AUTHOR=Maglietta Rosalia , Caccioppoli Rocco , Piazzolla Daniele , Saccotelli Leonardo , Cherubini Carla , Scagnoli Elena , Piermattei Viviana , Marcelli Marco , De Lucia Giuseppe Andrea , Lecci Rita , Causio Salvatore , Dimauro Giovanni , De Franco Francesco , Scuro Matteo , Coppini Giovanni
TITLE=Habitat suitability modeling of loggerhead sea turtles in the Central-Eastern Mediterranean Sea: a machine learning approach using satellite tracking data
JOURNAL=Frontiers in Marine Science
VOLUME=11
YEAR=2024
URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2024.1493598
DOI=10.3389/fmars.2024.1493598
ISSN=2296-7745
ABSTRACT=
Understanding how sea turtle species move through the environment and respond to environmental features is fundamental for sustainable ecosystem management and effective conservation. This study investigates the habitat suitability of the loggerhead sea turtle (Caretta caretta) in the Adriatic and Northern Ionian Seas (Central-Eastern Mediterranean) by developing and validating a multidisciplinary framework that leverages machine learning to investigate movement patterns collected by satellite tags Argos satellite tags. Satellite tracking data, enriched with sixteen environmental variables from the Copernicus Marine Service and EMODnet-bathymetry, were analyzed using Random Forest models, obtaining an accuracy of 80.9% when classifying presence versus pseudo-absence of loggerhead sea turtles. As main findings, sea bottom depth, surface chlorophyll (chl-a), and mixed layer depth (MLD) were identified as the most influential features in the habitat suitability of these specimens. Moreover, statistically significant differences, evaluated using t-test statistics, were found between coastal and pelagic locations, for the different seasons, in mixed layer depth, chl-a, 3D-clorophyll, salinity and phosphate. Although based on a limited sample of tagged animals, this study demonstrates that the distribution patterns of loggerhead sea turtles in Mediterranean coastal and pelagic areas are primarily influenced by sea water features linked to productivity and, consequently, to potential prey abundance. Additionally, this multidisciplinary framework presents a replicable approach that can be adapted for various species and regions.