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Assessing extreme significant
wave height in China’s coastal
waters under climate change
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of Engineering, Ocean University of China, Qingdao, China
Accurately estimating the return values of significant wave height is essential for

marine and coastal infrastructure, particularly as climate change intensifies the

frequency and intensity of extreme wave events. Traditional models, which

assume stationarity in wave data, often underestimate future risks by neglecting

the impacts of climate change on wave dynamics. Combining time series

decomposition and recurrence analysis, the research develops a nonstationary

framework to predict significant wave height. The stochastic component is

modelled using a stationary probability distribution, while the deterministic

component is predicted based on sea surface temperature projections from

CMIP6 climate scenarios. The model evaluation demonstrates strong predictive

capability for both stochastic and deterministic components. Application of the

model to China’s coastal waters reveals significant discrepancies between stationary

and nonstationary return value estimates. Compared to conventional distribution

models, the nonstationary model predicts substantial increases in extreme wave

heights. These findings underscore the importance of adopting nonstationary

models to more accurately assess future risks posed by extreme wave events in a

changing climate.
KEYWORDS

nonstationary model, significant wave height, return value, climate change,
coastal engineering
1 Introduction

Reliable estimates of the return values for sea state parameters, particularly significant

wave height (SWH), are crucial for ocean and coastal engineering. Traditionally,

predictions of SWH for such applications have been based on probability distribution

models that presuppose the stationarity of oceanographic data over time. However, with

the continuous acceleration of global warming, there is growing recognition that the

frequency and intensity of extreme wave events are nonstationary, exhibiting temporal

variability (Mal et al., 2018; Lee et al., 2023). Numerous studies, whether based on empirical

observations, satellite data, or wave numerical simulations, consistently demonstrated the

nonstationary behavior of oceanic variables (Woo and Park, 2017; Shi et al., 2019; Reguero
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et al., 2019; Young and Ribal, 2019; Patra et al., 2020; Wang et al.,

2021, 2022; Miao et al., 2024). Neglecting the nonstationary

characteristics in wave systems can lead to an underestimation of

extreme events in frequency and severity (Carter and Challenor,

1981; Koutsoyiannis and Montanari, 2007; Milly et al., 2008; Šraj

et al., 2016). Therefore, it is crucial to develop distributional models

that take into account the non-stationarity of meteorological and

oceanographic variables to refine probabilistic descriptions of

oceanic systems, particularly for accurately estimating return

values of extreme events under climate change (Katz et al., 2002;

Rootzén and Katz, 2013).

To address the limitations of traditional stationarymodels, various

nonstationary probability distributions, including the generalized

linear models and generalized additive models, have been developed

for describing the probabilistic characteristics of oceanic variables

under a changing climate (Rigby and Stasinopoulos, 2005). These

models effectively incorporate time trends, seasonality, and other

time-dependent covariates, offering a more accurate representation

of the wave climate (Strupczewski et al., 2001; Galiatsatou and Prinos,

2011; Cheng et al., 2014). It is important to note that it is always

insufficient to use linear functions to characterize nonstationary

distribution parameters. Recent studies have explored the

application of nonlinear functions in nonstationary modeling,

demonstrating their potential to enhance the predictive capabilities

(Um et al., 2017). This approach often involves integrating time

covariates (Cannon, 2010; Semenov and Stratonovitch, 2010;

Vasiliades et al., 2015; Galiatsatou et al., 2016), physical covariates

(Tramblay et al., 2013; Mondal and Mujumdar, 2015; Ouarda et al.,

2020), or a combination of both (Westra and Sisson, 2011; Agilan and

Umamahesh, 2017) into extreme value models. While nonstationary

probability models are effective in fitting current data, they often prove

insufficient in predicting future trends accurately due to possible

changes in existing patterns driven by climate evolution.

Consequently, predictions from these models can differ significantly

from those derived by physical-causal simulations (Ammar et al.,

2020). Additionally, the subjective selection of covariates and the

functions used to relate them to model parameters introduce

significant uncertainty and variability into the predictions (Serinaldi

and Kilsby, 2015; Agilan and Umamahesh, 2018). These challenges

collectively complicate the generation of reliable risk forecasts using

such models (Villarini et al., 2009; Jayaweera et al., 2023).

Another approach to nonstationary probability analysis is the

transformed stationary method, which converts nonstationary data

into stationary signals, thereby allowing the use of stationary

probability distribution models (Mentaschi et al., 2016). This

transformation is generally achieved through statistical techniques

(Parey et al., 2010). The method’s strengths, including its ability to

effectively convert nonstationary data into stationary form, avoid

reliance on parametric assumptions, and enable the use of

stationary extreme value analysis, make it a robust tool for

processing nonstationary time series (Vanem, 2018; Takbash and

Young, 2020; Li et al., 2023b). However, as with other nonstationary

distribution models, this method encounter difficulties in predicting

future ocean patterns accurately, largely due to the limited

understanding of future climate dynamics.
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A process is often described as a mixture of a time-dependent

deterministic signal, such as long-term trends or periodic patterns,

and a stochastic signal with unchanging statistical properties over

time (Kottegoda, 1980). This allows for the application of stationary

frequency analysis techniques to the stochastic component. However,

accurately separating the deterministic and stochastic signals within

nonstationary data remains a considerable challenge (Vidrio-

Sahagún and He, 2022). The goal of this work is to improve the

separation of these components in nonstationary time series by

integrating time series decomposition methods with recurrence

analysis. Based on this approach, a nonstationary analysis

framework for SWH is developed. The stochastic component is

modelled using a stationary probability distribution, while

the deterministic component is predicted by establishing its

relationship with sea surface temperature (SST). The deterministic

signal of future SWH is then forecast using future SST projections

under climate scenarios from CMIP6. This nonstationary prediction

framework for the return values of SWH is applied to the China’s

coastal waters.

The rest of this paper is organized as follows. Section 2

introduces the nonstationary model framework and the data used

in this study. Section 3 presents the application of the nonstationary

model to SWH in China’s coastal waters, while Section 4 discuss the

future scenarios of the SWH return values. Section 5 summarizes

the main conclusions.
2 Materials and methods

2.1 Nonstationary modelling approach

This research utilizes a nonstationary probability analysis

approach, which involves two key steps: decomposing and

predicting. Singular spectrum analysis (SSA) was selected for

decomposition due to its proven effectiveness in separating

nonstationary time series into deterministic and stochastic signals,

as demonstrated in a comparative analysis by Yang and Dong

(2023). Their findings showed that SSA exhibited strong flexibility

in handling diverse datasets and successfully captured complex

nonstationary patterns. Thus, SSA was employed to decompose the

SWH (Hs) data for a more precise signal separation.

The Hs signal was decomposed into r time series components, Y =

[Y1, Y2, …, Yr], using SSA method, followed by assessing the

deterministic level of each Yi components using recurrence

quantification analysis. Recurrence is an essential feature of natural

processes, reflecting the behavior of dynamic systems, and is visualized

using a recurrence plot (Eckmann et al., 1995). The recurrence plot is

defined by the Heaviside step function:

Rpq = Q(e − jj zp − zq jj ) (1)

where e denotes a threshold distance, determined according to

the algorithm suggested by Prado et al. (2018), and zp represents the

points in the phase space:

zp = (Yi(pDt),Yi((p + t)Dt),⋯,Yi((p + (m − 1)t)Dt)) (2)
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where Dt refers to the time interval between successive samples,

t represents the time delay estimated using mutual information

function, m denotes embedding dimension calculated by false

nearest neighbours algorithm (Kantz and Schreiber, 2004).

Recurrence plot offers a visual depiction of recurrences, allowing

for an examination of phase space trajectories. To quantify the

determinism of each time series component, the determinism rate

(DET), which indicates the distribution of diagonal line lengths

within the recurrence plot, was used:

DET =
o

N−(m−1)t

l=lmin

lP(l)

o
N−(m−1)t

l=1

lP(l)

(3)

in which P(l) represents the frequency of diagonal line lengths,

and is defined as:

P(l) = o
N−(m−1)t

p,q=1
(1 − Rp−1,q−1)(1 − Rp+l,q+l)

Yl−1

j=1

Rp+j,q+j (4)

Generally, higher DET values correspond to longer diagonal

lines, indicating deterministic processes, while lower DET values are

associated with stochastic processes, which yield shorter diagonal

lines. Following the recommendation of Yang and Dong (2023,

2024) and Huang et al. (2024), time series components with a DET

value greater than 0.98 were classified as deterministic, while

components with lower DET as stochastic.

After the decomposition process, the next step involves predicting

the deterministic part. A key challenge in nonstationary modeling of

real sea states is accurately characterizing the deterministic time series

and making dependable predictions beyond the observed data.

Research suggests that the nonstationary behavior of ocean waves is

often influenced by natural climatic variability (Davies et al., 2017; Lin-

Ye et al., 2017). By linking the deterministic process to climatic factors

that can be forecasted through physical models, nonstationary risks

under changing climate conditions can be better assessed (Serinaldi and

Kilsby, 2015). Given that SST is a critical driver of global climate

patterns and is highly predictability (Ham et al., 2019), this variable was

chosen to forecast the temporal evolution of deterministic component

ofHs. To model the relationship between SST and SWH, a Long Short-

Term Memory (LSTM) method was utilized, as LSTM networks are

particularly effective at characterizing the long-term dependencies of

time series data, and thus adequate for meteorological and

oceanographic predictions (Schmidhuber and Hochreiter, 1997).

The stochastic component of the Hs time series was modelled

using stationary frequency analysis. Given that real sea states often

consist of multiple wave patterns, traditional probability models

may not be insufficient for accurately describing their probabilistic

characteristics. To address this, mixture models have been proposed

as a solution for capturing the complexities of wave systems (Huang

and Dong, 2019, 2020, 2021b). This work utilized the mixture

Weibull model to fit the stochastic component of Hs (Huang and

Dong, 2021a). This distribution is defined by a weighted

combination of multiple Weibull components, given by
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FHs
(h) =o

d

j=1
wjFHsj(h) (5)

d is the number of distribution components, FHsj(h) represents

the j-th Weibull component, and wj is the corresponding weight. A

clustering approach suggested by Huang et al. (2023) was used to

estimate the unknown parameters of the distribution model.

The return values for SWH under various climate scenarios can

be estimated by integrating both the predicted deterministic

component based on future SST projections and the probabilistic

distribution of the stochastic component.
2.2 Data description

This study examined the nonstationary characteristics of SWH

in the coastal waters of China, focusing on the region between 14°N

−41°N, 105°E−131°E, as depicted in Figure 1. Reanalysis datasets,

particularly ERA5, have proven effective in accurately estimating

extreme SWH by assimilating altimeter data (Hersbach et al., 2020;

Li et al., 2023a). Accordingly, hourly SWH and SST data for this

region were sourced from the ERA5 reanalysis, covering the years

1980 through 2022. The SWH data were preprocessed by extracting

extreme values at 48-hours intervals. This step was implemented to

minimize the short-time dependencies of dataset, thereby

enhancing the reliability of model results.

To assess future climate trends, SST data were sourced from the

Coupled Model Intercomparison Project Phase 6 (CMIP6). CMIP6

provides high-resolution SST projections, critical for analyzing

future climate patterns, with extensively validation against

observational data to ensure reliability (Eyring et al., 2016;

Zelinka et al., 2020). For this analysis, datasets from ssp585

scenario, a high-emission pathway characterized by substantial

increases in greenhouse gas concentrations, were used. The

dataset spans 2015 to 2100 and includes outputs from 42 climate

models, such as ACCESS-CM2, BCC-CSM2-MR, CanESM5, and

CESM2, as listed in Table 1. The ensemble mean of these 42 model

outputs was computed to predict the nonstationary process of

SWH. The ensemble approach helps account for a variety of

potential future climatic scenario and to reduces uncertainties

related to individual models, resulting in a more robust

prediction of future wave climates in the coastal waters of China.

To investigate the non-stationarity of SWH in the study region,

the spatiotemporal variability was evaluated using ERA5 wave

reanalysis data from 1980 to 2022. A sliding 10-year window was

applied to compute the 0.99 quantile of Hs based on the empirical

cumulative probability distribution. The Theil-Sen estimator was

adopted to estimate the trend slope, while the Mann-Kendall test

was utilized to evaluate the statistical significance of these trends at

each location. The spatial distribution of slope estimates, presented

in Figure 1, reveals distinct patterns across different regions of

China’s coastal waters. Notably, the East China Sea exhibits a

positive trend in SWH, while the southeastern and southwestern

areas of the study region show negative trends.
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This analysis indicates significant spatial variability in the

trends of SWH, which might be influenced by regional climatic

conditions and oceanographic processes. Rising sea surface

temperatures and changing wind patterns, driven by global

climate change, are potential contributors to these observed

trends (Hemer et al., 2013; Reguero et al., 2019). The increasing

trend in SWH, particularly in the East China Sea, suggests the

potential for more severe future wave conditions, which could have

critical implications for marine structure design and coastal risk

assessments. Relying on stationary models in this context may

underestimate the frequency and intensity of extreme wave

events, leading to inaccurate return value estimates and increased

risk. Thus, a nonstationary approach is essential to accurately

estimate return values of SWH in this region and improve risk

assessment strategies.
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3 Results

This section presents the results of the return value estimations of

SWH in China’s coastal waters using the developed nonstationary

model. To evaluate performance of this nonstationary model, the time

series were split into a training dataset (1980−2017) and a testing

dataset (2018−2022). The evaluation was performed using the

following method: first, both datasets were separated into their

deterministic and stochastic components. The stochastic component

was accessed by comparing the statistical properties of the two datasets.

If the stochastic components exhibited similar statistical characteristics,

it demonstrated that the stochastic components meet the stationarity

requirement. For the deterministic component, an LSTM framework

was employed to capture the correlation between SST and the

deterministic component of Hs. The model’s predictive accuracy was
FIGURE 1

Spatial distribution of slope estimates for SWH trends in coastal waters of China.
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tested by evaluating whether the LSTM model trained on the first 38

years of data could reliably predict the evolution of Hs in the testing

period. If the stochastic component demonstrated stationary and the

LSTM model successfully forecast the deterministic component, this

would indicate that the nonstationary model has strong

predictive capability.
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To assess the stochastic component, the cumulative distribution

functions of the stochastic components from training and testing

datasets were compared. The correlation coefficient R was

calculated to quantify the similarity between the statistical

properties of these two datasets. As shown in Figure 2A, the

correlation analysis revealed a high degree of stationarity, with
TABLE 1 Climate models used for SST projections in the ssp585 scenario.

Order Model Order Model Order Model

1 ACCESS-CM2 15 E3SM-1-1 29 INM-CM4-8

2 ACCESS-ESM1-5 16 EC-Earth3 30 INM-CM5-0

3 BCC-CSM2-MR 17 EC-Earth3-CC 31 IPSL-CM6A-LR

4 CAMS-CSM1-0 18 EC-Earth3-Veg 32 KACE-1-0-G

5 CanESM5 19 EC-Earth3-Veg-LR 33 KIOST-ESM

6 CAS-ESM2-0 20 FGOALS-f3-L 34 MCM-UA-1-0

7 CESM2 21 FGOALS-g3 35 MIROC6

8 CESM2-WACCM 22 FIO-ESM-2-0 36 MPI-ESM1-2-HR

9 CIESM 23 GFDL-CM4 37 MPI-ESM1-2-LR

10 CMCC-CM2-SR5 24 GFDL-ESM4 38 MRI-ESM2-0

11 CMCC-ESM2 25 GISS-E2-1-G 39 NESM3

12 CNRM-CM6-1 26 HadGEM3-GC31-LL 40 NorESM2-LM

13 CNRM-CM6-1-HR 27 HadGEM3-GC31-MM 41 NorESM2-MM

14 CNRM-ESM2-1 28 IITM-ESM 42 UKESM1-0-LL
FIGURE 2

Correlation analysis of the stochastic (A) and deterministic (B) components of SWH in coastal waters of China.
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most regions exhibiting an R value greater than 0.99. This strong

correlation suggests that the stochastic components of both datasets

share consistent probabilistic characteristics, supporting the

assumption of stationarity. This stability of these random

variations enhances the accuracy and reliability of the

nonstationary model, affirming its robustness for time

series forecasting.

For each location in the China’s coastal waters, the LSTM

network trained on data from 1980 to 2017 was used to predict

the deterministic components ofHs based on SST data from 2018 to

2022. These predictions were then compared with the deterministic

components extracted from the testing set, and the correlation

coefficients R was calculated to assess their consistency. As depicted

in Figure 2B, the correlation coefficient consistently exceeds 0.95

across the region, with most areas showing values above 0.985.

These results indicate a strong agreement between the predicted and

reanalysis-based deterministic components, indicating that the

LSTM model effectively captures the relationship between SST

and the deterministic components of Hs. This analysis confirms

that SST is a reliable predictor of the deterministic component

of SWH.

The evaluation of the nonstationary framework demonstrates

robust predictive performance, implying that the model can

successfully forecast both the stochastic and deterministic

components of future SWH based on historical information,

thereby ensuring reliable return value predictions.
4 Discussion

The return values of SWH in coastal waters of China were

analyzed by decomposing the time series from 1980 to 2022 into

stochastic and deterministic components. The stochastic

component was modelled using a mixture Weibull distribution,

while the deterministic component was predicted using SST

projections from CMIP6 under future climate scenarios.

Figure 3 presents the spatial distribution of stationary and

nonstationary return values of SWH associated with return

periods of 10, 25, 50, and 100 years. Figure 3A1−D1 shows the

stationary return values derived from the mixture Weibull

distribution model, while Figure 3A2−D2 (2050) and Figure 3A3

−D3 (2100) present the nonstationary return values predicted under

future climate scenarios.

The comparison between stationary results (Figure 3A1−D1)

and nonstationary predictions for 2050 (Figures 3A2−D2) and 2100

(Figures 3A3−D3) reveals a clear increasing trend in the return

values of SWH over time. Transitioning from the stationary

frequency analysis, which assumes no change in wave climate, to

the nonstationary model, which accounts for climate change,

indicates a notable intensification of extreme wave events. This

contrast is particularly evident in regions such as the East China Sea,

where wave activity is already significant, making the differences

between stationary and nonstationary models more pronounced.

The nonstationary model results indicate that extreme wave events

may be significantly underestimated if the evolving influence of climate

changing are not taken into account. The stationarymodel, which relies
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solely on historical data, neglects the increasing severity of future wave

events driven by rising sea surface temperatures and shifting

atmospheric conditions. Such underestimations present considerable

risks for coastal infrastructure and marine operations, as design

parameters based on stationary models may be inadequate to

withstand the more extreme wave conditions expected later in the

century (Reguero et al., 2019).

To provide a detailed assessment of how nonstationary

modelling affects return values of SWH, Figures 4 and 5 present

the percentage differences between nonstationary and stationary

return values for 2050 and 2100, respectively, offering insights into

the spatial distribution of these discrepancies across different

return periods.

In Figure 4, the results for 2050 reveal a noticeable increase in

wave heights predicted by the nonstationary approach compared to

the traditional frequency analysis. The most pronounced differences

are found in the northern and southwestern regions, particularly

near the Yellow Sea, Bohai Sea, and South China Sea, where return

values show increases of up to 36%. This pronounced differences in

SWH return values in these areas can be attributed to regional wind

speed trends (Xu et al., 2024). These findings suggest that even

within a few decades, nonstationary models predict substantial

deviations from stationary assumptions. Extends this analysis to

2100 (Figure 5) show that the percentage differences between

nonstationary and stationary models become even more

pronounced and geographically widespread. The magnitude of

these changes increase, indicating that there would likely be a

gradual increase in the impact of climate changing on wave

dynamics. The greater discrepancies across broader areas

underscore the accelerating influence of changing climates on

wave systems, with coastal regions being particularly affected.

Although nearshore areas typically exhibit smaller return values

due to shallow water depths (Figure 3), Figures 4 and 5 demonstrate

that the percentage increase in return values of SWH due to

evolving climatic conditions remain significant in these regions.

For example, for the 100-year return period, some coastal areas

experience increases of more than 30% in return values compared to

the stationary model. This has profound implications for designs of

maritime structures and coastal protection systems, since even

moderate increases of wave height can significantly affect the

resilience of these structures during extreme events (Goda, 2010).

The comparison highlights the risks associated with relying on

stationary models under changing climate conditions. The growing

divergence between stationary and nonstationary predictions

emphasizes the need for nonstationary models to accurately

estimate future wave conditions. Without adopting nonstationary

approaches, there is a substantial risk of underestimating extreme

wave events, leading to insufficient design criteria and inadequate

disaster mitigation in vulnerable coastal regions.
5 Conclusions

The present research developed a nonstationary framework for

analyzing SWH by integrating time series decomposition methods

with recurrence analysis. The stochastic component of the SWH
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data was modelled using a conventional probability distribution,

while the deterministic component was predicted based on its

relationship with SST. Using future SST projections from the

CMIP6 climate scenarios, we forecasted the deterministic

component of SWH and combined it with the stochastic

component to estimate return values. This nonstationary

framework was applied to the coastal waters of China to provide

more accurate predictions of future wave conditions under

changing climate scenarios.

The evaluation of the nonstationary model demonstrated strong

predictive performance. Through the decomposition of time series into
Frontiers in Marine Science 07
stochastic and deterministic components, the model effectively

captured the stationarity of the stochastic component, exhibiting a

high correlation between the training and testing datasets. Additionally,

the LSTM model successfully predicted the deterministic component

by establishing the relationship between SST and SWH, showing a

strong correlation between observed and predicted values. These results

confirm the robustness of the nonstationary framework in forecasting

future wave conditions, offering more reliable return value estimates

compared than stationary models.

The results for China’s coastal waters reveal a significant

contrast between stationary and nonstationary model
FIGURE 3

Spatial distribution of SWH return values. (A1−D1) represent results from the stationary model, while (A2−D2) (2050) and (A3−D3) (2100) show results
from the nonstationary model.
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FIGURE 5

Percentage difference in SWH return values between nonstationary and stationary models for 2100.
FIGURE 4

Percentage difference in SWH return values between nonstationary and stationary models for 2050.
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predictions. The nonstationary model, which takes the climate

change into account, projects a marked increase in the return

values of SWH for 2050 and 2100. In contrast, the stationary

model, which assumes no change in wave climate, underestimates

the future severity of extreme wave events. The comparison

highlights the necessity of incorporating climate change

considerations into future coastal and marine risk assessments,

as the nonstationary model provides a more accurate

representation of future wave conditions.

The ability of the developed nonstationary model to

incorporate both stochastic and deterministic components

ensures more robust predictions, which are critical for designs

and safety of coastal and maritime infrastructures. Future research

should focus on refining nonstationary models by incorporating

additional climate-related variables. Moreover, expanding the

application of this nonstationary approach to other oceanic and

coastal regions could also provide valuable insights into global

wave patterns under various climate scenarios, thereby supporting

more resilient disaster mitigation strategies in response to

increasingly extreme events.
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