton

seasonal dynamics in the neritic area of the Bohai Sea, put emphasis

on biodiversity, trophic linkages and the biotic-abiotic interplay between

phytoplankton and zooplankton. Regarding trophic interactions,

abundance ratio of phytoplankton to zooplankton was approximately

104: 1 in autumn 2023 and spring 2024, with the former season showing

a value 5.5 times higher than the latter, indicating lower feeding pressure

on zooplankton in autumn 2023. Incorporate aforementioned higher

plankton species richness, a logical conclusion is that the community

exhibited greater resistance and resilience to harsh environmental

conditions compared to spring 2024. Additionally, both total and

dominant zooplankton species showed minimal variation between two

seasons, likely due to their strong selective feeding abilities. Each

dominant phytoplankton species demonstrated distinct trends in

response to nutrients, attributed to their unique nutrient affinities and

avoidance of vicious competition. Regarding zooplankton, their close

relationship with DO is essential for crucial intracellular metabolic

processes. Moreover, several dominant plankton species exhibited

significant positive correlations with temperature during the warmer

spring of 2024, suggesting that these species may become increasingly

dominant in the plankton community under the global warming. To

summarize, our results lay a solid foundation for assessing and

predicting future changes in plankton seasonal dynamics and their

potential responses to rapid climate change.
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TABLE 4 Continued

Type species Environmental variables

T
(°C)

S Chl a
(mg/L)

DO
(mg/L)

pH PO4
3-

(mg/L)
NO3

-

(mg/L)
NO2{sp}{/sp}

-

(mg/L)
NH4

+

(mg/L)
Zn2+

(mg/L)

Calanus sinicus 0.326 0.404 0.501 0.343 0.425 0.336 -0.308 0.073 0.322 0.336

Copepodite -0.481 0.443 0.481 0.218 0.351 -0.310 0.044 0.499 0.218 0.393

Nauplius 0.371 0.158 0.035 -0.403 0.007 0.265 -0.374 -0.106 -0.156 0.054

Noctiluca scintillans 0.154 -0.378 -0.395 0.203 0.097 0.156 0.102 -0.275 0.231 -0.490

Polychaeta larva -0.112 0.069 0.302 0.448 -0.063 -0.096 0.132 0.433 -0.060 0.616*
front
**: p < 0.01, *: p < 0.05, t-test.
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