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Experimental and theoretical
studies of sea ice effects on
internal solitary waves
Jin Tan*

Senior School, St Paul's Girls' School, London, United Kingdom
Internal solitary waves in polar regions have attracted much interest recently. It is

important to understand how sea ice affects them as this may have a profound

influence on human activities and the environment. In this study, experiments on

internal solitary waves with and without two types of sea ice (ice sheet and ice keel)

are presented, as well as corresponding simulations using the Korteweg-de Vries

(KdV) equation, the Benjamin-Ono (BO) equation, and the variable-coefficient

Korteweg-de Vries (vKdV) equation, which is a derivation of the KdV equation.

Comparison between experiments without sea ice and simulations using the KdV

and BO equations proves the suitability of the former over the latter for this study.

The experiments with sea ice and theoretical simulations using the vKdV equation

provide evidence for wave deformation, oscillation occurring in the rear of thewave,

and a decrease in amplitude. The latter suggests possibilities of energy dissipation or

the emission of small amplitude linear waves. The sharp vertices of the ice result in

occasional inconsistencywith the vKdV predictions. Nonetheless, the vKdV equation

is still suitable for modeling internal solitary waves under sea ice, giving generally

accurate results that can assist further studies. This is the first time the vKdV equation

has been applied to investigate the impacts of sea ice on internal solitary waves.
KEYWORDS

internal solitary waves, sea ice, wave amplitude, wave shape, dye experiment, KdV
equation, vKdV equation
1 Introduction

Internal waves in the ocean, in contrast to surface waves, are within the water column in

the stratified ocean and are often effectively modeled as layers of water of different densities.

Unlike surface waves, internal waves are usually larger in wavelength and amplitude. The

typical time and horizontal length scales of internal waves are hours and kilometers, and the

vertical length scales can have the order of 10 meters (Munk, 1981). Linear internal waves

are waves with very small amplitudes and can be described by linear theory. Nonlinear

internal waves, on the other hand, usually have large enough amplitudes that nonlinear

effects become important. As their name has indicated, they can only be described by

nonlinear theory, and their propagation speeds are always larger than linear theory

predicts. One type of nonlinear internal wave is called an internal solitary wave, which is
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well separated from the others because the non-hydrostatic

dispersion balances nonlinearity during its propagation. Non-

hydrostatic dispersion is an effect that tends to spread out the

internal wave whereas the nonlinearity tends to steepen the wave.

Since the two effects can be balanced, the waveform can be

preserved and the wave can travel over a long distance.

Internal waves are one of the major causes of the variations in

speed and density in the ocean over time. They also enable

momentum and energy to pass from almost planar circulation in

great measure to modest spatial fluctuations. The theoretical study

of waves between layers of fluid began approximately 180 years ago

(Stokes, 1847), whereas the earliest observation of internal waves,

known as the “dead-water phenomenon”, carried out by Nansen

(1902), took place at the end of the 19th century with the reason

behind it explained in the next century by Ekman (1904). Yet the

study was slowed down by the eruption of World War II and

limited by technical challenges until the breakthrough of research

instruments in the 1940s allowed it to be fostered. Along with this

advance, the theories and methods of analysis experienced rapid

development. Upon this basis, Garrett and Munk (GM) proposed a

spectral model to explain the consistency of internal waves in both

the scales of time and space (Garrett and Munk, 1972).

After this milestone, the direction of research has turned to

sources, sinks, evolution, and interactions. It is believed that

searching for areas where the internal wave field differs from the

canonical GM spectrum can be a way to determine the sources and

sinks of internal waves (Wunsch, 1976). In particular, the Arctic

Ocean has demonstrated features that lead to the suggestion that it

possesses such deviation (Morison et al., 1985). By analyzing the

data from Yearsley (1966), Neshyba et al. (1972), Bernstein and

Hunkins (1971), and Bernstein (1972), Morison (1986) discovered

that although the slope of the internal wave spectra is conserved,

there is a significant difference in the energy levels, being 5% to 33%

smaller than the values given by the GM model. Levine et al. (1985)

supported this with more data and evidence showing the likelihood

of these energy levels was lower than those in ice-free oceans. It is

thus important to examine internal waves under conditions

simulating the Arctic Ocean when studying the sources and sinks

of internal waves.

Apart from this, the influences of polar internal waves are also a

sufficient reason for study. In the polar seas, internal waves have a

non-negligible impact on the mixing between layers (D’Asaro and

Morison, 1992; Fer, 2014; Kirillov, 2006) and, therefore, on the

replacement of nutrients, as well as the progression of sea ice (Carr

et al., 2019). Furthermore, they have an active participation in

thermodynamics and circulation (Levine et al., 1985; Sandven and

Johannessen, 1987). They have been found to be responsible for the

curvature of sea ice (Czipott et al., 1991; Marchenko et al., 2010) and

contribute to forming ice bands in the marginal ice zone (Muench

et al., 1983; Saiki and Mitsudera, 2016). The effect of internal

solitary waves on the Arctic ice edge is particularly worth noting,

as the alterations of the ice edge are highlighted for purposes of

maritime traffic, offshore operations, military marine activities, and

their close relationship with climate change (Carr et al., 2019).

However, to date, most field research has assessed the integral

influence of polar conditions involving ice and other oceanic
Frontiers in Marine Science 02
parameters, whereas little study has been presented to illustrate the

sole effects of each. Yet, the physical conditions and locations

themselves cause difficulty in observation (Carr et al., 2019) while

laboratory experiments benefit from a technological evolution that

includes, but is not limited to, improved computational information

processing and memorizing systems and equipment such as lasers

(Sutherland et al., 2014). Hence, laboratory study has become a

promising pathway for the investigation of internal waves in polar

oceans and can be particularly valuable for theoretical studies, which

would bring helpful analytical insights into and predictions of

internal wave behavior. Ever since Ekman’s experiment on internal

waves (Ekman, 1904), there have been numerous studies on internal

waves in the laboratory. Experiments on sea ice and internal waves, in

contrast, are much scarcer. The most recent research includes Carr

et al. (2019) and Hartharn-Evans et al. (2024).

In terms of internal solitary wave modeling, there are a few well-

established models. As a popular option, the Korteweg–de Vries

(KdV) equation models the propagation of small amplitude (weakly

nonlinear) waves in shallow water, accurate to at least the first

order. Studies on KdV for internal solitary waves between layers of

fluid began as early as 1876 (Wang, 2009), and for variable

coefficients since 1981 (Grimshaw, 1981). The latter is called the

variable-coefficient Korteweg–de Vries (vKdV) equation. The

Benjamin–Ono (BO) equation presented by Benjamin (1966) and

Ono (1975), on the other hand, is specially designed for deep

water conditions.

In this paper, the experimental setup and the KdV, vKdV, and

BO equations are detailed in the Materials and methods section.

The results are presented in the Results section, including a

comparison between the KdV and BO equations, as well as

comparisons between theoretical and experimental observations.

A discussion on the wide application of the KdV equation and an

evaluation of the vKdV equation for studies on sea ice-impacted

internal solitary waves are provided in the Discussion section.
2 Materials and methods

2.1 Experimental setup

The experiments can be divided into three groups: one group in

the absence of sea ice for comparison between the KdV and BO

models and two groups for the two types of sea ice whose effects on

an internal solitary wave were examined.

The experiments were conducted in a water flume with an inner

length of 1:90  m and an inner width of 0:15  m in a low-temperature

laboratory the temperature of which is carefully monitored to be

approximately − 5 °C   in order to prevent any formation or melting

of ice within the flume. The water flume was set up as shown in

Figure 1A, with a camera set to the side of the flume to record wave

movements. A ruler is stuck to the side facing the camera to provide a

reference of actual distances. There were two layers of water within

the flume: 1) salty water with a density of r2 = 1:045g=cm3
filling up

to h2 = 15   cm high and 2) fresh water with a density of r1 =
1:000g=cm3 above the salt water (see 2.2 Sea Ice for specific values

of h1). The freshwater was dyed beforehand to help distinguish
frontiersin.org
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between the salty and fresh water. To ensure minimal mixing, before

adding the fresh water, a thin plastic foam sheet was attached to one

end of the flume, floating on the surface of the salty water. The

freshwater was then added to the sheet using a water pump. After

that, a gate of equal width to the water flume was inserted near one

end, and more fresh water was added to the same side. Two values for

the total height of the fresh water on this side were applied in the

experiments: 1) hw1 = 5 cm or 2) hw2 = 10 cm, respectively, to

produce two different wave amplitudes for comparison.

For experiments without sea ice (Experiments 1 and 2), an

internal solitary wave was formed, while for experiments with ice,

the ice must be placed as in Figures 1B, C before the wave was

formed. An internal solitary wave was generated by pulling the gate

out quickly yet smoothly.

To gain quantitative information, measurements were obtained

through MATLAB_R2022b, on which a coordinate system was

created to extract the coordinates of required points on the wave

and further convert values in unit coordinates to centimeters.

Amplitude was recorded as the vertical distance between the calm

interface and the crest. This distance was the difference between the

y-coordinates of both multiplied by the scale provided by the

reference ruler. Displacement was recorded as the horizontal

displacement of the crest from its starting position in the first

image when the wave was initially formed. The shape evolution of

the traced wave was examined to provide qualitative descriptions of

the effects sea ice had on the wave.

As internal solitary waves were generated in the absence of sea

ice in Experiments 1 and 2, the phase speeds were assumed to be

constant. They were found using the displacement-time graphs of

the waves (Figure 2), which are linear regression lines with the

gradients being the phase speeds.
Frontiers in Marine Science 03
2.2 Sea ice

The ice was designed in a range of shapes. The goal was to

investigate the responses of internal solitary waves to a variety of ice

shapes that can be found in the polar oceans, with a focus on the

difference between how an internal solitary wave travels through

open water and how it undergoes a complete process of reaching,

propagating under, and leaving the ice.

Experiments 3 and 4 were on the interaction between ice sheets

and internal solitary waves. The former used hw1 to create a small

amplitude wave, and the latter uses hw2 for a large amplitude. The

ice sheet was prepared using foam molds, which were covered with

plastic wrap and then filled with freshwater. The water was dyed in

advance to ensure clear identification of the ice. Some air was kept

within the water on purpose to allow air bubbles to remain in the

formed ice, simulating naturally formed sea ice. The molds were

then placed in a freezer for approximately 1 − 2 days. The density of

the ice was rice = 0:910g=cm3 : Its length and height were 54:50   cm

and 1:00   cm   with 0:76   cm below the water surface, and the width

was approximately the inner width of the water flume (15:00   cm)

so that both two sides of the ice touched the walls of the flume.

Before placing the ice sheet on the water surface, it was stored in the

freezer to maintain its shape and structure. Once it was placed, it

was held in a fixed position by inserted foam (indicated by two black

lines in Figure 1B) that matched the inner width of the water flume,

preventing any horizontal or vertical movement. The upper layer

depth was h1 = 2:00   cm.

Applying the method to prepare an ice sheet, an ice keel was

investigated in Experiment 5, where a large amplitude internal

solitary wave was generated. It had the same density rice =
0:910g=cm3. The length, width and height were 41:60   cm, 15:00c
FIGURE 1

The setups for each experiment: (A) Experiments 1 and 2; (B) Experiments 3 and 4 with positions (a-f) labeled; (C) Experiment 5 with positions
(a-h) labeled.
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m, and 2:00   cm, respectively. The upper layer depth was h1 =

2:85   cm. Figure 1C illustrates Experiment 5’s complete setup ready

for an internal solitary wave to be generated. The positions chosen

in the flume at which simulations were produced for both

Experiments 4 and 5 are labeled in Figures 1B, C.
2.3 Theoretical models

To supplement the laboratory data with theoretical simulations,

two analytical models were used: the KdV and BO equations. Both

weakly nonlinear equations provide solutions for internal solitary

waves, here using a two-layer stratification. Here is an introduction

to the two models.
2.3.1 The KdV equation
The KdV equation is a weakly nonlinear model of internal

solitary waves in shallow water. For internal solitary waves in a two-

layer fluid as in this study, it is as follows (Benjamin, 1966; Osborne

and Burch, 1980):

∂h
∂ t + c0

∂h
∂ x + ah ∂h

∂ x + g ∂3 h
∂ x3 = 0 ; (1)

c0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g( Drr )heff

q
; (2)

a = 3c0
2

� � h1−h2
h1h2

� �
; (3)

g = c0h1h2
6 ; (4)

where h(x, t) represents the wave amplitude with x and t

denoting spatial dimension and time respectively, g is the

gravitational acceleration, h1 is the water depth of the upper layer,

h2 is that of the lower layer, and

heff =
h1h2
h ; (5)

where h = h1 + h2, and
h
heff

≪ 1.
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Furthermore, c0 is the phase speed of a linear long internal wave

in the system with the average density r, and Dr = r2 − r1.
Defining L as the half-wave width of the internal solitary wave

and l as the wavelength so that l = 2L, it must be true that l 
h ≫ 1

for shallow water waves. The so-called half-wave width L is half of

the wave width where the amplitude is 0:65h0, and h0 is the

maximum wave amplitude.

The solution to this equation is found upon the assumption that

the depth of the upper layer is smaller than that of the lower layer

for a depression wave.

h(x, t) = −h0sech
2 x−cKdV t

L ; (6)

The phase speed is

cKdV = c0 −
ah0
3 ; (7)

The half-wave width is

L =
ffiffiffiffiffiffiffiffi
−12g
ah0

q
; (8)

As sea ice is placed onto the surface of the water, the upper layer

depth is changed where there is sea ice. This then requires the use of

an extension of the KdV equation, the vKdV equation. The vKdV

equation provides a model for internal solitary waves with varying

backgrounds, which is commonly, but not limited to, variable

densities, currents, or topographies. Nonetheless, this paper

introduces a novel use of vKdV which involves sea ice as a

variant. Below is the vKdV equation, which was derived from

Grimshaw (1981) and Zhou and Grimshaw (1989), and the

parameters derived from Liu et al. (2017):

∂h
∂ t + c0

∂h
∂ x +

c0h
2Q

� �
∂Q
∂ x + ah ∂h

∂ x + g ∂3 h
∂ x3 + sh = 0 (9)

where Q is the magnification factor of linear long waves, and

Qh2 is the wave action flux density.

Note that while there is a new term sh in the vKdV equation,

s = 0 in our case. This is different from Liu et al. (2017) which had

no ice cover but imposed a horizontal density gradient. Thus, in this

special case, the dependence on the ice is solely through its surface
FIGURE 2

(A) Displacement-time graph for Experiment 1; (B) Displacement-time graph for Experiment 2.
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elevation ς0(x) which can be chosen to model the ice sheet and ice

keel. The dependence on ς0 is through the modal function f(z), the
density profile r0(z) and the phase speed c0. These are given by

Equations 18, 19 in Liu et al. (2017) which are expressed here in

terms of a scaled vertical variable Z (personal communication, July

2024),

Z = z − ς0 ; (10)

H = h + ς0 ; (11)

∂ (r0c20
∂ f
∂Z)

∂ z − g ∂ r0
∂Z f = 0,    −H < Z < 0 (12)

f = 0   at  Z = −H,     c20
∂ f
∂Z = gf   at  Z = 0 ; (13)

The expressions for a , g ,  I (i.e. m, d ,  I) in Equations 20-22 of

Liu et al. (2017) become

Ia = 3
Z 0

−H
r0c

2
0

∂ f
∂Z

� �3

dZ ; (14)

Ig = 3
Z 0

−H
r0c

2
0j

2dZ ; (15)

I = 2
Z 0

−H
r0c0

∂ f
∂Z

� �2

dZ ; (16)

Using the Boussinesq approximation that the density is

constant except when multiplied by g, Equations 12, 13 are then

rewritten as

∂ c20
∂ f
∂Zð Þ

∂Z + N2f = 0,    −H < Z < 0 (17)

f = 0   at  Z = −H,     f = 0   at  Z = 0 (18)

where

N2 = − g
r0

∂ r
∂Z ; (19)

Liu et al (2017, 2018). used a two-layer fluid model, and their

results are carried over here after changing z to Z. The upper and

lower densities are r00 ∓Dr in −H1 < Z <  0, −H2 < Z <   −H1

where H1 =  h1 +  ς0, H2 =  h2. Then N2 = 2gDrd (Z +H1) where d
( � ) is the Dirac delta function. This generates the modal function

from (17,  18),

f = − Z
H1

,    −H1 < Z <   0 ; (20)

f = H+Z
H2

,    − H < Z <  −H1 ; (21)

c20 =
gDrH1H2
r00H

; (22)

The coefficients in Equations 14-16 are then given by, after

absorbing the constant r00 into I,

a = 3c0(H1−H2)
2H1H2

; (23)
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g = c0H1H2
6 ; (24)

I = 2c0H
H1H2

; (25)

Q = c20I ; (26)
2.3.2 The BO equation
In cases when the lower layer depth is infinitely large so that

l 
h ≪ 1, the KdV equation is inadequate, and thus the BO equation

was designed. As a weakly nonlinear model of internal solitary

waves in deep water, the BO equation is as follows (Benjamin, 1966;

Ono, 1975):

∂h
∂ t + c0

∂h
∂ x + ah ∂h

∂ x + g ∂2

∂ x2 H½h� = 0; (27)

c0 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g Dr

r

� �
h1

r
; (28)

a = − 3c0
2h1

; (29)

g = c0r2h1
2r1

; (30)

where the Hilbert operator H is given as

H½f � = 1
p

Z +∞

−∞

f (x0)
x0 − x

dx0 ; (31)

As h2 → ∞, heff → h1. Therefore, it must hold that

h
h1
≪ 1,     h2h1 → ∞ ; (32)

The solution to the BO equation is expressed as

h(x, t) = −h0

1+(
x−cBOt

L )2
; (33)

The phase speed is found by the model as

cBO = c0 −
ah0
4 ; (34)

The half-wave width is

L = 4g
ah0

; (35)
3 Results

3.1 Suitability of KdV and BO models

Note that the experimental setup created deep-water condition,

and the BOmodel is specifically developed for such a scenario while

the KdV model is for shallow water. The assumption in the KdV

theory is that the wave amplitude cannot be too large. However,
h
heff

≪ 1 is not true here, as in every experiment presented in this

paper (large or small amplitude), h
heff

> 1. However, this paper

shows that the KdV model still produces higher quality
frontiersin.org
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simulations than the BO model does in the cases this paper

focuses on.

To determine a more appropriate model for this study, both

KdV and BOmodels were applied to Experiments 1 and 2 where sea

ice was not involved. The simulation results were compared with

processed laboratory images of internal solitary waves, the wave

shapes of which were more similar to the wave shape provided by

the KdV model. It was shown in Experiment 1 (Figure 3) that the

wave shape given by the BO model (yellow) was substantially

thinner, whereas that given by the KdV model (red) was more

realistic. This finding continued to hold true in Experiment 2, where

the wave had a larger amplitude.

The phase speed was also compared to further confirm the

suitability of the KdV equation to model the specific mechanisms

that this paper aims to shine a light on. Table 1 summarizes the

linear phase speeds as well as the phase speeds observed

experimentally, through the KdV equation, and the BO equation.

It was clear that while cKdV fell within the acceptable range of

cexperiment , cBO exceeded the upper limit in Experiment 1. Despite the

fact that both cKdV and cBO were consistent with cexperiment in

Experiment 2, cKdV was closer to cexperiment .

Thus, this paper draws the conclusion that the KdV equation is

more efficacious for the cases we investigated. It produced more

accurate results and was therefore more suitable than the BO

equation, supporting the use of the KdV model and its extension,

the vKdV model, with strong evidence.
3.2 Ice sheet

With the parameters described in the Materials and methods

and the corresponding KdV internal solitary wave as the initial

condition, simulations were produced using a pseudo-spectral

method and fourth-order Runge-Kutta for the time-discretization

at six positions (Figure 1B), which are (a) before the wave

encounters the ice sheet, (b) immediately after it encounters it, (c)

under the middle of the ice sheet, (d) immediately before it leaves,

(e) immediately after it leaves, and (f) after it leaves. Relevant

coefficients are shown in Figure 4. To compare the simulated wave

shape with the experimental shape, the dye attenuation function in

DigiFlow was used to interpret the experimental data.

According to the simulation, in Experiment 3 (Figure 5), at (a),

the internal solitary wave is the same as when it is first generated.
Frontiers in Marine Science 06
Immediately after the wave encounters the sharp right-angled

vertex of the ice sheet, at (b), it bent inwards at its back, first

flatter, then steeper, and for this reason, the wave is slightly

asymmetrical. As it reaches the middle of the ice sheet at (c), the

bending disappears while an oscillation occurs behind the wave.

The wave itself becomes thinner and taller, meaning a smaller half-

width and a larger amplitude. During the evolution under the ice

sheet, it continues to elongate, and at (d) the amplitude reaches its

maximum. Immediately after the wave leaves the ice, a small twist

appears at the end of the wave’s back. 18:0 cm further, the wave

grew wider and shorter, with the oscillation it leaves behind

significantly enhanced. An internal solitary wave with a larger

initial amplitude (Figure 6) exhibits the same trend but more

drastically. The bending at (b) is replaced by a wave-like train.

The vKdV model was used to collect amplitude predictions for

every 2:5 cm increase in wave displacement in Experiment 3. A

vKdV-amplitude graph was obtained and drawn onto the

experimental amplitude graph (Figure 7). Both graphs exhibit

similar wave amplitude trends: first increasing and then

decreasing in response to the contact between the wave and the

ice sheet. The amplitudes after the wave leaves the ice sheet are both

lower than before the wave encountered the ice, indicating the

possibility of either energy dissipation or the emission of very small

linear waves. However, there are two differences: a) the vKdVmodel

predicts a higher maximum amplitude than the experiment; b) the

experiment suggests a surge followed by a plunge before the

amplitude starts to climb towards its maximum. Ignoring the

unexpected surge and plunge makes the experimental amplitude

graph match with the vKdV graph effectively, as shown by the

shifted experimental amplitude graph. The amplitudes begin to rise

at similar locations, and adding back the overall decrease in the

experimental amplitude caused by the increase and decrease raises

the maximum amplitude to the proximity of the maximum vKdV-

simulated amplitude. In other words, there is a 16 cm shift to the left

required for the experimental result to match the trend of

the simulation.

The observed amplitude was also compared with the amplitude

according to the asymptotic theory in Equation 13 in Grimshaw

(2016). This theory states the relationship between amplitude a and

a as follows:

a3

a = constant ; (36)
FIGURE 3

Wave shapes predicted by the KdV (red) and BO (yellow) models in comparison with the experimental wave shape.
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which is a ∝ a
1
3 . In this case, a in Figure 4 shows consistency

with the overall trend observed experimentally of first increasing

and then decreasing. The magnitude of a increases to its maximum

instantaneously when the wave meets the ice, and the (shifted)

observed amplitude rises as well but less rapidly, although the

vKdV-simulated amplitude rises at an even more gradual rate.

When the wave leaves, the magnitude of a drops back to its

initial value immediately. The (shifted) observed amplitude and

vKdV amplitude follow, again, gradually.

To underscore the progression of the experimental wave, images

from Experiment 4 were used, which detail more intense impacts

from the ice sheet. In Figure 8, seven laboratory images of the wave

at regular intervals portray the changes the wave has undergone. In

the beginning, the wave does not appear to be much influenced,

when comparing (a) and (b), before the wave arrives at the ice sheet

and when only the front is under the ice. When a major part of the

wave is below the ice in (c), the crest becomes less pronounced,

leading to a trapezium wave shape. The crest soon recovers under

the ice in (d), where the wave returns to a smooth rounded curve.

The back expands while the front grows steeper, leaving a long tail

after the asymmetrical wave, which seems to have evolved into

oscillation. In (e) before the front of the wave exits the ice-covered

water, the asymmetricity weakens. The front is longer, and an

inward curve replaces the rather straight line at the back in (d),

making it similar to the simulations illustrated in Figures 5B and 6B.
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During the period in which the wave leaves, in (f), the phenomenon

that appeared in (e) is preserved. When the ice sheet is no longer

above the wave in (g), the wave widens, assuming a less

pointed form.

The wave shape conveys the same shift as seen in the amplitude

(Figure 7). The experimental wave shape after the majority of the

wave overcomes the abrupt vertex of the ice edge (Figure 8C)

disagrees with the predicted wave shape (Figure 9). The wave in the

laboratory becomes flat at this position, forming a corner-rounded

trapezium. Moreover, it does not seem to have that much oscillation

at the back, as in Figure 9. Nevertheless, the simulation aligns with

the experiment 16 cm after this moment. The distortion of the

predicted wave shape corresponds well to the experimental in

Figure 9 with a similar amplitude and a comparable prolongation

at the end.
3.3 Ice keel

When the ice sheet was replaced with the ice keel in Experiment

5, the vKdV model provided a prediction for internal solitary waves

with a pseudo-spectral method and fourth-order Runge-Kutta for

the time-discretization at the following eight positions (Figure 1C):

(a) before the wave arrives at the ice keel, (b) immediately after the

wave meets the ice keel, (c) between the left end and the lowest point
FIGURE 4

Coefficients in the vKdV equation applied to Experiments 3 and 4.
TABLE 1 Phase speeds and the corresponding errors in Experiments 1 and 2.

Experiment cKdV/cm   s−1 cBO/cm   s−1 c0=cm   s−1 cexperiment=cm   s−1 h0=cm

1 11.96 12.23 7.72 11:638 ± 0:461 2.54

2 14.76 14.84 7.72 14:492 ± 0:421 4.21
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of the ice keel, (d) at the lowest point of the ice keel, (e) between the

right end and the lowest point, (f) immediately before it leaves the

ice keel, (g) immediately after it leaves, and (h) after it leaves.

Figure 10 presents the corresponding coefficients involved in the

simulation. Same as before, the dye attenuation function in

DigiFlow is utilized on the experimental images.

A simulation using the vKdV model (Figure 11) shows a little

impact by the slight angle at the left vertex of the ice keel when the

wave meets the ice at (b) compared to (a). Influenced by the
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downward slope of the ice at (c), an inward bending larger than

that under the ice sheet occurs, and the wave is thus notably longer.

The bending enlarges and eventually reaches the interface at (d),

resulting in a linear sinusoidal internal wave radiating from the rear.

The latter is substantially broader and more level, and the former is

thinner and taller. Note that the process of the front wave is similar

to the evolution under the ice sheet. Between (d) and (e) where there

is an upward slope, the front wave shortens and widens, and the

back wave deforms, with the crest collapsing inward and an
FIGURE 6

The vKdV simulation for Experiment 4 at the following locations: (A) before the wave encounters the ice sheet, (B) immediately after it encounters,
(C) under the middle of the ice sheet, (D) immediately before it leaves, (E) immediately after it leaves, and (F) after it leaves. The blue wave is for
reference, and the red wave is the evolutionary wave.
FIGURE 5

The vKdV simulation for Experiment 3. The blue line illustrates a reference wave at t = 0 when the wave is generated. The red line traces the shape
of the wave at positions (A-F).
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increasing front space (i.e., between the two waves) pointing into

the upper layer. Oscillation starts to appear behind the wave. In fact,

the back wave begins to seem like part of the oscillation. Before

leaving the ice keel at (f), the phenomenon persists. After the ice, at

(g), the amplitude and shape of the front wave are almost identical

to those at the beginning, yet the oscillation continues to amplify

behind the wave. 19:5 cm further at (h), the wave is wider and
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shallower, and the oscillation is more vibrant, forming a sinusoidal

shape where it connects to the wave.

Laboratory images of Experiment 5 are presented in Figure 12.

When the wave first encounters the ice keel, the simulation is very

consistent with the experiment. During this period, the wave travels

from the ice edge to the bottom of the ice, inward bending takes

place at the back of the wave as predicted despite being less
FIGURE 8

Wave evolution under the ice sheet in Experiment 4 over time. (A) The initial wave before the front of the wave reaches the ice sheet; (B) the wave
Dt = 1:33   s after (A); (C) the wave Dt after (B); (D) Dt after (C); (E) Dt after (D); (F) Dt after (E); (G) Dt after (F), right after the wave leaves the ice sheet.
A reference ruler is set against the flume during the experiment, therefore, there is a rectangular vague yellowish area in (C–E). The ice is the white-
colored shape.
FIGURE 7

This graph depicts the change in the vKdV-predicted amplitude over horizontal displacement of the small amplitude wave in Experiment 3 due to
the presence of the ice sheet. The development of experimental amplitude is also presented, as well as the shifting 16  cm leftwards.
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significant than expected. Even so, since the majority of the wave

has passed the vertex at the bottom, it diverges from the simulation

and the wave is deformed by the vertex and broadened. Also, there

seem to be traces of it separating into two waves as indicated by the

two “lumps”. One piece of evidence is the blue line near the bottom

of the wave in Figure 12E. Nonetheless, the wave is not actually

divided into two, and the second half of the wave (the left “lump”) is

not shortened or flattened as predicted. From (e) to (g), the second

“lump” shrinks and appears to be part of the oscillation created by

the vertex at the bottom. After the wave leaves the ice [(g) and (h)],

the oscillation is very thin but long, elongating along the interface

more than ever. The connection between the wave and the

oscillation weakens, suggesting the possibility of an emerging
Frontiers in Marine Science 10
space as predicted by simulation. The wave in (h) is larger than

in (g), at which the wave has diminished a little due to the “lump”

spreading out as oscillation, but still, the wave in (h) is substantially

smaller than it initially is in (a). While vKdV simulation successfully

forecasts the oscillation, the details of the oscillation differ from

the experiment.

Note that at the time the wave has mostly left the ice and almost

only the oscillation is still below the ice, the major wave shape fits

with the predicted model much better than at the previous stages, in

spite of the predicted uprisen interface following the major wave not

being recognized (Figure 13). The wave shape appears to have

recovered from the trough of the ice, better matching the simulation

than when the wave propagates from the ice trough to the ice edge.
FIGURE 10

Coefficients in the vKdV equation applied to Experiment 5.
FIGURE 9

In the upper panel is the experiment image interpreted using the dye attenuation function in DigiFlow displaying the wave shape 16   cm after the
simulation. The vague yellowish area close to the center is due to the reference ruler. In the lower panel is the simulated wave shape right after
most of the wave starts to propagate under the ice sheet.
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4 Discussion

Since the KdV model was developed, it has continued to attract

interest, and while it seemed to be a model particularly for weakly

nonlinear waves in shallow water (weak nonlinearity defined as h
heff

≪ 1; shallow water defined as l 
h ≫ 1), it has been applied to large

amplitude non-shallow solitary waves which violate the assumptions
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mentioned above for its “robust range of validity” (Grue et al., 1999;

Koop and Butler, 1981; Michallet and Barthelemy, 1998; Segur and

Hammack, 1982; Small et al., 1999; Helfrich and Melville, 2006).

Several laboratory findings from Ostrovsky and Stepanyants (2005),

Koop and Butler (1981), and Segur and Hammack (1982) point out

that even in deep water, KdV still demonstrates good correlation with

observations, better than BO, a model designed for deep water
FIGURE 12

Wave transformation under the ice keel over time in Experiment 5. (A) The wave when the front of the wave touches the ice keel; (B) the wave Dt =
0:80   s after (A); (C) the wave Dt after (B); (D) Dt after (C); (E) Dt after (D); (F) Dt after (E); (G) Dt after (F); (H) Dt after (G) right after the wave leaves the
ice keel. The ice is the white-colored shape.
FIGURE 11

The vKdV simulation for Experiment 5 at the following locations: (A) before the wave arrives at the ice keel, (B) immediately after the wave meets the
ice keel, (C) between the left end and the lowest point of the ice keel, (D) at the lowest point of the ice keel, (E) between the right end and the
lowest point, (F) immediately before it leaves the ice keel, (G) immediately after it leaves, and (H) after it leaves. The blue wave at t = 0 is a reference
wave. The red shows the transformation of the studied wave.
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conditions. However, some field observations argue for the opposite.

For example, Wang and Pawlowicz (2011) found that BO predictions

align with observations made in the deep water of the Strait of

Georgia far better than KdV. After all, the comparison between KdV

and BO in this paper supports the former. Despite being claimed to

have almost the broadest application among all models and

equations, the reason for this suitability remains speculative (Small

et al., 1999).

The ice sheet and ice keel imposed similar effects on the internal

solitary waves but to a different extent. Oscillation and deformation

occurred due to the vertices of the ice. There was a reduction in

amplitude in all the sea ice experiments after the internal solitary

wave left the ice compared to the beginning, possibly implying

energy dissipation or the emission of very small, unobservable

linear waves. The wave amplitude surged and then plunged in the

first encounter of the ice sheet. The right angle at the vertex caused

the wave to form a trapezium shape with rounded corners, yet the

crest reformed afterward. The amplitude increased to its maximum

and then decreased to lower than initially it was, during which the

wave developed an asymmetrical shape but soon lost it. It left the ice

sheet with a rather regular shape, although smaller and round-

bottomed. For the ice keel, inward bending was seen when the wave

was under the downward slope. The bottom vertex of the ice keel

induced the potential formation of a second wave, indicated by two

“lumps”, which flattened along the way and became an oscillation.

The wave looked rather regular but was significantly smaller after it

left the ice keel, with a tail at its back.

The vKdV model offers overall good agreement with the

experimental observations, yet there are occasions when the

simulation is inconsistent with laboratory results. The 16 cm shift

that arose in Experiment 3 (Figures 8, 10) was the same as the shift

in Experiment 4, indicating that they could be caused by the same
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reason. With regards to the corresponding vKdV coefficients in

Figure 4, the sharp right-angled vertices of the ice sheet are probably

the cause, as the vKdV model is more effective for situations where

the coefficients are slowly changing. The vKdV model predicted the

later evolution but less sufficiently considered the effects of the

vertices, which led to the shift that occurred in both experiments.

Such a vertex is a singular point, where the derivative of h1(x) does

not exist. Hence the vKdV is not suitable here. The same happened

for Experiment 5, where instead of a right angle, there was an obtuse

angle at the vertex, which was, still, a singular point. Compared to

the vKdV models’ performance in Experiments 3 and 4, the

influence of the obtuse angle was smaller, possibly due to the fact

that the vertex was flatter, and the angle was the only one large

enough to be effective. Nonetheless, thanks to Roger Grimshaw for

pointing out that vKdV can be used when coefficients are slightly

discontinuous, caused by, for example, a slight change in depth,

assuming there is no wave reflection and the equation holds before

and after (personal communication, July 2024).

Nevertheless, while the sharp vertices violate vKdV’s slow

variation assumption, regardless of the effects of the angles, the

vKdV model provides generally adequate simulations for further

research. It indicated an accurate reduction in amplitude after the

ice and an appropriate maximum (Figure 7), depicted good wave

shapes after the shift, and suggested a creditable overall trend in

Experiment 3. A noteworthy point is that in the experiments the

effects of ice appear to share similarities with a variable topography,

and some were also seen in the vKdV simulations. As suggested by

Knickerbocker and Newell (1980), when an internal solitary wave

propagates along a varying topography, the wave deforms with

elevated waves developing. Likewise, while the vKdV simulations in

this paper did not fully report the observed results or such results,

waves of elevation and deformation did occur.
FIGURE 13

In the upper panel is the experiment image interpreted using the dye attenuation function in DigiFlow which outlines the wave at 1:15  m when the
majority is out of the ice-keel-covered water. In the lower panel is the simulated wave shape at 1:15  m, the same position as in the upper panel.
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Moreover, this study speculates that for cases where the

stratification is not two-layered (e.g., continuous stratification),

the vKdV model remains useful. As asserted by Grimshaw (2016),

the KdV model can serve as a fundamental framework for modeling

oceanic internal solitary waves. Numerical simulations are growing

more popular for scenarios with variable topography and hydrology

to be considered, despite computational limits. Regarding the full

nonlinearity of the internal solitary waves in the experiments in this

paper, vKdV simulations combined with numerical simulations

using models such as MITgcm are worth looking at.
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