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Acoustic tags versus camera—a
case study on feeding behaviour
of European seabass in sea cages
I-Hao Chen1,2*, Dimitra G. Georgopoulou3,
Lars O. E. Ebbesson1, Dimitris Voskakis3,
Antonella Zanna Munthe-Kaas2 and Nikos Papandroulakis3

1Fish Biology and Aquaculture Group, Ocean and Environment Department, NORCE Norwegian
Research Centre, Bergen, Norway, 2Department of Mathematics, University of Bergen,
Bergen, Norway, 3Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for
Marine Research, Heraklion, Crete, Greece
Intoduction: With the expansion of the aquaculture industry, the need arises for

scalable, reliable, and robust methods to assess fish behaviour in sea cages to

guide operational management, which includes feeding optimisation and welfare

assessments. Fish cage monitoring utilising either acoustic transmitters or

underwater cameras is well-studied. However, the relationship between those

two different measurement types seems to have not been explored, nor have

they been evaluated together in one experimental site.

Methods: In our 1-month study, we compared the activity of 14 sentinel fish and

the artificial intelligence (AI)-inferred speed of individuals from the European

seabass (Dicentrarchus labrax) sea cage population in three feeding trials.

Comparisons include a maximum activity comparison using persistent peaks,

fish behavioural pattern establishment and retention, and periodical

behavioural patterns.

Results: Our results demonstrate that under certain circumstances, both

technologies are interchangeable from the perspective of persistent peaks and

periodicity, but complementary when it comes to behaviour analysis such as

food anticipatory behaviour (FAB).

Discussion: We anticipate that our findings will stimulate advances where

multiple sensor types are in use to achieve a more holistic understanding of

fish behaviour in the aquaculture sector using underwater technologies.
KEYWORDS

acoustic transmitters, camera speed analysis, fish welfare, precision fish farming,
persistent peaks, feeding management, European seabass, marine cage farming
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1 Introduction

In recent years, the aquaculture sector has been increasing its

production output rapidly (FAO, 2024; Verdegem et al., 2023) with

more or larger locations that require oversight. It is therefore almost

a necessity to be able to have remote or autonomous control to

optimise farm practices such as feeding; not just to reduce feed

waste and maximise growth, but also to be aware of early fish

welfare issues. Camera systems (Al-Jubouri et al., 2018;

Georgopoulou et al., 2024), hydroacoustics (Orduna et al., 2021;

Samedy et al., 2015), and acoustic telemetry (Chen et al., 2023; Føre

et al., 2018; Kolarevic et al., 2016) are known tools for fish

monitoring purposes in aquaculture. Yet, all three technologies

deliver only a partial view on the fish stock in an aquaculture

installation, since for camera and hydroacoustic sensors, the focal

view might not represent the population correctly, while in acoustic

telemetry, though offering continuous monitoring, only few fish

individuals can be tracked at the same time.

In this case study, we compare the acceleration data from

acoustic telemetry with the readings of a camera system that uses

artificial intelligence (AI) to monitor fish speed in an attempt to

extract fish behaviour patterns and to qualify the camera-

based approach.

All in all, we aim to contribute to automated fish behaviour

analysis through the assessment of movement (i.e., acceleration and

speed) as accurate categorisation of fish behaviour can guide

operational procedures such as feeding management by

optimising feeding times.
1.1 Tracking fish with acoustic telemetry

Acoustic telemetry utilises sound that attenuates slower in water

and has a higher range than in air (Jacoby and Piper, 2023). Typical

setups include an array of acoustic receivers, which can be spread

out over the area of interest, and acoustic transmitters that are either

implanted or tagged onto individual fish (Wagner et al., 2011; Leroy

et al., 2023). This type of setup has been useful in tracking the

migration of wild fish populations through widespread receiver

arrays and tagging of fish individuals (Lédée et al., 2021).

In aquaculture, studied species of commercial interest include

Atlantic salmon (Salmo salar) (Kolarevic et al., 2016; Stockwell

et al., 2021) or the European seabass (Dicentrarchus labrax)

(Alfonso et al., 2022; Georgopoulou et al., 2022, 2024) and the

monitoring parameters are often similar: Depending on the

transmitter sensors, metrics such as activity, depth, angle,

temperature, salinity, and many others can be used to interpret

moving patterns. The data collection itself happens through

acoustic receivers that take in data-encoded sound waves sent by

the transmitters. Depending on the manufacturer and setup,

systems provide either manual data-fetching after or during trials

by recovering the receivers, or real-time communication

possibilities for immediate data access. In both cases, the acoustic

telemetry data can provide in-depth behaviour qualification of the

tagged individuals or be used for welfare assessments (Alfonso et al.,

2022; Carbonara et al., 2021).
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1.2 Tracking fish with camera systems

In recent years, the utilisation of computer vision techniques in

aquaculture has emerged as a powerful tool for monitoring and

understanding fish behaviour without the need for invasive or lethal

methods (Georgopoulou et al., 2024; Zhou et al., 2018b; Han et al.,

2020; Wang et al., 2021; Yang et al., 2021b). These methods range

from infrared imaging for tracking fish and studying feeding

behaviour (Pautsina et al., 2015; Zhou et al., 2017) to stereo

cameras for fish detection and individual tracking (Torisawa

et al., 2011; Chuang et al., 2015). Notably, single-camera systems

utilising visible spectrum cameras have demonstrated efficacy in

detecting fish, classifying behaviour, and tracking fish across various

aquaculture systems, including recirculating aquaculture systems

(RAS) (Liu et al., 2014; Kong et al., 2022) and sea cages (Foster et al.,

1995; Hu et al., 2022; Ubina et al., 2021; Pradana and Horio, 2022).

Moreover, the development of intelligent monitoring and control

methods, leveraging mathematical models and machine learning

algorithms, has further enhanced the capability to extract

meaningful insights from captured data.

As technology advances, more sophisticated techniques, such as

deep learning, have been integrated into these methodologies,

offering automated and non-invasive means of recording

behavioural parameters (Macaulay et al., 2021a). The process

typically involves converting images into statistical data using

computer vision models, enabling the estimation of behavioural

parameters ranging from swimming speed and direction to spatial

distribution and feeding activity (Yang et al., 2021a). Other studies

offer a thorough investigation and discussion on computer vision

techniques used for monitoring fish behaviour (An et al., 2021; Li

et al., 2020; Niu et al., 2018; Wang et al., 2021; Yang et al., 2021b;

Zhou et al., 2018a).

Regarding feeding, studies applying computer vision and AI for

fish feeding monitoring have primarily focused on RAS with

controlled environments. Early approaches used traditional

computer vision, such as analysing frame differences to measure

feeding activity (Liu et al., 2014) or combining vision with machine

learning to assess fish behaviour (AlZubi et al., 2016). More

advanced methods employed convolutional neural networks

(CNNs) for classifying feeding-related activities (Han et al., 2020;

Kong et al., 2022) and multi-task CNNs for active/inactive

classification (Wang et al., 2022). In sea cages, fewer studies exist,

often relying on indirect appetite measures like feed loss detection

(Hu et al., 2021) or surface activity monitoring (Ubina et al., 2021).

A notable effort combined 3D-CNNs and RNNs to capture

spatiotemporal information of the behaviours in salmon (Måløy

et al., 2019).
1.3 Main contribution

Studies have and are exploring the application scope,

advantages, and limitations of acoustic telemetry (Macaulay et al.,

2021b; Li et al., 2024a) and camera systems (Li et al., 2024b;

Saberioon et al., 2017) in aquaculture settings. Since both

technologies operate on different output data, and their “field of
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view” on aquaculture installations are inherently different, the

question arises whether cameras and tags can deliver the same or

comparable behavioural output parameters.

Even if we assume that both technologies do deliver useful

behavioural output parameters when used in conjunction,

uncertainties remain. Academic literature is, to the best of our

knowledge, not informative on whether shifting from acoustic

telemetry using acceleration to camera systems using fish

movement speed or vice versa can be conducted without loss of

underlying behavioural patterns. Additionally, it is unclear if

monitored fish behaviour can be translated from one sensor type

to the other, and if so, whether the corresponding monitored fish

behaviour is equally pronounced or if there are other effects (e.g.,

delay effects) at play. Lastly, the same underlying behavioural

pattern could be exhibited entirely differently depending on the

sensor type, possibly showing complementary instead of similar

patterns. Since acoustic telemetry can deliver continuous

monitoring, one might be interested in qualifying fish behaviour

results from camera systems with it. Yet, no study to our knowledge

has conducted direct comparisons of acoustic telemetry and a

camera system in the same experiment.

The research question therefore is whether cameras can be

qualified by acoustic transmitters for fish behaviour in sea cages,

opening the avenue for potential interchangeability.

We focused our comparisons on different feeding behaviour

frameworks, as we expect pre-occurring food anticipation

behaviour and periodical patterns to be interchangeably or

complementarily being detected across measurement type.

Altogether, we were interested in three main key comparisons:

Comparison of peaks. In order to discuss the (dis-)similarities

between the peak values between activity and speed throughout

different feeding trials, we identified the so-called persistent peaks.

We focused on the three highest persistent peaks per 24-h day,

which we would map against the closest feeding time to find out if

there are potential differences in the peak distribution between

activity and speed. Additionally, it was of interest to see if there are

peak distribution changes within one measurement type across the

experiment phases.

Comparison of temporal properties. We aimed to find out if

the periodicity of daily patterns would be similar between activity

and speed, even though there are no speed data for the night time

due to lack of light. For that purpose, we calculated the periodicity

with the autocorrelation function (ACF) of the time series for

activity and speed for each experiment phase, respectively, to

observe potential differences.

Comparison of pattern establishment and retainment.

Concerning pattern establishments, we aimed to explore whether

the data readings for the first and second feeding would synchronise

around the respective feeding time in the feeding phases with two

feedings per day, regardless of measurement type. Furthermore, it

was of interest if increases in locomotion are caught by both

measurement types, and how strongly food anticipatory

behaviour (FAB) would be expressed.
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2 Material and methods

2.1 Experimental design

The data considered in this study ranged from 02 June 2023

00:00 to 12 July 2023 23:59 local time (UTC+3).

2.1.1 Experimental animals and site
A group of more than 10,000 European seabass (D. labrax, 450

± 30 g body weight) at a stocking density of 7.8 kg/m3 was reared in

a circular polyester cage (perimeter, 40 m; depth, 9 m) having a

cylinder-shaped net down to 8 m depth and a closing cone of 1 m.

The sea cage was located on the pilot farm of HCMR. The stock was

obtained from the Mesocosm hatchery of HCMR. After the larval

rearing period and the pre-growing stages at 120 days post-

hatching, juveniles of 2 g mean weight were transferred to the

pilot scale farm.

2.1.2 Automatic feeder
An automatic feeder was located at the centre of the cage. It

comprised a microcomputer (rpi, Raspberry Pi 4 Model B) that was

used as a node that controlled a simple motor (feeding motor, 12V).

To enable remote control of the feeder, the MQTT communication

protocol (messaging protocol for the transmission of data from

sensors) was used. During the trial, the feeder was activated at

specific times (see below) and for a specific duration according to

the experimental protocol as explained below.
2.1.3 Feeding times
Feeding practices in the Mediterranean aquaculture do not

apply a unified feeding protocol as feeding regimes can vary from

one time daily feeding to continuous feeding, but feeding events

themselves usually occur during light hours only. Feeding time also

seems to serve as an external synchronizer for feeding processes and

digestion (Samori, 2024).

Consequently, locomotor activity related to feeding is being

influenced by the application of different feeding regimes, as we see

for fish movement speed in Georgopoulou et al. (2024). Considering

the fish’s dual foraging capabilities (Martins et al., 2012) and the

limited information available on the impact of different feeding

protocols on behaviour around feeding such as food anticipatory

activity (FAA), we aimed to test our systems at different feeding

times to determine whether these variations affect FAA and how

this is reflected through both camera observations and acoustic tags.

Changing feeding regimes might also reveal more beneficial feeding

strategies as there is no single precise strategy that takes into

consideration all welfare aspects for the farmed fish (López-

Olmeda et al., 2012).

The total feeding duration per feeding day was 30 min, and the

amount of feed (Zoonomi S.A., Gorgo 6 mm) was modified

according to temperature and was at 0.5% of the total biomass.

When there were two feedings per day, each feeding session lasted
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15 min with equal feed quantities. The experiment was split up into

different phases with fasting periods in-between, as shown in

Table 1. During the experimental period, the operation of the

feeder was not normal for some days and the relevant data were

not used in the analysis. These days were designated as “Irregular

Phases”. Note that we differentiated feeding and non-feeding

windows with the feeding times provided in Table 1, independent

of other data input.
2.2 Tracking fish activity with
acoustic telemetry

Fifteen acoustic transmitters (ADT-LP7, Thelma Biotel Ltd.)

and three receivers (TBR700, Thelma Biotel Ltd.) were used for the

experiment. The transmitters were equipped with a three-axis

accelerometer that converted the raw acceleration to m/s2 and

then filters out static components like gravity. Over the sampling

duration, the root mean square (RMS) value was calculated, which

was then transmitted by the tags. Additionally, the transmitters

were equipped with pressure sensors for depth and temperature

sensors. The setup and location of the tags and receivers were

almost identical to the trial of Chen et al. (2023), with some minor

differences. The receivers were submerged at the edges of the sea

cage in a triangle at a depth of 2.5 m, but no additional

synchronisation tag (R-HP16, Thelma Biotel Ltd.) was added to

the system.

The temperature resolution was 0.1°C and the activity had a

resolution of 0.013588 m/s2 and a range of 0 to 3.465 m/s2. A

modification of the setup in Chen et al. (2023) was that the depth

signal registration interval was every 30 to 50 s (mean, 40 s), and
Frontiers in Marine Science 04
accordingly, the doubled interval for temperature or activity (mean,

80 s), since temperature and activity values were sent alternating in

addition to depth data.

2.2.1 Transmitter implantation
The whole implantation protocol follows the same schemata as

described in Georgopoulou et al. (2022) and short-lined in Chen

et al. (2023). We state here the outline of the procedure: On 21 April

2023, 25 fish of 37.07 ± 180 cm total length and 582.05 ± 187.83 g

weight were transferred from the pilot scale farm to a 10-m3 tank at

HCMR facilities (T = 18°C, pH = 8.0, salinity = 36 psu, DO > 5 mg/

L, and ambient photoperiod). On 03 May 2023, fish were sedated,

and the acoustic transmitters [Thelma Biotel Ltd., 7.3 mm diameter,

23.2 mm length, 1.8 g weight in water, and less than 2% tag-to-

body-weight ratio (Jepsen et al., 2005)] were transplanted into the

peritoneal cavity of 15 randomly chosen individuals, which were

afterwards transferred into a 5-m3 tank for recovery (Georgopoulou

et al., 2022). The tag activation was on 02 May 2023 and the sea cage

transfer was on 23 May 2023.

2.2.2 Transmitter data collection and processing
Data pre-processing followed a similar pipeline as in Chen et al.

(2023) with the only major change being that the no GPS positions

were calculated and that the bandwidth for signal-to-noise ratio

(SNR) was changed to [20,inf). The pipeline in short consisted of

the following steps:

Raw data were downloaded and processed using the software

ComPort (Thelma Biotel, v4.0.3) from the three receivers around

the sea cage. Each extracted data point from a tag had an entry for

depth and, alternately, an entry for temperature and activity. We

decoded the entries to create time series for depth, activity, and

temperature, respectively. The time series for depth, temperature,

and activity have then been mean-resampled on a resolution of

10 min.

Finally, missing values (kactivity= 10, kdepth= 8, ktemperature= 9)

were filled by linear interpolation, leading to 144 × 41 = 5,904 data

points, respectively (number of 10-min intervals per day ×

experiment days). Note that the interpolation of values was for

methodology alignment between the two measurement types.
2.3 Tracking fish speed with
underwater camera

2.3.1 Camera setup
Recordings were made using a Fyssalis V3.1 camera (Element

S.A., Greece) capturing at 10 fps and with an image resolution of

1,280 × 720 pixels. Data at night could not be recorded since

visibility was insufficient. The “breaking” point between sensible

detections against dark images for the camera analysis was around

6:00 for the morning and 21:00 in the evening; therefore, those

times were picked as a hard cutoff, resulting in 15 h worth of data

per 24-h day.
TABLE 1 The experimental setup of the feeding times.

Phase Phase
Name

Start
Date

(00:00)

Feeding Times

1 “8:00 Feeding” 02 June 2023 08:00

2 Fasting 1 13 June 2023 –

3 Irregular
Phase 1

18 June 2023 Irregular

4 “7:30 and
13:30 Feeding”

22 June 2023 07:30 and 13:30

5 Fasting 2 02 July 2023 –

6 Irregular
Phase 2

07 July 2023 05:40 and 20:27

7 “Twilight
Feeding”

08 July 2023 From 06:31 and 20:26 to
06:37 and 20:22

8 Fasting 3 18 July 2023 –
A visualisation that includes more detailed explanations of the deviations can be found in
Supplementary Figure S1. The phase “Twilight Feeding” has gradually changing times due to
aligning the feeding events with the sun position; the first feeding starts 45 min after the rise of
civil twilight, and the second feeding starts 45 min before the set of civil twilight.
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2.3.2 Calculating speed of fish
The videos were analysed using a previously developed system

based on YOLOv5 and deepsort (Georgopoulou et al., 2024). The

speed in frame i was calculated as

ui =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x(i) − x(i − 1))2 + (y(i) − y(i − 1))2

q
(1)

where x and y are the coordinates of the fish.

To minimise noise and extreme speed values, we chose fish that

were consecutively tracked for a minimum of five frames and applied

the Savitzky–Golay filter (window sw = 5, polynomial order sp = 2) on

the centres of the fish. The unit of measurement for speed was bd/s.

The speed values were then binned in 10-min intervals, and for

missing values between 6:00 and 21:00, a linear interpolation was

conducted (kspeed = 393). The total number of these 10-min bin data

points for the experiments was nspeed = 6 × 15 × 41 = 3,690 (10-min

intervals per hour × hours considered per day × experiment days).
2.4 Using persistent homology to
detect peaks

In order to capture relative height in the complicated nature of

the time series for activity and speed in our fish experiment (see

Figure 1), we used a tool set called topological data analysis (TDA)

with pioneering work of Edelsbrunner et al. (2002) to locate peaks
Frontiers in Marine Science 05
in time series. Persistent homology (PH) (Edelsbrunner et al., 2002;

Edelsbrunner and Harer, 2008) is one of the tools that encompasses

the study of mathematical features like holes and components.

As the specific method was not the focus of this paper, we

present it in a descriptive way in Section 2.4.1. We refer to the

proper mathematical literature for the unsatisfied reader when it

comes to relevant properties and their proofs as well as the

computation for higher dimensions (Malott et al., 2023; Munch,

2017; Chazal and Michel, 2021; Fugacci et al., 2016; Edelsbrunner

and Harer, 2008).

One of the desired properties was the noise resistance, as time

series for both activity and speed tend to fluctuate, even after

binning into 10-min intervals. For persistent peaks, if we added

noise up to e to all data points, the resulting persistent peak

calculation would only differ by 2e at most (Cohen-Steiner et al.,

2007; Huber, 2021). Conversely, only relying on the n highest

absolute points on each 24-h day might have led to misleading

results, as we exemplified in Figure 2.

We adapted themethod fromHuber (2017) to extract the npeaks = 3

most significant peaks for each day for activity and speed, respectively

(see Figures 1, 2). We call those peaks “Peak n” or “Persistent Peak of

rank n”, respectively.

2.4.1 From a flood to mountain tops
We describe the algorithm used for Figures 1 and 2 visually after

Huber (2017) where the mountain tops are local maxima and a
FIGURE 1

Activity and speed over the experiment period marked with persistent peaks of different rank (circles) and feeding events (vertical strips above the x-
axis). Note that the width of the feeding event follows the time axis; therefore, the stripes can be visually challenging to see.
FIGURE 2

Comparison of using persistent peaks (circles) vs. maxima by value (crosses), exemplified in phase “8:00 feeding”. Note that maxima top 2 and top 3
have a tendency to cluster around the feeding time, while Peak 2 and Peak 3 tend to spread.
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mountain range is a 24-h day: Imagine a time series (ai)i∈ 1,…,nf g for
some n ∈ N to be a mountain range that is cut vertically. Now,

consider a receding flood above the highest mountain top as a

perfect horizontal line.

We track appearing mountain tops by marking their highest

point and drawing a vertical line downwards following the water

level. The essence of persistence peaks is knowing when to stop

drawing the line. When two mountains are connected through the

lowering water level, we stop drawing the line for the lower

mountain. We stop drawing the line for the highest mountain the

moment the whole mountain range is connected. This line segment

will naturally have the value max((ai)i∈ 1,…,nf g) −min((ai)i∈ 1,…,nf g)
with n ∈ N being the number of data points in the time series.

The length of each vertical line is the persistence of the respective

mountain top point. The three mountain tops with the highest

persistence are selected as persistent peaks of rank 1/2/3. In all

brevity, the chosen persistent peaks mathematically corresponds to

the selection of the three most persistent 0th-dimensional cycles when

looking at the superlevel set filtration of the time series (ai)i∈ 1,…,nf g
(Huber, 2017). Thereby, a persistent peak A in (ai)i∈ 1,…,nf g has the

(absolute) height hA and the persistence pA as an indicator for relative

height. We say that persistent peak A is “higher” than another

persistent peak B when its persistence value is higher (pA > pB). An

illustration of the method for two persistent peaks is given through a

time series with four points in Figures 3A–E. In PH, one can also

encode the “start” (birth) and the “end” (death) of the persistence of

persistent peaks in a so-called “persistent diagram”, which we display

for completeness sake in Figure 3F.
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2.5 Food anticipatory behaviour detection

To measure anticipatory behaviour, FAA as in Azzaydi et al.

(2007) was considered. For the detection of sudden but then

sustained high-activity windows, similar to Chen et al. (2023) and

Azzaydi et al. (2007), the length and intensity were key parameters:

The acceleration activity threshold follows the setup protocol as in

Chen et al. (2023) and was thereby set at the 0.5 quantile, while the

movement speed threshold was derived naively by enforcing that

also 12 h worth of data points would lie over the threshold, which

led to a (15 h – 12 h)/15 h = 0.2 quantile.

It has been shown that the swimming speed of the European

seabass is significantly lower during nocturnal hours than during

diurnal hours in a similar floating pen setup (Neo et al., 2018). We

therefore conducted the analysis under the assumption that these

results translate into our experiment setup to a degree when making

the choice for the quantile threshold for speed.

The minimum duration criterion of the high fish activity was set

to 60 min, respectively. We locked the FAA detection until 2 h post-

feeding to account for elevated movement and general activity

during that time.
2.6 Statistical methods

Kruskal–Wallis tests were used to compare activity and speed,

respectively, across neighbouring phases (irregular phases excluded

beforehand) of the experiment for each persistent peak rank. To
FIGURE 3

Time series (ai)i∈ 1…4f g with receding with water level c, persistent peak of rank 1 and 2, and persistent diagram D0. (A–D) Visualisation of receding

water levels c to mark persistent peaks and track their persistence as mountain ranges (connected components) are merging. The light blue area
visualises the receding water level mentioned as the flood in Section 2.4.1. (E) The time series with persistent peak of rank 1 and 2 where the
persistence is marked (yellow). (F) The corresponding 0th-dimensional persistence diagram D0 to the graph in (E). It illustrates an alternative way to
show the “lifetime” of persistent peaks by mapping the water level at which the persistent peak’s mountain starts onto the x-axis as “birth level” and
the water level where the persistent peak’s mountain range merges as “death level”; therefore, persistence = birth level − death level.
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compare activity and speed regarding how close their respective

highest persistent peaks were to the feeding schedule, we calculated

the time difference between the persistent peaks and the closest

feeding time (or the feeding time of the previous phase for the

fasting phases), respectively. Afterwards, Kruskal–Wallis tests were

used for each section and persistent peak rank to identify alterations

in the time difference to the closest feeding time, as the differences

were not normally distributed.

The ACF for the activity and speed time series for each

experiment phase was calculated to evaluate the periodicity

patterns. We calculated the highest correlated interval using the

starting point P0 and the highest points in the following “hill” of the

graph where values are positive, and marked that point as P1.

Afterwards, the time interval between them was calculated. Note

that for activity, 24 h correspond to 144 lags (as we have a time

resolution of 10 min and 6 × 24 = 144), but that for speed, a 24-h

cycle corresponds to only 90 lags (since we cut off times outside of

the time interval 6:00–21:00, leaving us with 15 h and therefore 6 ×

15 = 90 lags).

Augmented Dickey–Fuller (ADF) unit root tests and

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were used on

the activity, speed, depth, and temperature time series for the

experiment window, respectively, to test for stationarity.

To evaluate whether classical FAA was first detected for activity

or speed, proportion z-tests were conducted. Likewise, the test was

used to identify whether activity or speed was retained longer after

the feeding period.

Dependent t-test for paired samples was used to test if the

average depth around the feeding times was different in the phases

with two feeding times.

Unless otherwise stated, a p-value smaller than 0.05 was

considered significant. All statistical analyses was conducted in

Python v.3.8. For exact reproducibility, links to the code and data

can be found under the data availability statement.
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3 Results

Sensor data from 14 out of 15 fish individuals were used for

analysis. The remaining tag was believed to be malfunctioning or

damaged (data suggested it was floating on top of the sea cage).
3.1 Persistent peaks analysis

3.1.1 Statistical analysis
When comparing the activity and speed peaks independent

from each other across non-irregular neighbouring experiment

phases, there were, with one exception, no significant differences

in the time difference to the closest feeding (Kruskal–Wallis test, p ≥

0.05, respectively). The exception was a time difference in hours for

speed between the phase “Fasting 1” and “7:30 and 13:30 Feeding”

for persistent peaks of rank 1 (Kruskal–Wallis test, H = 4.8167, df =

1, p < 0.05), as marked in Figure 4.

When comparing the two data types for each section and

persistent peak rank within a 24-h day, respectively, activity and

speed were not significantly different (Kruskal–Wallis test, p ≥ 0.05

respectively), except for the phase “Twilight Feeding” for persistent

peaks of rank 1 (Kruskal–Wallis test, H = 4.036, df = 1, p < 0.05), as

marked in Figure 4.

Exhaustive tables for the Kruskal–Wallis tests can be found in

Supplementary Tables S1, S2.

3.1.2 Dispersion during fasting
A dispersion trend of the feeding pattern was observed for

activity in the phases Fasting 1 and Fasting 2 as the boxes and

whiskers widened or moved compared to the previous feeding

phases, respectively. In particular, the Peak 1 bar for Fasting 1

and Peak 1 and Peak 2 bars for Fasting 2 show strong deviation

from the previous feeding time(s) (see Figure 4).
FIGURE 4

Time difference in hours of the three highest persistent peaks for activity and speed towards the feeding time or the last applicable feeding time
from the previous phase. The bars are colour-coded: Peaks of rank 1 are blue, peaks of rank 2 are violet, and peaks of rank 3 are green. Each central
box represents the interquartile range (IQR = Q3−Q1) with the median (Q2) marked as a line, and whiskers are positioned at 1.5 times the IQR away
from the central box edges. The asterisk (*) marks a significance difference between groups (Kruskal–Wallis test, p < 0.05).
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When comparing the persistent peaks of rank 1 and 2 for speed

between the Fasting 1 phase and the previous “8:00 Feeding” phase,

the difference was not as striking as for activity, respectively. When

comparing the “7:30 and 13:30 Feeding” phase with the following

Fasting 2 phase, there was a dispersion of the Peak 1 bars (see blue

Fasting 2 bars in Figure 4).

3.1.3 Lagging of dispersion
During the first feeding phase, for both activity and speed, we

observed a trend where Peak 1 was lagging behind the feeding event

at 8:00. Peak 2 and Peak 3 were spread out. The “Fasting 1” phase,

on the other hand, showed a trend for the activity Peak 1 to be

lagged behind, as seen by the detached box [interquartile range

(IQR) between 0.58 and 2.04], and lagging speed persistent peaks

(see Figure 4). Additionally, Peak 2 for activity had the highest

variability in this phase (IQR of 15.92) for any Peak 2s throughout

the experiment.

3.1.4 Focus during feeding
We observed a concentration of Peak 1s at the feeding times in

the “8:00 Feeding” and the “7:30 and 13:30 Feeding” phase

regardless of data type, as shown in diminishing bars in Figure 4,

though the Peak 1s for speed in the “8:00 Feeding” were more

spread than for activity.

Additionally, we found relatively small Peak 2 bars for the “7:30

and 13:30 Feeding” phase in Figure 4 (activity Peak 2 IQR: 2.08,

speed Peak 2 IQR: 2.92) that stemmed from the Peak 2s often being

on the alternate feeding event that was not occupied by the Peak 1 of

the day (see Figure 5).
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Furthermore, we observed that there was a concentration of

persistent peaks of rank 1 at the only feeding event for the phase

“8:00 Feeding”, but this changed when considering the phase “7:30

and 13:30 Feeding”, where the Peak 1s were concentrated around

the noon feeding, regardless of data type (activity, speed)

(see Figure 5).

Lastly, the phase “Twilight Feeding” seemed to be contradictory

with the Peak 1 boxes for activity lagging behind the feeding time in

Figure 4, but the Peak 1s and Peak 2s for speed seemed to be too early

for the feeding. It should be noted that the number of data points for

the phase “Twilight Feeding” was the smallest with Ndays = 5 instead

of Ndays = 11 or Ndays = 10 like in the other two feeding phases,

respectively; therefore, more uncertainty was inherently given.
3.2 Periodicity insights

3.2.1 Periodicity
We observed a quite consistent 24-h periodic pattern in all ACF

plots across measurement types (activity, speed) and experiment

phases (see Figure 6). The shown periods in Figure 6 were calculated

by subtracting P1 from P0 and were similar between activity and

speed, though the deviations from 24 h for speed were higher with

up to 0.53 h (ca. 32 min).

Although all P1 autocorrelation values in Figure 6A were

significant for activity, the autocorrelation values for the fasting

phases [r(145) ≈ 0.58 and r(145) ≈ 0.56, respectively] and the

twilight phase [r(144) ≈ 0.49] are just approximately 0.5, contrary

to the first two feeding phases [r(144) ≈ 0.75 and r(144) ≈ 0.76].
FIGURE 5

Scatter plot of Peak 1s (circles) and Peak 2s (crosses) for activity (A) and speed (B), for the different experiment phases (shown in different colours)
and (reference) feeding times. Note that the gradual minute change of the feeding times between the days in the phase “Twilight Feeding” is
not visible.
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Compared to the ACFs for the speed time series in Figure 6B,

the fasting phases did not show a significant P1 (second local

maxima), indicating the absence of a notable daily pattern during

these periods.

Additionally, the wavelet power transform also showed the 24-h

periodicity of the activity (see Figure 7). For fasting periods or pause

periods, the pattern disappeared (the light areas became less pronounced).

However, the wavelet power transform for speed was not

interpretable. Both without and with spline interpolation for the

night (see Supplementary Figure S2), the speed periodicities were

not clearly readable or were noisy when comparing with a priori

knowledge about the experiment phases.
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3.2.2 Correlation between activity and speed
When conducting a full cross-correlation between the activity

time series and the speed time series, the highest significant

coefficient was at zero lags, indicating that the best match was the

Pearson correlation coefficient with r = 0.46. Furthermore, the

shape of the cross-correlation function was asymmetric with a

slower decrease for negative lags (see Supplementary Figure S3).

As a lag was the frequency of the time series, the 24-h periods are

different for activity and speed, where one 24-h day for activity

corresponds to 144 lags, but 90 lags made up a 24-h day for speed

(owing to the cutoff times for the speed time series, see

Section 2.3.2).
FIGURE 7

Wavelet spectrum for the activity time series. Note the stripes throughout the experiment feeding phases with the highest power at around 24 h.
The coloured horizontal line represents the experiment phases. Blue indicates a feeding phase, red denotes a fasting phase, and yellow indicates an
irregular phase.
FIGURE 6

Autocorrelation function for activity (A) and speed (B) in the different experiment phases. The period is calculated by P1 − P0, where P0 and P1 are
consecutive local maxima. Points lying outside the lying-cone shaped area around the x-axis (5% significance limits) are considered significant. One
lag corresponds to 10 min for (A), and 16 min for (B) (since speed data points outside of the interval 6:00–21:00 were excluded).
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3.3 Feeding patterns

3.3.1 Stationarity
For the experiment window, the depth and activity time series

extracted from the transmitters and the speed time series were both

stationary (ADF test, p < 0.05 and KPSS test, p > 0.05), allowing for

more reliable downstream statistical analysis such as

autocorrelation. However, the temperature time series was not

stationary by the same tests. The significance of the test statistics

on the speed time series with gaps (see Section 2.3.1) was invariant

against first-order spline interpolation or filling the gaps with 0

values. Therefore, the different speed time series variants were also

stationary (ADF test, p < 0.05 and KPSS test, p > 0.05, respectively).

3.3.2 Behaviour around feeding
For the phase “7:30 and 13:30 Feeding”, fish were significantly

in deeper waters (0.68 ± 0.24 m) when feeding occurred at 13:30

than for the feeding at 7:30 (dependent t-test for paired samples, p <

0.05), as illustrated in Figure 8. For the phase “Twilight Feeding”, no

significant difference was found (dependent t-test for paired

samples, p ≥ 0.05).

When looking at the activity around feeding for the two phases

with two feeding times, there was a significant difference between

the first and second feeding, respectively (dependent t-test for

paired samples, p < 0.05).

In a qualitative manner, it did seem like that the second feeding

activity means were syncing up with the first feeding of the day;

while being more or less below the first feeding activity mean at the

beginning of the phases with two feedings, the difference disappears

towards the end of the phases. Even though we had only a few days

for the “Twilight Feeding”, one could see a trend of the activity

means from the second feeding going up towards the means of the

first feeding.

For the phases “7:30 and 13:30 Feeding” and “Twilight

Feeding”, there was no significant difference in the speed around

the first and the second feeding (dependent t-test for paired

samples, p ≥ 0.05). We note that the speed data points around
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the first feeding in “7:30 and 13:30 Feeding” were not normally

distributed (Shapiro–Wilk test, p < 0.05).
3.3.3 Food anticipatory and post-
feeding behaviour

Activity was a reliable tracker for FAA for the feeding phases (see

the green bottom stripes prior to feeding in Figure 9). The start of

FAA for activity was significantly more often earlier than for speed

(one proportion z-test, n = 51, p < 0.05). On the other hand, speed

was significantly more often trailing behind than activity (one

proportion z-test, n = 51, p < 0.05), meaning that even though

activity levels have suspended, the speed levels are still within of high-

value-window considerations. Both tests were invariant against the

number of hours added to the feeding end to measure “true” post-

feeding activity/speed (nhours∈{0,1,2}), nor did it depend on the

minimum duration of high fish activity (tduration∈{60,120} min).
4 Discussion

The main findings in this study verify first and foremost the

usefulness of acoustic telemetry in terms of feature detection around

feeding behaviour and general animal monitoring/tracking (Li et al.,

2020; Darodes de Tailly et al., 2021). Similar to our study, there are

studies that concerned themselves with fish behaviour analysis

through the means of using camera systems monitoring

swimming speed, movements like turning speed (Miyazaki et al.,

2000; Ubina et al., 2021; Priyadarshana et al., 2006; Hansen et al.,

2015), or critical swimming speed (Remen et al., 2016; Yu et al.,

2010), but behavioural patterns were usually qualified by humans.

Using persistent peaks as a comparison tool, we aimed to

qualify the results from the camera system with the acoustic

telemetry setup and conclude that movement speed could be a

reliable candidate for future endeavours in fish behaviour (remote)

monitoring as important features, especially around feeding, are

exhibited in the speed time series.
FIGURE 8

Activity, speed, and depth around feeding events. Values are means of activity, speed (green and orange line graphs), and depth (blue line graphs) ±
SEM from 1 h before feeding until 2 h after feeding for each feeding event. All line graphs follow the continuous time x-axis; therefore, the first and
second feeding are shown with offset where applicable.
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4.1 Using persistent peaks in biological
time series

Our choice to use PH for data analysis has predecessors; a wide

range of fields from the medical sector [e.g., heart rate analysis

(Chung et al., 2021)] over bio-molecular data analysis (Meng et al.,

2020) to fish pattern analysis [e.g., quantifying zebrafish patterns

(McGuirl et al., 2020)] have benefited from looking at the

topological aspect of the data. In our case, using the most

“significant” peaks in the time series allowed for comparison

between the activity and speed time series regardless of the

underlying value type (activity in m/s2, speed in bd/s), since the

structure of the data was the focus.

We note that an alternative method, peak detection using z-

scores (Brakel, 2024; Sherathiya et al., 2021; Lima et al., 2019),

though popular, was deemed inapplicable in our case for

comparison of a fixed number of peaks, and would also require

implicit assumptions about the peak patterns in the activity and

speed time series.

4.2 Establishment of feeding patterns

We see trends of similarity in the establishment of feeding

patterns for activity and speed, especially when one only considers

the persistent peaks of rank 1 (see Figure 4). In both activity and

speed, we see an immediate synchronisation with the feeding

schedule in the “7:30 and 13:30 Feeding”. Notably, it does seem

like speed retains feeding patterns much less than activity when

looking at the two fasting phases, distinguishing the two locomotor

activities of acceleration and speed. The wide spread of activity in

the Peak 2s in Figure 4 for the phases “8:00 Feeding” and Fasting 1

could mean that fish locomotion is quite random (no pattern) as

there is only one feeding time of interest. Further studies with

longer feeding phases could look deeper into the concentration of

secondary activities with the highest (feeding) already excluded to

gain more knowledge about other fish behaviours.

Furthermore, the results of the first feeding phase in

conjunction with the first fasting phase in Figure 4 align with the

literature on (food-entrained) circadian rhythm in fish (Feng and
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Bass, 2016; Paredes et al., 2015), as we interpret the Peak 1s (activity

and speed) after the feeding time as a time lag. Fasting 2 in Figure 4

indicates an inner circadian rhythm of at least more than 24 h.

Furthermore, with insights from Figure 6, where the periodicity of

activity is always around 24 h (never below 24 h for activity, in fact),

but never reaching 25 h, we argue that the circadian rhythm of the

behaviour of European seabass is potentially in that interval.

The periodicity analysis in Figure 6 illustrates that activity can

potentially proxy speed data and vice versa in tracking periodic

feeding patterns, since the highest deviation within the same trial

was 24.00 h − 23.47 h = 0.53 h, which is around 32 min. However,

we note that, because of the different translation from lags in the

ACFs to minutes, the given minute difference should be taken

with caution.

Moreover, the cross-correlation analysis in Section 3.2.2 shows

a perfect match for activity and speed, since the highest significant

values were obtained with zero lag. Nevertheless, the results for

non-zero lags are also distorted due to the fact that they compare

values with having 9-h time difference due to the exclusion of values

outside of 6:00–21:00.

When taking a look at the depth behaviour, bright sunlight

during the middle of the day was likely the main influence in the

diving behaviour we observed in Figure 8. Fish avoid surface

proximity during the middle of the day even around feeding time

as seen before (Chen et al., 2023).
4.3 Two feedings per day

On a more general level, it does seem that the first and second

feeding activity levels are synchronising after a few days as seen in

Figure 8. Although in the beginning, the first feeding event was

more dominant in terms of high activity values around the feeding

time, the second feeding catches up towards the end of the

respective feeding phases. For speed, it appears that the change is

either less pronounced or not existent as the statistics in Section

3.3.2 were not significant.

On the persistent peak level, we make more detailed findings,

namely, that in phase “7:30 and 13:30 Feeding”, the highest
FIGURE 9

High-activity/speed windows plotted under the activity/speed time series for the whole experiment to show FAA and, more generally, high
measurement windows. Just above the x-axis, stripes in blue indicate feeding events plus 2 h after feeding, and the two piece-wise horizontal
stripes represent high measurement windows for activity (green) and speed (orange).
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persistent peak was for both data types predominantly at the second

feeding at 13:30 (see Figure 5). We postulate, together with the

concentration of Peak 1s around the feeding time (see blue bars in

Figure 4), that fish might be in the balancing act of avoiding the

brighter upper water column, while still maximising food intake.

We suggest that aligning both the feeding-entrained and the light-

entrained circadian rhythm could have caused the spikes in activity

and speed, respectively, as the feeding-entrained clock seems to be

malleable (del Pozo et al., 2012).

For the “Twilight Feeding” phase, caution is advised, as the

number of days was small (Ndays = 5). While the periodicity analysis

indicates that there are daily patterns (see Figure 6), they are not

visible in the persistent peak analysis (see Figure 4). In contrast, the

Peak 1s for activity and speed are significantly different for this

feeding phase, showing an inconsistent knowledge gain from the

two measurement types, activity and speed. For activity, Peak 1s are

too late, and for speed, Peak 1s are too early for the closest

feeding event.

Another inconsistency is also found in the mean locomotion

around the feeding, as shown in Figure 8: While the speed around

feeding remains stable for the “Twilight Feeding” phase regardless of

the feeding event, the activity around the evening feeding is

considerably lower than for the early morning feeding. It is in fact

the lowest recorded activity around feeding for the whole experiment.

We conclude that maybe the European seabass in our study

were not preparing for incoming evening feed. While farmed

European seabass have their feeding periods during dawn and

dusk in demand-feeding setups (Rubio et al., 2004), fish in our

case were habituated to receive feeding during the day, which might

have depressed the circadian rhythm induced by photoperiod to

expect feed in the evening.

At the same time, stable speed levels around feeding speak for

the notion that the circadian rhythm induced by photoperiod is not

strongly linked to general movement of fish, only to (fast)

acceleration. Lastly, another explanation could be that fish are not

preferring meals at twilight times in general, which is also indicated

by the dominant lack of FAA for both the early morning and

evening (see Figure 9).
4.4 Food anticipatory behaviour analysis

The threshold for FAA duration was 60 min shorter than in

Chen et al. (2023) as we included two feeding phases in this

experiment and thus expected a shortening in FAA exhibition

(even though it made no difference in significance whether we

used 60 or 120 min for the statistics). Interestingly, activity and

speed differ in the detection of FAB. Using the increases of the

values in the time series, even with some parameter variations,

activity could be considered a “front-runner” for FAA while higher

speed values retained longer. This pattern is even consistent

regardless of whether we look at feeding phases or fasting phases.

A careful interpretation would be that feeding activity—and pre-

feeding activity for that matter—are a type of activity that is more

captured through acceleration, since the feeding action itself is more

a burst towards the feed. The prolonged speed windows could
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potentially be explained by the assumption that speed is a more

even measurement type and less “spiky”.
4.5 Comparison of activity and speed

In a sense, we used acoustic transmitters to qualify camera

readings in this study and have mixed results. Firstly, there are

different advantages and drawbacks to each technology.

The main advantage of using acoustic telemetry is that

continuous monitoring is feasible without artificial light and that

acoustics do not attenuate underwater as fast as light. This makes

analysis of welfare and general fish behaviour more

comprehensible, since the individual level can always be

considered if desired.

The main drawback of using acoustic telemetry is that

operational costs can be resource-consuming. Tags are expensive,

making tagging of many individuals hardly feasible, which, in turn,

can lead to questions about the representativeness of the tagged fish.

Furthermore, when tagging fish, one has to ensure that the

implantation does not affect the fish behaviour. As seen in

Section 2.2.1, we dealt with the possible effects of implantation on

behaviour by waiting at least 14 days before beginning behavioural

monitoring in accordance with the results of Georgopoulou et al.

(2022). Another limitation can be battery life—the main reason the

last feeding phase in this study fell short (Ndays = 5) in the data

collection phase as transmitters stopped sending signals. Lastly, as

in our study, analysis often has to be done post-experiment if the

acoustic receivers cannot transmit data in real time. Note that some

of the mentioned issues can be alleviated with acoustic telemetry

systems that allow real-time monitoring (Hassan et al., 2019;

Manicacci et al., 2022).

The main advantage of using cameras like in this experiment is

that the setup can be integrated in net pen setups without many

complications, making it suitable for commercial fish farming.

Additionally, the gained video data can be revisited at any later

stage as computer vision is advancing at a considerable speed, which

may allow further post-experiment analysis. Furthermore, the

agnostic nature of cameras in terms of individuality allows for an

overview of the net pen status.

The main drawback of using camera systems is that they are

light and sight dependent (i.e., photoperiod and turbidity) and

therefore cannot provide true 24-h time series without assumptions

or interpolations. Dealing with this type of time series that has gaps

of the type “Missing not at random” (MNAR) (Rubin, 1976) is

arguably the most challenging one, since we cannot properly correct

for biases if the conducting analysis had introduced them (Mack

et al., 2018). Comparing time series with gaps against true 24-h time

series, errors might be induced. An additional drawback of camera

analysis is the lack of depth range (Føre et al., 2018), which, with

occlusion, also limits the usage for individual tracking. Some of

these issues could be solved by using infrared cameras as in future

works, though the trade-off would be observation range (Babin and

Stramski, 2002; Hale and Querry, 1973). In addition, multiple

cameras could alleviate the issue of calculating 2D trajectories in

a 3D world, even though we handled this in our experiment by
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normalising speed according to fish size (Georgopoulou et al.,

2024). Moreover, as seen in Section 3.3.2 or Section 3.3.3, changes

in speed seem to lag behind or are less responsive than acoustic

telemetry data, which might be explained by the fact that individual

fish behaviour in sea cages does need time to propagate throughout

the school of fish. Lastly, at least in our case, the speed time series is

somewhat not stable in regard to the wavelet power transform.

While the activity time series does deliver a spectrum reflecting the

experiment protocol, the speed power spectrum does not (see

Figure 7; Supplementary Figure S2).

Going over to the similarities, there are some key aspects that

indicate that speed and activity can be used interchangeably: Both

data types catch pattern changes throughout the experiment (see

Section 3.1.2 and Section 3.1.4), though some knowledge gaps

remain for the “Twilight Feeding” phase. Likewise, the actual

local maxima, the persistent peaks of rank 1, tend to align during

feeding, with the phase “Twilight Feeding” excluded. Similarly, the

measurements around the feeding times (see Figure 8) were

especially stable in the phase “7:30 and 13:30 Feeding”, but both

data types in the persistent peak distribution in Figure 5 revealed

high noon feeding locomotion. That this specific behaviour could be

recorded with both acoustics and visual sensors indicates that a

certain degree of interchangeability exists. Lastly, the periodicity

analysis based on autocorrelation indicates that general patterns are

caught by both data types reliably, even though the retention

qualities may differ (see Figure 6).

All in all, behaviour analysis that needs fast responses from the

fish or is focused on nighttime activity could benefit from using

acoustic transmitters if equipped with the possibility of real-time

data extraction. In order to gain an overview of group behaviour, on

the other hand, one might benefit from camera setups for

speed inference.

We anticipate that camera setups invite less downstream concerns,

especially in commercial settings, than implanted transmitters and

therefore are suitable to guide feeding optimisation and fish behaviour

monitoring for remote applications. Nonetheless, using both

technologies in parallel naturally yields a more holistic view on fish

behaviour in sea cages and could be used in a qualifying manner when

testing new fish farming protocols.
4.6 Limitations of the study

First and foremost, we make it clear that we do not claim that

there is a direct cause–effect relationship between measured activity

and speed, as any found correlation is likely spurious with fish

locomotion work in general as a confounding factor. Because fish

move at all, we can record activity from acceleration and speed from

tracking individuals and averaging; therefore, both measurements

come from the same source.

Secondly, using persistent peaks might introduce biases or other

skewness, since we first applied the peak analysis on the raw data

and then analysed these results. The intermediate layer of persistent

peaks might be faulty, even though we avoided the pitfall of

conducting statistical analysis or machine learning directly on
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persistence values themselves (Cao et al., 2024), but only on the

ranking of persistent peaks.

Thirdly, by having irregular phases (see Table 1) in the

experiment, the generated data for the feeding phases could be

somewhat distorted. The error would then propagate through the

entire analysis. Additionally, there is an absence of both biological

and technical replicates; therefore, further work is needed to verify

the trends and implications of the results.

Lastly, one potential limitation is that we did not reflect the

whole sea cage with both sensor systems. In the worst case, fish that

occluded conspecifics for the camera and the tagged fish exhibited a

certain behaviour not shared by the rest of the sea cage fish,

therefore giving us a false impression of the underlying

mechanisms in fish behaviour.
4.7 Future work

Future work could entail controlled manipulation and testing of

environmental factors such as water temperature, salinity, and light

in order to make presented results more robust, as fish behaviour

might differ in various environments. In order to generalise the

results from this study, bigger sample sizes for acoustic telemetry

would also be beneficial. Additionally, conducting similar studies on

other farmed fish species and more fish sizes could improve

current findings.

Another interesting study direction would be exploring the

potential complete substitution of one technology for the other.

However, one should take into account that both measurement

types have inherently different properties, such as the spikiness of

activity and retaining of high measurement windows of speed

before exchanging one technology for the other.
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