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Guijarro B, Farré M, Macias D and Massutı́ E
(2024) Warming promotes expansion of a
key demersal fishing resource of the
western Mediterranean.
Front. Mar. Sci. 11:1494177.
doi: 10.3389/fmars.2024.1494177

COPYRIGHT
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Warming promotes expansion of
a key demersal fishing resource
of the western Mediterranean
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Beatriz Guijarro1, Marc Farré1, Diego Macias3 and Enric Massutı́ 1

1Centre Oceanogràfic de les Balears (COB-IEO), CSIC, Palma, Spain, 2Centro Oceanográfico de Cádiz
(COCAD-IEO), CSIC, Cádiz, Spain, 3Directorate D – Sustainable Resources, Joint Research Centre
(JRC), European Commission, Ispra, Italy
Climate change is affecting marine ecosystems altering the distribution and

abundance of organisms, with implications for fisheries and food security. This

warming-induced reshuffle in species abundance could bring threats and

opportunities to the fisheries, but needs to be assessed to promote effective

actions and to foster resilience. We analyzed the density and distribution patterns

of deep-sea rose shrimp (Parapenaeus longirostris), as well as identified the main

environmental have identified the environmental drivers shaping its habitat along

the western Mediterranean (Iberian Peninsula) during the period 2001–2020.

Using spatial distribution models developed concurrently with an ensemble of

four Regional Climate Models (RCMs), we have projected the density of this

species during the next century under two climate scenarios (RCP4.5 and

RCP8.5). Bathymetry and sea bottom temperature drove the density of the

species, leading to a marked northward expansion during the last two decades.

Our results projected an increase in its distribution and especially in density

throughout the area along the 21st century, mirroring the effect of global

warming. Consequently, the most distant period (i.e. 2100s) and the warmest

scenario (RCP8.5) presented also the highest densities and low internal variability

of the ensemble. We discussed the power of assessing uncertainties using a RCM

ensemble, particularly under complex oceanographic features, to bring robust

information for an effective scientific advice to fisheries management.
KEYWORDS

spatial distribution model, regional climate mode, demersal fishing resources, climate
change, fisheries resilience, Parapenaeus longirostris
1 Introduction

Marine species are spatially distributed based on their habitat preferences, with a

pervasive influence of oceanographic processes and environmental conditions on the

abundance and distribution of their populations (Orio et al., 2019). Expanding the

knowledge on habitat preferences is especially crucial in the current context of global
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change, as water warming, pollution and overfishing are altering the

structure and function of marine ecosystems (Barange et al., 2018;

Issifu et al., 2022). Species distribution models (SDMs) combined

with climate change projections is a powerful tool to assess

future species response (Townhill et al., 2023). To develop

reliable projections is crucial, thus derived uncertainties should

be addressed and considered to provide robust and useful

information to plan for the protection of marine ecosystems

and the sustainable use of their living resources (Davies et al.,

2023). Uncertainties derived from physical modelling could not

be overlooked, particularly in marginal seas with intense

atmospheric forcing and complex oceanographic dynamics such

as the Mediterranean basin (Ruti et al., 2016). To address these

issues, we propose here a widely used approach in climate science,

an ensemble of simulations gathering similar models outputs that

followed a standardized methodology.

Comprising all the raised issues, our target species here was the

deep-water rose shrimp (Parapenaeus longirostris), a decapod

crustacean with a wide geographic distribution along the Atlantic

Ocean. Its easternmost distribution ranges from northern Iberian

Peninsula to southern Angola, including the Mediterranean Sea

(Sobrino et al., 2005). It is a fast-growing demersal species that

inhabits muddy and sandy bottoms mainly of the deep shelf and

upper slope between 100 and 400 m depth (Tom et al., 1988;

Fortibuoni et al., 2010), although its general bathymetric range can

encompass from 20 to 750 m (Sobrino et al., 2005). Several factors

have been suggested as drivers of the abundance and distribution of

this species: sea temperature and salinity (Benchoucha et al., 2008;

Mingote et al., 2024), interactions between wind and marine

currents (Ligas et al., 2011), biomass of primary producers

(Guijarro et al., 2009) and fishing effort (Abelló et al., 2002;

D’Onghia et al., 2012).
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Deep-water rose shrimp is a key fisheries resource in the

Mediterranean, due to its high economic value (Sbrana et al.,

2006; Politou et al., 2008; Guijarro et al., 2009), being more

abundant in the eastern and central basins (Ligas et al., 2011;

Colloca et al., 2014). This species is included as target species in

the Regulation (EU) 2019/1022 of the European Parliament and of

the Council, of 20 June 2019, establishing a multiannual plan for the

fisheries exploiting demersal stocks in the western Mediterranean

Sea which aims to sustainably manage demersal stocks in the

western Mediterranean. Its current catches are provided by

bottom trawl fisheries and represent more than a quarter of total

decapods crustaceans landings in the area (FAO Fishery and

Aquaculture Global Statistics, 2023). Over the past few decades,

landings have consistently increased, highlighting its importance in

the fisheries sector. This increment can be attributed to shifts in

fishing strategies (Mingote et al., 2024), with fleets targeting higher-

value decapod crustaceans due to declining of fish stocks, as well as

for the increase of abundance of the species in the area.

In western Mediterranean, the deep-water rose shrimp is also

one of the most economically important species, with a marked role

of the Alboran Sea (Figure 1) in terms of landings. Total landings of

the species along the Spanish Mediterranean ranged from 65 to 600

tons per year from 2001 to 2015. However, since 2016 a noticeable

rising landings trend was registered, reaching minimum of 620 tons

per year and maxima of 1,750 tons in 2021 and becoming one of the

most important resources for the bottom trawl fleet.

In this study we aim to analyze the recent trends in the

distribution of deep-water rose shrimp along the western

Mediterranean to project its future potential habitat and density

during the 21st century. We started from the hypothesis that this

species is strongly controlled by its habitat availability and

environmental drivers here, responding to recent environmental
FIGURE 1

Procedure to derive the Spatial Distribution Models (SDM) from MEDITS surveys, local regression models: Generalized Additive Models (GAM) and
projections based on future climate change scenarios using an ensemble of Regional Climate Models (RCMs). Representative Concentration Pathway
(RCP) are the emissions scenarios proposed by the Intergovernmental Panel on Climate Change (IPCC): RCP4.5 and RCP8.5.
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trends. Therefore, first we disentangle the environmental drivers of the

occurrence and abundance of the species, using regression models of

the habitat parametrized with in situ observations, combined with

oceanographic data, to explain recent trends in fisheries-independent

and dependent data. Then habitat models were coupled with an

ensemble of regional climate model projections for the middle and

final decades of the present century, to project the distribution and

densityof the species and toassess the robustnessof thepredictionsand

uncertainties derived from the projection process.
2 Materials and Methods

We followed a step-by-step procedure with the following

milestones (Figure 1): (i) exploration of the recent trends in the

distribution range and abundance of the species, with fisheries-

independent (oceanographic research surveys) and fisheries-

dependent data (bottom trawl fleet landings); (ii) assessment the

habitat preferences of the species, using an aprioristic set of

environmental variables as potential predictors; (iii) modelling the

influence of environment on its occurrence and abundance; (iv)

projection of its distribution and density for the middle and final

decades of the 21st century, using concurrently the main

explanatory drivers and an ensemble of simulations with different

greenhouse gas concentration scenarios adopted by the

Intergovernmental Panel on Climate Change (IPCC); and (v)

computation of the robustness of the forecasts.
2.1 Biological data: Abundance
and distribution

Fisheries-independent data come from MEDITS research

surveys, carried out annually during May-September along the
Frontiers in Marine Science 03
northern Mediterranean, using an experimental bottom trawl to

assess demersal fishing resources (Bertrand et al., 2002; Spedicato

et al., 2019). The sampling strategy of these research surveys follows

standard protocols (MEDITS group, 2017). Data used in the present

study covered the period 2001–2020, the depth range 40-800 m and

the Geographic Sub-Areas (GSAs) 1, 2, 5 and 6 (Figure 2A),

established by the General Fisheries Commission for the

Mediterranean (GFCM), which encompass the westernmost range

of the Mediterranean basin (Iberian Peninsula and Balearic

Is lands) . More information about MEDITS sampling

methodology is included in Supplementary Information.

Data on standardized density (individuals/km2) of deep-water

rose shrimp were compiled from a total of 3,822 sampling hauls

(1,025 species presences and 2,797 absences; Supplementary Table

S1). These samples were aggregated in a 0.1x0.1° grid (ca. 100 km2)

and the proportion of presence and abundance of the species per

each cell and year was calculated, to avoid bias derived from varying

sampling effort over time. Subsequently linear regression with time

(year) was computed per each cell and only significant positive

slopes (p-value<0.05) were retrieved. The calculations were done

using MATLAB v.R2010b and plotted with “M Map: A mapping

package for MATLAB”, v.1.4m (www.eoas.ubc.ca/~rich/map.html).

As fisheries data, landings of deep-water rose shrimp along the

period 2001–2021 were used to estimate nominal and standardized

Catch Per Unit of Effort (CPUE), following the methodology by

Soto et al. (2002) as a proxy of its abundance. More detailed

information about the methodology applied to estimate CPUE is

included in Supplementary Information. The nominal CPUE has

variations, mainly associated with changes in the characteristics and

composition of the fishing fleet (factors related to catchability;

Hilborn and Walters, 1992) and environmental factors (factors

related to abundance; Sund et al., 1981). To avoid biases related to

these aforementioned factors, catch indices were standardized

(Beverton and Holt, 1959) by means of Generalized Linear
FIGURE 2

(A) MEDITS hauls (2001–2020) and GSAs included in this study. The colours map indicates the depth of the seabed (0-1000m). (B) CPUE nominal
and standardized of landings for the main fishing harbours grouped by subregions, line colours match the location mark in (A): Catalonia (pink dots),
Gulf of Valencia (brown dots), Gulf of Alicante (blue dots), Andalucia (red dots) and Mallorca (green dots).
frontiersin.org

http://www.eoas.ubc.ca/~rich/map.html
https://doi.org/10.3389/fmars.2024.1494177
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
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Models (GLM; Punt et al., 2000). The GLM included the nominal

CPUE as a response variable, being the explanatory variables factors

associated with abundance, catchability and random error.

Fishing landings were analysed for the most important fishing

harbours along the whole Mediterranean coast of Iberian Peninsula,

grouped by sub-regions (Figure 2A): Catalonia (Roses and

Tarragona), Gulf of Valencia (GoV: Cullera and Denia), Gulf of

Alicante (GoA: Santa Pola and Villajoyosa) and Andalucıá (Almerıá

and Velez-Málaga). Data from the Fish Auction of Palma (Balearic

Islands), where all the fishing landings from Mallorca harbours are

commercialized, were also used. Nominal CPUE was fitted using a

gamma distribution with a logistic link and explained deviations of

46.3%. Finally, the nominal CPUE was replaced by the CPUE

estimated by the model, obtaining the standardized CPUE.
2.2 Environmental data

Nine environmental variables were considered as potential

predictors (Table 1), including main previously suggested drivers

of habitat preference for deep-water rose shrimp: temperature and

salinity (Sbrana et al., 2006; Fortibuoni et al., 2010) and surface

chlorophyll, as proxy of biomass of primary producers in the water

column (Guijarro et al., 2009). More information about these

variables is included in Supplementary Information.

Data were mostly extracted from Copernicus Marine Environment

Monitoring Services (CMEMS; https://marine.copernicus.eu/), which
Frontiers in Marine Science 04
use remote sensing observations and include reanalysis products

specifics for the Mediterranean (Table 1). Monthly data were

averaged for the spring-summer season, matching the timing of

MEDITS surveys (May-September) and all variables were

reprocessed to match the same grid of 0.1x0.1° spatial resolution

used for biological data (see Section 2.1). All environmental

variables were explored for collinearity, outliers and missing data,

before being used in the analysis and modelling (Zuur et al., 2009).

Finally, values of the selected environmental variables were

extracted from all MEDITS hauls locations where the species

was captured, using extract function from “raster” R package

(Hijmans, 2023).
2.3 Climate change projections

A set of simulations (ensemble) were gathered from four

downscaled Regional Climate Models (RCMs) (Supplementary

Table S2), to describe potential future conditions in the western

Mediterranean, under the frame of the Coupled Model

Intercomparison Project Phase 5 (CMIP5). This sub-basin

presents complex oceanographic features (e.g. fronts, deep water

formation) that need to be properly captured in the models, through

using high-resolution simulations (Ruti et al., 2016; Schoeman

et al., 2023).

We followed previous similar efforts (e.g. CERES project;

Maynou et al., 2020) for the Representative Concentration
TABLE 1 Summary of the environmental variables considered as potential predictors to develop species distribution models of deep-water rose
shrimp (Parapenaeus longirostris) in the western Mediterranean.

Variable Period Type of data Source and product

Hydrological variables

Sea Surface Temperature: SST (°C) 1982–2020 Satellite
SST_MED_SST_L4_REP_OBSERVATIONS_010_021
(https://doi.org/10.48670/moi-00173)

Sea Bottom Temperature: SBT (°C) 1987–2020 Reanalysis (simulation)
MEDSEA_MULTIYEAR_PHY_006_004
(doi: 10.25423/
CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1)

Sea Surface Salinity (SSS) 1987–2020 Reanalysis (simulation)
MEDSEA_MULTIYEAR_PHY_006_004 (doi: 10.25423/
CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1)

Sea Bottom Salinity (SBS) 1987–2020 Reanalysis (simulation)
MEDSEA_MULTIYEAR_PHY_006_004 (doi: 10.25423/
CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1)

Mixed Layer Depth: MLD (m) 1987–2020 Reanalysis (simulation)
MEDSEA_MULTIYEAR_PHY_006_004
(doi: 10.25423/
CMCC/MEDSEA_MULTIYEAR_PHY_006_004_E3R1)

Biogeochemical variables

Chlorohyll a: CHL(mg m-3) 1998–2020 Satellite
OCEANCOLOUR_MED_CHL_L4_REP_OBSERVATIONS_009_078
(doi: 10.48670/moi-00300)

Integrated Chlorophyll between 0 and 150 m depth:
CHL_INT (mg m-2)

1999–2020 Reanalysis (simulation)
MEDSEA_MULTIYEAR_BGC_006_008
(doi: 10.25423/cmcc/medsea_multiyear_bgc_006_008_medbfm3)

Integrated phytoplankton biomass between 0 and
150 m depth: C_INT (mgC m-2)

1999–2020 Reanalysis (simulation)
MEDSEA_MULTIYEAR_BGC_006_008
(doi: 10.25423/cmcc/medsea_multiyear_bgc_006_008_medbfm3)

Bathymetry

Bathymetry (m) – – GEBCO (GEBCO Compilation Group, 2023)
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Pathways (RCPs) 4.5 and 8.5 greenhouse gas concentration

scenarios. RCP4.5 and RCP8.5 represent moderate and high

greenhouse gas concentration, that increase radiative forcing on

Earth by 4.5 and 8.5 Wm−2, respectively, at the end of the 21st

century. All the simulations outputs were interpolated to the same

grid (0.1x0.1°) and bathymetry. The climatological values

corresponding to May-September were extracted and averaged for

2006–2020 (present, representing the current conditions), middle

21st century (2040–2050, coded as 2050s) and the end of the 21st

century (2090–2100, coded as 2100s). We followed similar widely

implemented approaches for projecting shifting spatial distribution

of marine species (Assis et al., 2018).

Bias corrected maps were computed subtracting delta values per

cell from original projection maps. Delta values are the difference

between the original projection of 2006–2020 (“present”) and the same

overlapping period from the physical reanalysis of the Mediterranean

(Table 1 and Supplementary Table S2). This reanalysis included data

assimilation and properly captured the main hydrological and

biogeochemical features of this area (Ramirez-Romero et al., 2020).

Furthermore, the performance of each ensemble member

(Supplementary Table S2) was assessed using the physical reanalysis

as reference and collected in a Taylor diagram (Taylor, 2001)

(Supplementary Figure S4). All the model details and validation

could be found in supplementary information.
2.4 Statistical analysis

To avoid overfitting and to reduce the correlation and

collinearity between variables, we filtered the initial set of

predictors based on two metrics. First, all predictor covariates

were examined using Pearson’s rank correlation (Wood, 2006).

Pairs of variables with high correlation values (Pearson correlation;

r>0.7) were identified and only one of the correlated pairs was

included in the modelling process (Lezama-Ochoa et al., 2017).

Subsequently, multicollinearity between predictor variables was

tested by calculating the variance inflation factor (VIF) with a

cutoff value of 5 (Hahlbeck et al., 2017; Lopez et al., 2020) and using

the corvif function from the “AED” package in R (Zuur et al., 2009).

As a result, highly correlated and multicollinearity variables were

tested separately during the modelling, and only the one with the

highest total explained variance was included in the final models.

For the spatial distribution modelling we used a two-stage

approach to predict habitat suitability in density of deep-water

rose shrimp, as the survey data was inflated to zero (Barry and

Welsh, 2002). Generalized Additive Models (GAM; Hastie and

Tibshirani, 1990; Wood, 2006) were used to build two models: (i)

a binomial model (presence/absence) to predict the occurrence of

the species, which was fitted through a binomial distribution with a

logistic link function; and (ii) an abundance model (truncated; all

zeros excluded), which was fitted through a Gamma distribution

with a logarithmic link function.

The GAMmodels were fitted in the R software using the “mgcv”

package (Wood and Wood, 2023), where the degrees of freedom of

the smoothing functions were limited to 10 for the latitude and

longitude interaction spline (spatial component) in the binomial
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model and for the abundance model, achieving the best fits. For the

explanatory variables, the degrees of freedom of the smoothing

functions were limited to 5 in bathymetry and 4 in sea bottom

temperature. A forward step-wise variable selection procedure and

the best model was selected based on Akaike Information Criterion

(AIC), the unbiased risk estimator (UBRE) (Burnham and

Anderson, 2004), significant explanatory variables and the highest

explained deviance. These two models were combined by

multiplying the predictions from both steps to obtain the final

predicted value or preferred habitat model.

The evaluation of the predictive model of density was carried

out in two phases: (i) for the model of occurrence and abundance,

correlating the occurrence and the abundance predicted and

observed by using the Pearson correlation coefficient (r); and (ii)

for the binomial model by using the area under the receiver

operating curve (AUC) (Fielding and Bell, 1997; Elith et al.,

2006), and specificity, sensitivity, and True Skill Statistic (TSS)

(Allouche et al., 2006). This model validation was performed using

the “PresenceAbsence” R package (Freeman and Moisen, 2008).

The spatial structure of the forecasts, derived from the

occurrence models in the three time windows (present, 2050s and

2100s) and taking into account the two different warming scenarios

(RCP4.5 and RCP8.5), were compared using Schoener and

similarity statistics (Warren et al., 2008). These analyses were

performed using the “NicheOverlap” function of the “dismo”

package (Hijmans et al., 2011) within the R software. In addition,

we compared abundance and density maps using Pearson’s r spatial

correlations with the “corLocal” function (“R raster” package;

Hijmans, 2023). The spatial distribution model, evaluation

current predictions and validation projections details could be

found in Supplementary Information.
3 Results

3.1 Recent distribution and density trends

The analysis of MEDITS data for the period 2001–2021 showed

that the initial presence of the deep-water rose shrimp was mainly

restricted to the southernmost part of the study area (GSAs 1, 2 and

southern part of GSA 6; Figure 3A). However, density increasing

trends were registered along the two-decades period at the central

and northernmost areas (GSA 6) and noticeably around the Balearic

Islands (GSA 5; Figure 3B). The CPUEs of this species shared the

same patterns. Initially, the highest catches were found in the

southernmost basin and since 2007 a rising trend was registered

in central and northernmost areas (GSAs 5 and 6), reaching similar

levels in the whole area during the recent years (Figure 2B).
3.2 Environmental drivers and habitat
distribution models

According to the cross-correlation matrix of the environmental

variables included in the models and their variance inflation factors:

Sea Bottom Temperature (SBT) was highly correlated with Sea
frontiersin.org
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BottomSalinity (SBS), Integrated PhytoplanktonCarbonBiomass and

Integrated Chlorophyll were also highly correlated, bathymetry was

highlycorrelatedwithSBS (SupplementaryFigureS1A)andVIFvalues

indicatedmulticollinearitybetween them(SupplementaryFigureS1B).

Bathymetry, SBT and spatial component (latitude-longitude

interaction) were the main drivers of the occurrence and

abundance of the deep-water rose shrimp, with the greatest

explained deviations (46.3 and 50%, respectively; Table 2). The

most important covariate to explain the occurrence and abundance

of the species was latitude-longitude interaction, with an explained

deviation of 32.7 and 47.9%, respectively, followed by bathymetry

with 29.8 and 19.3%, respectively and finally SBT with 12.8 and

17.2%, respectively.

For the predictive performance of species occurrence, the Pearson

correlation coefficient (r) ranged from 0.58 to 0.59 and for abundance it

was 0.40-0.41 (Supplementary Table S1). In addition, the occurrence

model indicates a good degree of discrimination between presences and
Frontiers in Marine Science 06
absences (AUC>0.5), good ability to fit true positive and negative

predictions (SPEC and SENS ranged between 0.5 and 0.8) and good

degree of similarity between the occurrence of the species and the

available evidence (TSS ranging between 0.2 and 0.55). The spatial

autocorrelation of the residuals of the final models indicates the

absence of significant spatial autocorrelation in the residuals of the

models of presence (Moran’s I= 0.11; p-value= 0.45) and abundance

(Moran’s I= 0.69; p-value= 0.24). The species had occurrence and

abundance maxima between 200 and 500 m depth (Figure 4).

Regarding the SBT, both GAM models showed positive linear

responses, increasing probabilities with higher SBT, particularly from

ca. 15.5°C. Predictive maps showed an increasing northward gradient

along the north-western Mediterranean, mainly due to SBT. All

predictive maps for the density of the species are shown in

Supplementary Figure S2.

SBT patterns matched the deep-water rose shrimp distribution

shift (Figure 3; Supplementary Figure S3). During the last decades
FIGURE 3

(A) Average presence of deep-water rose shrimp (Parapenaeus longirostris) in the sampling stations from the MEDITS bottoms trawl between 2001
and 2020; and (B) Significant slope values (log10; p-value<0.05) from the linear regression of density over time for each grid cell.
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(2001–2020), the southernmost area (GSA 1) was the warmest, but

the central and northern areas (GSAs 5 and 6) presented the highest

linear warming trends (Supplementary Figure S2).
3.3 Projections

Overall, the ensemble members (four RCMs) reproduced the

observed patterns at present conditions (2006–2020) reasonably well,

particularly for spatial correlations (Supplementary Figure S4). The

ensemble averaged maps (bias-corrected) showed progressive

warming of SBT along all the study area in both scenarios

(Supplementary Figures S5, S6), more marked in the most extreme

scenario (RCP8.5; Supplementary Figure S6). The internal variability in

theensemble (capturedby thestandarddeviation)wasgenerally larger in

the 2050s compared to the 2100s (Supplementary Figures S5, S6).

Deep-water rose shrimp are expected to slightly increase its

occupied area, with an expansion from 50 to 60% of the occupied

area. Furthermore, projected densities showed a noticeably increase

for both RCPs, rising from current estimated densities (104

individuals Km-2) to 105 individuals Km-2 (2050s) and reaching

106 individuals Km-2 at the end of the 21st century (2100s,

Supplementary Figures S5, S6). This density raise was projected in

almost the entire study area, but it was more marked in the central

and northernmost parts (GSAs 5 and 6). Figure 5

Simulations registered a good level of agreement regarding the

internal coherence of the ensemble, excepting a more divergent
Frontiers in Marine Science 07
response under RCP4.5 in 2050s. Although being the most

temporally remote period, in 2100s both RCP presented low

internal variability within the ensemble (Figure 6).

Regarding the robustness of these forecasts, in general the similarity

statisticshighlightedagood level ofoverlap in theoccurrencepredictions

of the two data sets. In fact, Schoener’s D and Warren’s I ranged from

approximately 0.87 to 0.99 for the RCP4.5 and RCP8.5 scenarios

(Supplementary Table S3). For the abundance and density maps, the

spatial correlations also indicated a high similarity between the

predictions of different models in of present, 2050s and 2100s for the

RCP4.5 and RCP8.5 scenarios (Supplementary Figures S7, S8).

Ensemble of simulations presented a high degree of match

regarding the spatial forecast of the occupied area and density of the

species (Supplementary Figure S9). In addition, the increase in

density is also spatially forecasted with a reasonably internal

coherence, particularly for the furthest future conditions and for

the RCP8.5 scenario (Supplementary Figure S10).

4 Discussion

4.1 Monitoring climate change impacts in
the Mediterranean

The Mediterranean Sea, a climate change hot spot (Shaltout and

Omstedt, 2014; Tuel and Eltahir, 2020), presents unique oceanographic

processes typical from marginal seas, such as the thermohaline

circulation and deep-convective water formation, tightly coupled to

intense atmospheric processes (Millot and Taupier-Letage, 2005).

Because of this, a high sensitivity to climate forcing is expected in

this basin, as small changes in the water masses hydrology can induce

large variations in the thermohaline circulation and energy or mass

budgets. In addition, complex mesoscale dynamics (e.g. fronts and

filaments) are broadly present over the basin (Mason et al., 2023).

Despite this complexity, RCMs could properly capture these

main features and coordinated multi-model and multi-scenario

studies were carried out in an initiative as Med-CORDEX,

specifically for the Mediterranean (https://www.medcordex.eu/;

Ruti et al., 2016). According to previous RCM ensembles, which

provide information on the range of projection outcomes, the water

temperature in the intermediate layers (150-600 m depth) of the

western Mediterranean, where many of its key demersal fishing

resources inhabit, are expected to increase in 1.32 ± 0.16 and 2.23 ±

0.42°C for RCP4.5 and RCP8.5, respectively (Soto-Navarro et al.,

2020). Recent works even forecasted a collapse of the deep-water

formation in the Gulf of Lions by 2040–2050, attributed to an

increasing stratification potentially leading on pervasive

modifications of the basin circulation (Parras-Berrocal et al., 2022).
4.2 Habitat shifts in demersal resources:
insights from spatial distribution models

The positive linear response of the deep-water rose shrimp to

SBT (Figures 4B, D), modeled in this study from research survey

data, confirmed the fisheries-data presented here (Figure 2) and the

results by Mingote et al. (2024) in the northernmost area using
TABLE 2 Summary results for the Generalized Additive Models (GAM)
selected for modelling the occurrence and abundance of deep-water
rose shrimp (Parapenaeus longirostris).

Occurrence model

Family Binomial

Link function logit

Deviance
explained

46.30%

e.d.f p-value %Dev

Lat*Long 68.837 2e-16*** 32.7

Bathymetry 3.715 2e-16*** 29.8

SBT 2.915 0.000105*** 12.8

Abundance model

Family Gamma

Link function log

Deviance
explained

50%

e.d.f p-value %Dev

Lat*Long 188 2e-16*** 47.9

Bathymetry 2 2e-16*** 19.3

SBT 1 1.95e-06*** 17.2
The deviance explained by the model (%Dev), significance of the models (p-value) is given as
***p value < 0.001, degrees of freedom for the fit (e.d.f.) and the significant environmental
variables (Lat*Lon, latitude-longitude interaction; SBT, Sea Bottom Temperature) are shown.
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FIGURE 4

GAM partial plots for the best occurrence (A, B) and abundance (C, D) models developed for the deep-water rose shrimp (Parapenaeus longirostris).
The Y axis (logit scale) represents the probability of occurrence and abundance of the species and the X axis represents the ranges of the significant
environmental variables Bathymetry (m) and Sea Bottom Temperature (SBT; °C). The grey shaded areas represent the 95% confidence intervals
around the response curve.
FIGURE 5

Projections of deep-water rose shrimp (Parapenaeus longirostris) density (individuals Km-2) during the present (2006–2020) and the future (2050s:
2040–205; 2100s: 2090–2100), under the different Representative Concentration Pathway (RCP) greenhouse gas concentration scenarios adopted
by the Intergovernmental Panel on Climate Change (IPCC): RCP4.5 (A-C) and RCP8.5 (D-F).
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landings. This species has been favored in terms of abundance and

density, due to the water warming affecting the Mediterranean

during recent decades (Colloca et al., 2014) and, therefore, can be

considered a sentinel of climate change (Hazen et al., 2019). Given

that the species is an important component of demersal crustacean

communities (e.g. Abelló et al., 2002) and fishing resources

(Bertrand et al., 2002; Spedicato et al., 2019), this finding is

particularly useful for early detecting warming hotspots in deep

ecosystems, where tracking changes in communities is challenging.

Although water temperature above seabed has been validated as a

good descriptor of habitat suitability for this species in the western

Mediterranean (Abelló et al., 2002; Colloca et al., 2014; Mingote et al.,

2024), our forecasting results couldbe considered in the future for their

improvement. The spatial distribution of demersal species can be

projectedmore accurately and precisely by incorporatingmechanistic/

physiological or density-dependent effects, among other factors.

Moreover, the predictions were carried out without taking into

account other factors such as fishing effort, biotic interactions (e.g.

competition and predation, reproduction/fecundity rates) and

ecological processes, such as dispersal limitations or habitat

connectivity. This simplification may limit the accuracy of

predictions, especially for ecologically complex systems.
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4.3 Impact of global warming and
overexploitation on Mediterranean fisheries
and the need for adaptive
management strategies

The warming progression along the Mediterranean Sea can

extensively alter the availability of fishing resources (e.g. Ben Lamine

et al., 2022), emerging as an essential factor for the assessment and

management offisheries. It becomes especially relevant in areas like the

Mediterranean,wheremost demersal stockshave beenoverexploited for

long time (Vasilakopoulos et al., 2014), generally impaired by a high

fishing pressure, combined with the low selectivity of bottom trawling

(Colloca et al., 2013). As a consequence, most commercial species are

currently overexploited (FAOFishery andAquacultureGlobal Statistics,

2023) and show truncated size- and age-structures of their populations,

which can cause then the loss of resilience in the face of climate change

(HilbornandWalters, 1992;Pauly andZeller, 2016;Barange et al., 2018).

In fact, the synergistic effects of fishing-induced demographic changes

and climate variation onMediterranean fish population dynamics have

been already described (Hidalgo et al., 2011).

Understanding medium and long-term changes in marine

ecosystems allows fishing stakeholders to anticipate potential changes
FIGURE 6

(A) Deep-water rose shrimp (Parapenaeus longirostris) density in individuals Km-2 and (B) percentage of occupied area forecasted for each member
of the ensemble of projections during: present and the future (2050s: 2040–2050; 2100s: 2090–2100), under different Representative
Concentration Pathway (RCP) greenhouse gas concentration scenarios adopted by the Intergovernmental Panel on Climate Change (IPCC): RCP4.5
and RCP8.5. The points represent each one of the ensemble members (Regional Climate Models CMIP5, Supplementary Table S2).
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in exploited resources in the coming decades. This enables them to

propose adaptation strategies to minimize climate change impacts and

regulate fishing efforts. These strategies are crucial, as climate-driven

changes in the distribution, abundance and/or migration of species

might not align with fishing efforts, due to the complex response of the

socio-economicsystem(Barangeetal., 2018).Thisadaptation,definedas

a “process of adjustment in ecological, social or economic systems to

actual or expected climate and its effects” (IPCC, 2014), has been

insufficiently considered for Mediterranean fisheries. In fact, National

Adaptation Plans regarding climate change generally show limited

references to adaptation measures for fisheries (Hidalgo et al., 2018).

The predictions and projections on the impact of climate on

fisheries must be made at regional and local scales, where historical

data series can contribute to improving complex models. These scales

are particularly suitable for adapting fisheries industries and fisheries

management, since global models are of limited value (Brander et al.,

2013). By focusing on regional and local scales, it is possible to tailor

strategies to the specific conditions and challenges of different areas.

This allows for more precise and effective adaptation measures that

take into account local ecosystem dynamics, socio-economic factors

and community needs. Adapting at these scales ensures that fishing

sector can respond more accurately to the impacts of climate change at

different regions, leading to more sustainable and resilient fisheries. In

this context, the present results are even more crucial considering that

the deep-water rose shrimp is one of the six target species under

Regulation (EU) 2019/1022 of the European Parliament and the

Council, which aims to sustainably manage demersal stocks in the

western Mediterranean. The implementation of this multi-annual plan

is leading to a reduction up to 40% in the fishing days of the bottom

trawl fleet during the recent years. According to our results, this

reduction would not be fully justified in the case of this species.

In conclusion, this study improves the understanding of the habitat

preferences and current and future distribution of one of the most

relevant demersal species in the western Mediterranean. Our results

indicate a northward expansion and an increase in the density of the

species, mainly driven by warming trends of water above seafloor.

These findings are fundamental to develop effective fisheries

management strategies in the face of global warming, ensuring the

sustainability of this key fishing resource. The use of a RCM ensemble

has proven to be advantageous in providing robust and ecologically

interpretable projections, ultimately contributing to better scientific

advice for fisheries planning adapted to environmental changes caused

by global warming.
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