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In challenging visibility conditions, the reliability of existing port lighting systems

is significantly affected by abrupt changes in environmental factors (primarily

stemming from ocean weather). This study proposes a cloud-edge collaborative

dimmingmodel that integrates a combined filter, enabling dynamic adaptation to

these weather variations to ensure the stability of the lighting system.

Additionally, the application of edge computing not only alleviates

computational pressure but also facilitates the model’s ability to achieve

effective regional adaptive dimming in accordance with environmental

regulations. Experimental results indicate that this method is suitable for

scenarios with unknown mutations under extreme conditions, providing a

more reliable and intelligent solution for port lighting systems within the

Internet of Things (IoT) framework.
KEYWORDS

extreme weather, port streetlights, Internet of Things (IoT), combined filtering,
adaptive dimming
1 Introduction

In recent years, global climate change has led to an increasing probability of extreme

weather events (Clarke et al., 2022). Due to the complexity and variability of weather in

coastal ports, various challenging visibility conditions (such as haze, overcast skies, and

heavy rain) frequently occur, resulting in economic losses and casualties in several coastal

cities and ports (Yang et al., 2021). Geographical factors contribute to the significant impact

of extreme weather on coastal ports (Izaguirre et al., 2021). These weather conditions can

rapidly alter the lighting environment of the port, causing dramatic fluctuations in natural

light intensity and visibility, which directly impacts the safety of vehicle movements and
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cargo handling operations (Al-Behadili et al., 2023). Therefore,

under these challenging visibility conditions, effective and reliable

port lighting systems are crucial for ensuring traffic and personnel

safety (Galbraith and Grosjean, 2019).

To ensure the safety and visual comfort of port personnel,

lighting systems are among the highest energy-consuming

components in port operations, sometimes accounting for over

70% of the port’s total energy consumption (Sifakis et al., 2021).

This has prompted many researchers to focus on the integration of

the Internet of Things (IoT, refers to the interconnection of various

physical devices via the internet, allowing them to communicate

and exchange data with each other) with port lighting systems,

exploring methods such as adjusting lighting schedules (Sun, 2019),

introducing solar-assisted lighting (Muhamad and Ali, 2018), and

optimizing energy management strategies (Prousalidis et al., 2019)

to save energy required for lighting. However, despite the important

role these lighting systems play in port safety, there is still a problem

of insufficient intelligence (Pham, 2023). Under extreme conditions,

existing lighting systems often require manual intervention and

have long response times, lacking real-time monitoring and fine-

tuning of environmental changes (Yau et al., 2020). Meanwhile,

with the widespread adoption of intelligent assisted driving, safety

hazards for logistics vehicles are becoming increasingly serious

under the influence of extreme weather (He et al., 2021).

Therefore, it is necessary to conduct further research on the

perception capabilities and adaptive regulation capabilities of port

lighting systems under extreme conditions.

In the face of extreme weather conditions, the effectiveness of

environmental perception and dimming in port lighting systems

relies not only on accurate localized weather data but also on

overcoming the influence of urban structures on roadway

monitoring (Bowden and Heinselman, 2016; Gao et al., 2024; Cao

et al., 2024). However, existing methods struggle to meet these

requirements. In recent years, although artificial intelligence

technologies such as deep neural networks (e.g., MetNet, AI

Earth) have gradually been applied to extreme weather forecasting

and can achieve minute-level short-term predictions under ideal

conditions with a resolution of up to 1 kilometer, these methods still

have limitations in model interpretability and input sample quality

(Bojesomo et al., 2021). Additionally, AI methods face challenges in

integrating heterogeneous data and computational capabilities,

making it difficult for existing port lighting systems to meet their

computational demands (Zhang and Lu, 2021; Gao et al., 2023c, a,

b; Zhang et al., 2024). Therefore, from a technical perspective, it is

necessary to introduce a cloud-edge collaborative computing model

to address the tracking and dimming issues of port lighting through

edge computing methods. This approach not only enables real-time

detection of environmental changes at the port but also ensures the

precision of dimming adjustments on the edge, thereby improving

the overall efficiency and reliability of the system while reducing

computational pressure (Saeik et al., 2021).

Since 2015, countries such as China have gradually

implemented smart streetlight infrastructure in major cities and

published relevant standards (Wang et al., 2019). These standards

define smart lighting, video capture, and mobile communication as

standard configurations for urban roadways and require the
Frontiers in Marine Science 02
deployment of weather monitoring functions at major roads,

bridges, and intersections. The deployment of these functions

enables cities to directly perceive weather changes based on edge

computing capabilities, determine dimming targets, and achieve

tracking and dimming of municipal lighting systems under extreme

weather conditions (De Paz et al., 2016). Therefore, this paper will

explore the application prospects of smart streetlights in port

lighting, focusing on adaptive dimming management methods

based on the perception of ocean weather conditions to enhance

the intelligence level of port lighting systems and ensure safe

operations. Specifically, it aims to clarify how to utilize the

information collected from smart streetlight hardware systems, in

conjunction with the physical state of extreme weather (primarily

the impacts brought by ocean conditions) in the port environment,

to improve combined tracking filters and achieve precise dimming

of port lighting.
2 Problem description

2.1 Smart lighting system description

The system composition of intelligent street lighting is

illustrated in Figure 1. It primarily consists of six components: the

lighting module, video monitoring module, power supply module,

environmental monitoring module, communication module, and

information display module. The lighting module can be configured

with either a light sensor or a photovoltaic panel. The brightness of

the light source is regulated through the lighting controller.

Currently, individual lamp control is primarily achieved through

the DC intelligent control power supply, while centralized control

of an entire street is accomplished by the centralized controller in

the power distribution cabinet. The edge controller in the power

distribution cabinet possesses enhanced computational capabilities,

enabling smooth processing of video and image streams. It also

offers a wide range of communication interfaces, such as Ethernet,

RS485/232, CAN, HDMI, LVDS, USB2.0, line out, etc., facilitating

the integration of diverse data sources and expanding various

analyt ical funct ional i t ies . The video monitoring and

environmental monitoring modules serve as the information

foundation for intelligent light poles. Equipped with various

sensor devices, the cameras primarily serve the recognition and

tracking of specific targets for urban security, while also providing

real-time monitoring of traffic flow and pedestrian movement. The

environmental sensors encompass a variety of types, capable of

measuring parameters such as temperature, humidity, particle

concentration, wind speed, wind direction, air pressure, noise,

and more. The information obtained or received by the

aforementioned modules, including weather and traffic data, can

be disseminated to pedestrians through LED display screens and

speakers mounted on the light poles. Simultaneously, the

communication module transmits this information to the big data

cloud platform of the lighting system. This transmission trend is

gradually shifting towards the development of 5G, facilitating

distributed connections while serving as small base stations to

provide external support for WIFI signals.
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Currently, the vast amount of data generated by intelligent light

poles is primarily transmitted to dedicated management and operation

platforms through optical fiber communication, as illustrated in

Figure 2. Multiple communication protocols, including MoDBUS,

DMX512, MQTT, GPRS/LTE, RPC, and HTTPS, are employed to

enable application interactions at the Internet layer. To support the IoT

information system implemented on light poles, the intelligent light

pole system requires collaborative power supply from photovoltaic

renewable energy and the grid. It is equipped with energy storage and
Frontiers in Marine Science 03
control systems to provide energy assurance for electric vehicle

charging and 5G services. Therefore, an intelligent street light, as

indicated by the green arrows in Figure 1, can be regarded as a

process that starts from the power supply module, delivers data to

various information modules, and then transmits it externally through

the communication (closed-loop) or information display (open-loop)

modules. Tracking and dimming for extreme weather conditions

deviate from the fixed path and enable information flow equivalent

to the red arrows in Figure 2.
FIGURE 2

Smart streetlights control system.
FIGURE 1

Description of smart streetlights system architecture.
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Due to the lack of unified management entities for the operation

of intelligent streetlights, different operators tend to emphasize

different aspects based on their respective business characteristics.

To ensure the general applicability of the research methodology (to

address the dimming requirements of smart streetlights under

various conditions in the port, thereby achieving a level of normal

operation and safety assurance), it is necessary to consider the

hardware configuration standards of smart streetlights. Figure 3

presents a reference specification indicating the configuration

standards. It can be observed that smart lighting, video capture,

and mobile communication are fundamental and commonly found

configurations of smart streetlights. Additionally, meteorological

monitoring is also required in urban road regulations. Therefore,

this standard can serve as a hardware constraint reference for

algorithm design, ensuring the consistency and compatibility of

the proposed methods.
Frontiers in Marine Science 04
2.2 Description of the dimming problem

The impact of extreme weather in coastal port scenarios on port

lighting systems primarily manifests in sudden changes in

meteorological conditions such as rain and fog, posing threats to

the safety of logistics vehicles and pedestrians. Extreme weather

reduces visibility, thereby affecting traffic safety and logistics

efficiency. In this context, the smart streetlights system at the port

faces photometric issues, with the adjustment target being the

luminous flux Fv. Given that existing streetlights are generally

optimized through lens design, it is assumed that they possess

directional uniformity within the specified emission angle (non-

uniformity is considered an optimization problem of the luminaire

hardware and is not included in the scope of this discussion).

Therefore, the adjustment of the luminance Lv with respect to the

emission angle Ω can be simplified as a problem of constant light
FIGURE 3

Installation scenarios and configuration of smart streetlights (Zhou, 2018).
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emission degree Mv. To further optimize the target illuminance

Ev, two ideal assumptions are made: 1) assuming that the port road

environment is fully diffusive, the illuminance can be considered

uniformly consistent within a certain range of streets; 2) assuming

that there is little difference between the light escaping at the

boundaries and entering, or that the total amount of escaping

light is small, thus considering the dynamic energy balance within

the entire study space. Although these two ideal conditions may

deviate to some extent in practical construction, they can be

effectively approximated through engineering optimization of the

lighting system. Therefore, under a fixed area conversion coefficient

KA, Ev can be expressed as:

KAEv = Mv =
Z

LvdW = dFv=dA (1)

where A is the illuminated area, measured in square meters.

Introducing extreme weather factors, it is considered that the

illuminance from the environment undergoes attenuation or

fluctuation, and environmental factors weaken the inherent

illuminance of the lighting system. It is believed that this

attenuation or fluctuation exhibits a significant dynamic range,

during which both the cone and rod cells of the human eye are

involved. The spectral luminous efficiency function for mesopic

vision is denoted as Vm, and it is defined using the MES2-system

model as Vm (Gao et al., 2018):

Vm(l, p) = ½pV(l) + (1 − p)n(l)�=M(p) (2)

where l represents the wavelength of light, p denotes a

coefficient, V (l) corresponds to the luminous efficiency function

under photopic vision, n(l) represents the luminous efficiency

function under scotopic vision, and M (p) stands for a

normalization function that is influenced by photopic luminance

and determined by visual adaptation conditions. Therefore, the

appropriate mesopic luminance, Lm, can be defined as follows:

Lm = Km

Z ∞

−∞
E(l)Vm(l, p)dl, (3)

under the given light source, where E(l) represents the spectral
radiance distribution of the light source, and Km is the maximum

spectral luminous efficiency, the luminance standard for mesopic

vision can be obtained by measuring the standard photopic

luminance and the standard scotopic luminance of the given light

source. Consequently, Lm can be used as a reference for adjusting

the system dimming based on mesopic vision.

Based on Equation 1 and its validity conditions, it is evident that

the introduction of extreme weather conditions disrupts the energy

balance of the existing lighting system, necessitating a reevaluation

of the regulation behavior. However, the specific manner in which

this balance is disrupted varies depending on the type of weather.

For instance, cloudy conditions primarily lead to rapid changes

(reductions) in natural illuminance, which can be addressed by

directly adjusting the brightness or color (i.e., wavelength) of the

light source based on the corresponding visual state. On the other

hand, degradation of effective illuminance caused by rain (liquid

droplets), haze (liquid-solid aerosols), or dust storms (solid

particles) occurs due to the scattering and absorption of light by
Frontiers in Marine Science 05
particulate matter, resulting in attenuation of light intensity after

propagation through the medium. The extent of this attenuation is

dependent on the size and concentration of the particles and can be

described by the Lambert-Beer law (Swinehart, 1962):

I = I0 exp ( − t l), (4)

where I0 represents the initial intensity of light, and I denotes

the intensity of light after extinction, which is equivalent to the

integral of the corresponding luminance over the spherical degree.

Here, l represents the optical path length, and t signifies the

turbidity of the medium. For a polydisperse particle system

consisting of n particles with an average diameter of v , t can be

quantitatively expressed as described by (Gledhill, 1962):

t = p=4
Z b

a
n(v)v2kext(l,v ,m)dv , (5)

where a and b represent the lower and upper limits, respectively,

of the particle size distribution. The parameterm corresponds to the

relative refractive index of the particles with respect to the

surrounding medium, while kext denotes the extinction coefficient

(Bruce et al., 1980). When both absorption kabs and scattering ksca
processes occur simultaneously:

kext = kabs + ksca = 2=a2o
∞

l=0

(2l + 1)( alj j + blj j), (6)

where

al = (jl(a)jl(ma) −mjl(a)jl(ma))=(zl(a)jl(ma)

−mzl(a)jl(ma)), (7)

bl = (mjl(a)jl(ma) − jl(a)jl(ma))=(mzl(a)jl(ma)

− zl(a)jl(ma)), (8)

where

jl =
ffiffiffiffiffiffiffiffiffiffiffi
pa=2

p
J1+1=2(a), (9)

zl =
ffiffiffiffiffiffiffiffiffiffiffi
pa=2

p
H1+1=2(a) : (10)

The functions J1+1=2(a) and H1+1=2(a) represent the Bessel

functions of half-integer order and the Hankel functions of the first

kind, respectively, both of which are series functions. It can be

assumed that the absorption of particulate matter in general

weather conditions is negligible, that is, the imaginary part of the

complex refractive indexm is zero. However, this calculation requires

a substantial number of computational resources (the speed of

convergence is directly proportional to the computational resources

invested), which consequently increases the energy required for the

entire port lighting system. Therefore, when designing tracking and

dimming algorithms for extreme weather variations, it is advisable to

avoid direct computation of the extinction coefficient or make

necessary simplifications.

Based on the foundational discussions above, the regulation

problem of the port illumination system in the face of extreme

oceanic conditions can be transformed into a strong tracking
frontiersin.org
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problem by leveraging existing smart streetlight hardware standards.

Guided by this approach, this paper proposes a method for regulating

the port illumination system based on a combined tracking filter,

consisting of three main components: the physical acquisition layer,

the edge processing layer, and the platform processing layer. The

physical acquisition layer is primarily responsible for providing

observation data and system structural information. The edge

processing layer is focused on tracking Ex
k (the actual value of the

streetlight illumination state during the k-th tracking dimming) and

adjusting the vector Iqv (the dimming matrix received by the q

streetlights at the edge). The platform processing layer is responsible

for receiving the dimming matrix Iv, updating, and issuing

macroscopic decisions T, as illustrated in Figure 4, outlining the

basic framework. In a nutshell, the main contributions of this paper

are outlined as follows:
Fron
• In response to the impact of extreme oceanic weather on port

road illuminance, a cloud-edge collaborative dimming model

is proposed, incorporating the hardware system of smart

streetlights. The dimming model’s cloud control risk items

and decision items are expanded and described in detail, while

optimization objectives for the target matrix are provided.

• To address the real-time dynamic changes of the dimming

matrix, this paper presents state estimation and observation

methods under static conditions. Specifically, for air turbidity,

a calculation method based on video monitoring devices and
tiers in Marine Science 06
neighboring streetlights is proposed, circumventing the direct

computation of the extinction coefficient.

• A dynamic systemmodel for discretized illuminance based on

Kalman filtering theory is presented to address the dynamic

adjustment problem of illuminance in response to time-

varying solar input and air turbidity. The uncertainties and

nonlinearity of the system are decoupled from the state vector,

ensuring that the main iterative process achieves a

convergence rate suitable for edge computing capabilities.

• Given the challenge of a priori judgment of state mutation

resulting from the aforementioned operations, and

considering the distinctions between the two strong

tracking filtering methods, STF and STAKF, a strategy

that combines the strengths of both approaches is

proposed. Additionally, an optimized step size is adopted

to account for the variability in tracking.
3 Cloud-edge collaborative
dimming model

3.1 Model architecture

According to Section 2.1, it is evident that there are multiple

approaches for controlling the luminous intensity of smart
FIGURE 4

Overview of research ideas in this paper.
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streetlights. In this subsection, a cloud-edge collaborative dimming

strategy model will be proposed, where the dimming decisions of all

smart streetlights are based on the cloud-edge collaborative

streetlight network model presented in this subsection, and the

smart streetlights are interrelated while operating. The decision of

whether to adopt a centralized or fixed strategy, which is cost-

effective, requires prior decision-making at the cloud level. Based on

this decision, concrete collaborative strategies can be formulated.

The decision model can be expressed in the following form:

T = Iv ∗ (M ∗D) ∗ (C ∗W) : (11)

LetW denote the risk matrix primarily based on meteorological

observations. For convenience, let’s assume that the streetlights

scattered within the selected urban area for dimming can be

projected into a square matrix of size Q × Q through an affine

transformation. Here, B represents the smallest scale that the

existing forecasting system (mainly based on meteorological

satellites and radars) can discern in the projection onto W. The

matrix W can be expressed as follows:

W =

B11 ⋯ B1~Q

⋮ ⋱ ⋮

B~Q1 ⋯ B~Q~Q

2
664

3
775
Q�Q

(12)

where ~Q ∈ N+, the matrix Bii represents a submatrix of size B ×

B, which can be interpreted as a city block within the port area. Due

to variations in port planning and infrastructure, different blocks

may exhibit varying levels of response to extreme marine

meteorological risks.

Therefore, based on meteorological forecasts of disaster types

and severity from marine meteorological monitoring, the cloud

platform can leverage historical data and the GIS+BIM system of

the smart city to further refine and adjust Bii, forming a transition

matrix C:

C =  

C11 ⋯ C1Q

⋮ ⋱ ⋮

CQ1 ⋯ CQQ

2
664

3
775
Q  �Q

(13)

where, Cii ∈ R+ is the adjustment factor. C and W together

constitute the risk term in the collaborative dimming model T.

Their purpose is to assign varying degrees of dimming based on

evaluations of the individual impacts of extreme marine

meteorological conditions on port streetlights.

The decision matrix D primarily serves to accommodate

constraints from the power system and other aspects, including

considerations of hardware controllability, grid dispatch, and

economic factors. It can be represented as a binary matrix (1-0

matrix). If optimization operations on the D matrix are required in

subsequent model applications, a sigmoid transformation can be

applied to the matrix:

D = Sigmoid  

X11 ⋯ X1Q

⋮ ⋱ ⋮

XQ1 ⋯ XQQ

2
664

3
775
Q  �Q

(14)
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where X ∈ {0,1}.

In addition, the influence of extreme marine weather types

needs to be considered. As discussed in Section 2.2, existing LED

port lighting systems can adjust the color temperature based on

marine meteorological conditions and environmental changes.

Different color temperatures correspond to different S/P ratios,

which in turn affect the intermediate visual brightness Lm. Since Iv =

∫LvdA cos q , the differences in brightness adjustment targets will

impact the decision-making process for light intensity adjustment.

To ensure a unified behavioral scale for the dimming matrix Iv in

the model, it is necessary to normalize the influence in this aspect

into a pattern matrix M, where the matrix elements Mii ∈ (0,1].

Both W, C, D, and M can be determined based on the existing

information and instructions from the cloud-based control system

of smart streetlights. The matrix Iv needs to reflect the dynamic

changes in extreme marine meteorological conditions on the edge

side, thus requiring the adoption of a strong tracking algorithm

combined with relevant sensor data for control. The evaluation

target ET of the entire control can be written as the target matrix T

norm regularization form:

ET =o
Q2

i=1
ti − t∗ik k2+xo

Q2

i=1
o

j∈N(i)

kij ti − tj
�� ��

1 (15)

In the above equation, ti represents the elements in T arranged

according to certain geographic rules. We define the calibration

matrix T∗ as the reference values for evaluating T, where t*i
corresponds to the elements in T∗ that correspond to ti. The

determination of T∗ is carried out by specialized instruments

carried by engineering vehicles during road maintenance

operations under specific conditions. It is based on standards

(Jaskowski et al., 2022) that are related to road types, traffic flow,

road morphology, and luminaire settings. Ideally, the dimming

target T should closely resemble the standards and measured values

in T∗. Hence, the evaluation objective ET includes the 2 norms || · ||2
of both T and T∗.

However, due to uncertainties in the model, standards, and

measurement processes, including inaccuracies and imprecisions, as

well as inherent biases in the control system transfer function,

overfitting tendencies may arise when characterizing T with respect

to T∗. To limit local flatness and encourage proximity, a sparse 1

norm || · ||1 is introduced in the regularization term. This ensures

that adjacent light intensities do not exhibit sudden changes and are

as close as possible. c represents a tunable hyperparameter of the

evaluation model, which controls the tendency for proximity and

can be freely set based on preferences. N(i) denotes the local

neighborhood of i, determined by the field of view of the smart

streetlight’s video surveillance module (as discussed in Section 2.2).

tj represents the light intensity of the streetlights within the field of

view. kij denotes the affinity coefficient, and its calculation method

can be expressed as (Li et al., 2020):

Kij = exp( − ti − tj
�� ��

2=(s
2
1 ))exp( − (max(STi,  STj)))=(s

2
2 )) (16)

where the constants s1 and s2 are predefined constants used to

control the model’s attention to the differences in light intensity and

structure. STi and STj represent the multi-scale structures based on
frontiersin.org
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a priori weighted strategies at points i and j, respectively. Taking STi

as an example:

STi = max ( o
tj∈W(ti)

j( o
tj∈W(ti)

Gp(ti,tj)∇T(tj))j=(Gp(ti, tj))) (17)

here, Gr= exp(−||ti−tj||
2/2s2) denotes the two-dimensional

Gaussian kernel with multi-scale parameter s, where s ∈ {1,2,3}.

In summary, the main objective of evaluating and optimizing T

is to adjust the decision and risk terms of the entire model. The

parameters or strategies in this part are relatively fixed and can be

allowed to be completed offline with a delay. It can be observed that

the entire model, based on a large-scale data-driven smart

streetlight operation and management cloud platform, is

executable. Therefore, the key focus of this research lies in

utilizing the edge hardware capabilities of smart streetlights to

achieve tracking and adjustment of Iv.
3.2 Dimming matrix

As indicated in Section 3.1, the key challenge of the entire T

model lies in handling the real-time dynamic variations of Iv.

Following a data-driven approach, the main task in this regard is

to establish a dataset comprising measurements from smart

streetlight solar irradiance sensors, ground illuminance, and

corresponding adjustment values of Iv. The real-time adjustment

value of Iv can be directly obtained from the electrical system of the

smart streetlight. On one hand, the solar irradiance intensity Isolar
originating from solar radiation can be acquired or estimated

through the environmental-meteorological sensing system

integrated into the smart streetlight. On the other hand, in a

more general scenario, Isolar can also be estimated from the solar

panel mounted on the top of the streetlight, which processes the

solar power Psolar:

Î solar = K(Psolar=ϱApv − Ir) (18)

where Psolar represents the output power of the photovoltaic

array, ϱ denotes the photoelectric conversion efficiency of the

photovoltaic cells, and Apv signifies the total area of

the photovoltaic panel. The solar power Psolar is determined by

the total solar irradiance received on the photovoltaic array, which

includes the ground-reflected component multiplied by the spectral

efficiency factor K to account for photometric considerations. Since

the smart streetlight’s photovoltaic panel is typically installed at the

top of the pole and is nearly horizontal, Ir = 0 is negligible. The

remaining term Isolar/K comprises the direct solar irradiance Id and

the sky-scattered radiation Is :

Isolar=K = Id + Is =   Iba   cos(h)cos(Dj)sin(q) + sin(h)cos(q) + ksca
1 − cosq

2

� �� �

(19)

In the above equation, Iba represents the total solar radiation at

the location, primarily determined by factors such as solar declination

angle, and is a known function of the date. h denotes the solar altitude

angle, Dj represents the angle between the solar azimuth angle and
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the orientation of the photovoltaic array, and q is the tilt angle of the

photovoltaic array. Under non-extreme marine climatic conditions,

atmospheric scattering due to particle sizes a ≪ 1 is mainly

accounted for by Rayleigh scattering. In this case, the received solar

radiation intensity Isolar is primarily composed of the direct solar

radiation intensity Id. Additionally, assuming that the tilt angle q of

the photovoltaic panel at the top of the smart streetlight tends

towards zero, the ideal form of I*solarcan be expressed primarily in

terms of the local solar altitude angle:

I*solar ≈ KIba sin(h) (20)

Clearly, the height of the streetlight pole can be disregarded

compared to the atmospheric height, and the differential unit area

can be approximated as a solid angle. Therefore, the illuminance Ei
v1

of any streetlight i on the road surface below it is expressed as:

Ei
v = (Î isolar + Iiv) exp ( − tI) + w (21)

In this case, the range of Î isolar , is [0, I(Lm)] where I(Lm)

represents the upper limit for intermediate vision [which can be

defined according to relevant standards Ito et al. (2024)]. w denotes

the uncertainty of the real-time state of Ev1, and its magnitude is

mainly positively correlated with Î solar=I*solar . Since Ei
v has a well-

defined reference standard, the estimation of turbidity t is required
to compute the value of exp(−tl) in order to generate the dimming

matrix Iv, where l is known as the height of the lamp post.

As discussed in Section 2.2, it is not feasible to estimate t in real-
time solely relying on the environmental monitoring devices at the

edge of the smart streetlights. However, the emitted light intensities

of adjacent centrally controlled streetlights within any solid angle Ω

are known, and their relative positional relationships are

determinate. Therefore, an estimation of t can be achieved by

observing nearby streetlights using a video surveillance system

installed beneath the streetlight, obtaining the observed values of

road surface illuminance Ei
v2. Consequently, Z neighboring

streetlights within the field of view of the video surveillance

equipment are selected to estimate t, and the i-th estimation

result ti is given by:

ti =
cosWi

d
ln

Ii
I0i Wi

(22)

Ii represents the illumination intensity of the current streetlight,

I01 represents the illumination intensity of the nearest streetlight,

and d denotes the vertical height between the observation device of

the current streetlight and that of the nearest streetlight’s light

source. Then we have

t̂ = w⊤t : (23)

In the case of data availability, the adjustment of the dynamic

weights of vector w can be achieved using shallow neural networks

such as Extreme Learning Machines (ELM) (Liu et al., 2022) to

solve for it. Alternatively, considering that the nearby streetlights

have stronger light intensity and therefore a higher signal-to-noise

ratio, an exponential weighted average can be employed to assign

higher weights to the closest streetlights. Neglecting the influence of
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road surface materials, it is worth noting that different road surfaces

(such as concrete or asphalt) have varying reflectance coefficients.

For the sake of convenience in the discussion, it is assumed that the

road surface undergoes complete diffuse reflection. The observed

brightness of the road surface in the vertical direction below the

nearest neighboring streetlight, as captured by the camera, is

denoted as IK. To mitigate the impact of outliers, actual image

processing can replace individual pixel values with the average value

within a pixel region, denoted as �IK, corresponding to the direction

angle g. Therefore, under the condition of camera height hc, the

following relationship holds:

Ei
v2 = Q(

�IKcos
3g

h2c exp ( − t hc
cosg )

) + v (24)

Q represents the transfer function, which is dependent on the

specific parameter settings of the camera. Therefore, there exists a

constant proportionality relationship between Ei
v2 and �IK.

Furthermore, as discussed in Section 3.1, the overall optimization

strategy exhibits smoothness locally due to the constraint imposed

by the 1 norm. Consequently, the illuminance of the nearest

neighboring road surface captured by the camera can be regarded

as an observation of the vertical illuminance of the i-th streetlight,

with v representing the uncertainty associated with this observation.

Based on the above analysis, static computation of Iv can be

achieved. However, extreme weather conditions are typically subject

to dynamic changes. Therefore, the introduction of robust tracking

filtering methods is necessary to enable adaptive adjustment of Iv.
4 Adaptive adjustment method based
on STF-STAKF combination

4.1 Dynamic system model

Considering the variation of Iv with extreme marine weather

conditions, Isolar, t, and other parameters are functions of time. The

estimates Î solar  , t̂ , and so on form time series with a certain interval

(time step) Dt. By discretizing Ev according to Equations 21 and 24,

and extending it to the illuminance vector E corresponding to q

streetlights:

Ex
k+1 = (I + Dtk)E

x
k + Uk + wk (25)

Ez
k = HEx

k + vk (26)

where Ex
k   ∈  Rq�1 is the state vector, I ∈ Rq×q is the identity

matrix, Uk ∈ Rq�1 is the control vector, and the process noise wk ∈
Rq�1 satisfies the Gaussian distribution N(0,DtkQkDt⊤k ); E

z
k  ∈  Rq�1

is the observation vector, H ∈ Rq×q is the observation matrix, and

the observation noise vk ∈ Rq�1 satisfies the Gaussian distribution

N(0,DtkRkDt⊤k ). Define:

Uk = D((Î qsolar + Iqv ) exp ( −   t̂ ql)) (27)

H = Iq=(h2c  exp( − t̂ qhc)) : (28)
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Referring to the standard linear Kalman filter theory (Shao et al.,

2021), the recursive calculation formula can be listed as follows:

Ê x
kjk−1 = (I + Dtk)Ê

x
k−1 + Uk (29)

Pkjk−1 = (I + Dtk)Pk−1(I + Dtk)
⊤ + DtkQkDtk (30)

Kk = Pkjk−1H
⊤(HPkjk−1H

⊤ + DtkRkDtk)
−1 (31)

Ê x
k =   Ê x

kjk−1 +  Kk   (E
z
k −HÊ x

kjk−1) (32)

Pk = (I − KkH)Pkjk−1 (33)

where Ê x
kjk−1  ∈  Rq�1 represents the a priori estimate of Ex

k ,  

Pkjk−1  ∈  Rq�q denotes the a priori error covariance, I ∈ Rq×q is the

identity matrix, Kk ∈ Rq×q represents the Kalman gain, Ê x
k   ∈  Rq�1

is the posterior estimate of Ê x
k , and Pk ∈ Rq×q corresponds to the

updated error covariance. In the context of adaptive adjustment of

the time step, the standard Kalman filter, as a non-closed-loop filter,

faces challenges in adapting Kk to sudden changes caused by

extreme ocean weather conditions and accumulated errors

resulting from limited modeling accuracy. Consequently, there is

room for improving the performance in practical light adjustment

tracking and response.

To address the aforementioned issues, the algorithm needs to

incorporate robust tracking filtering to tackle the challenges posed by

inaccurate modeling and sudden environmental state changes. The

core idea is to introduce a dynamically changing fading factor to

adjust the covariance matrix of the prediction error. A

computationally efficient approximation of this approach is given by:

xk =
x0, x0 ≥ 1

1, x0 < 1
,

(
(34)

Where

x0 = tr½Nk�=tr½Ak� (35)

where

Nk = Vk − HDtkQkDtkH
⊤ − bDtkRkDtk (36)

Ak = (I + Dtk)HPk−1H
⊤(I + Dtk)

⊤ (37)

In Equation 36, the parameter b∈ [1,∞) is a user-defined damping

factor that controls the smoothness of the state estimation. It plays

a role in adjusting the level of smoothing in the estimated values.

Vk represents the innovation covariance matrix (Zhou et al., 1991):

Vk =
ϒ1ϒ⊤

1 , k = 0

rVk−1+ϒkϒ⊤
k

1+r , k ≥ 1
,

8<
: (38)

where r ∈ (0,1] is the forgetting factor, and ϒk is the innovation

sequence:

Υk =   Ez
k −  HÊ x

kjk−1 (39)
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If the fading factor xk is applied to the error covariance matrix, the

Strong Tracking Filter (STF) method is obtained (Han et al., 2006):

P1
kjk−1 = xk(I + Dtk)Pk−1(I + Dtk)

⊤ + DtkQkDtk (40)

Under the constraint of the orthogonality principle, adjusting

the error covariance matrix is equivalent to a modification of

process noise without differentiation. However, by directly

applying the damping factor to the process noise, we can obtain

the Strong Tracking Adaptive Kalman Filter (STAKF) method with

multiple fading factors (Ge et al., 2016):

P2
kjk−1 = (I + Dtk)Pk−1(I + Dtk)

⊤ + DtkGkQkDtk (41)

Where

Gk =

lk,1 0 ⋯ 0

0 lk,2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ lk,q

2
666664

3
777775 (42)

To ensure the symmetry of Pk|k−1 when the diagonal elements of

Gk are not equal, Equation 41 can be written as

P2
kjk−1 = (I + Dtk)Pk−1(I + Dtk)

⊤ + Dtk�GkQk
�G⊤
k Dtk (43)

where �Gk is obtained by performing Cholesky decomposition on Gk:

Gk = �Gk � �G⊤
k (44)

Fk = (H)+(Vk − DtkRkDtk − (1 + Dtk)HPk−1H
⊤(1

+ Dtk)
⊤)(H⊤)+ (45)

let Fii
k represent the element in the i-th row and i-th column on

the diagonal of Fk, and Qii
k denote the corresponding element in Qk.

Then, we have:

lk,i = Fii
k =Q

ii
k (46)

As a result, the matrix Gk or �Gkwith multiple fading factors can be

determined. The difference in this approach is reflected in the

tracking performance of transient variables. STF tends to assume

the system model is reliable and focuses on modifying the estimation

error from the previous time step. On the other hand, STAKF tends

to attribute the transient changes to the inaccuracy of the system

model, indicating a difference in their underlying processing

principles. In this research problem, optical-electric measurement

methods are frequently employed, which are susceptible to

environmental disturbances. Moreover, the study focuses on

extreme oceanic weather conditions where the parameters may

undergo sudden changes within a processing interval. Therefore, an

effective combination of both tracking filters is required.
4.2 Adaptive adjustment method based on
STF-STAKF combination

Due to the time-varying nature of fitting functions such as

Isolar and t, which may exhibit non-stationary first and second-
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order differentials, it is crucial to emphasize the role of the

discrete time step Dtk in order to closely capture the trajectory of

extreme oceanic meteorological variations. Moreover, the

determination and updating of Dtk need to be considered. To

begin, we define the normalized distance of the error covariance

matrix as Dk:

Dk = (Pkjk−1 − Pk)(Pkjk−1 + Pk)
−1 (47)

By introducing Dk, we establish a criterion for adjusting

Dtk, such that as Dtk approaches zero, Dk tends to zero. Referring

to (Or et al., 2021), we can obtain the minimum value dk of the

diagonal elements of Dk and define a target threshold dk.

Consequently, the adjustment rule for Dtk can be formulated as

follows:

Dtk+1 =

Dtk−e , dk − d∗ > sd∗

Dtk, dk − d∗j j < sd∗

Dtk+e dk − d∗ < sd∗

8>><
>>: (48)

the parameter s takes values within the range of 0.1 to 0.2,

primarily serving as an auxiliary criterion for convergence

determination. The fine-tuning quantity e is a predefined

parameter, and its range is constrained as follows:

0 <
e
Dtk

< 2sd∗ (49)

In order to meet the deployment requirements of the margin,

the handling approach for the dynamic system model deliberately

avoids nonlinearity in the state transition matrix. This strategy

facilitates the real-time adaptability and tracking of various

hyperparameters within the model. For states with unclear trends

in extreme marine meteorological variations, a conservative

adjustment effect is desired. Specifically, the outputs of the two

filters under this condition, denoted as ~Ex
k for Filter 1 and Filter 2,

are collectively referred to as Y1 and Y2. Consequently, the final

output result, denoted as ~Ex
k , is obtained by:

~Ex
k = hkY1 + (I − hk)Y2 (50)

the fusion coefficient matrix hk∈ Rq×q is a diagonal matrix. In

this example, Pk is also a diagonal matrix of the same size as hk. As a

result, there exists a correspondence between the diagonal elements

P1
k,  i and P2

k,  i of the a priori error covariance Pk for the two filters

and the diagonal elements hi
k of hk. By calculating hi

k (Claser and

Nascimento, 2021), the fusion coefficient matrix hk is obtained:

hi
k =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
P1
k,iP

2
k,i

q
+
(P1

k,i −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
P1
k,iP

2
k,i

q
)(P2

k,i −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
P1
k,iP

2
k,i

q
)

P1
k,i + P2

k,i − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
P1
k,iP

2
k,i

q : (51)

To further prevent interference in the combined filtering under

extreme oceanic weather conditions, the normalization of hi
k is

performed for k ≥ 2 as follows:

hi
k = (hi

k −min(hi
k))=(max(hi

k) −min(hi
k)) : (52)

A single filter can be regarded as hk taking values of 0 or 1.

Consequently, the difference between ~Ex
k and the target illuminance
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~E*k in the coordinate system can be used to set Uk+1 and obtain Iqv at

time k + 1. The collection of Iqv received by the cloud is arranged

according to predefined rules, resulting in the overall dimming

matrix Iv. The complete algorithm flow is illustrated in Figure 5.
5 Experiments and analysis

The effectiveness of the STF-STAKF (Strong Tracking Filter -

Strong Tracking Adaptive Kalman Filter) approach will be validated

through two aspects:
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Computer data simulation will be employed to compare the

tracking performance of STF, STAKF, and STF-STAKF under

scenarios involving abrupt process noise mutations. This analysis

aims to verify the effectiveness of STF-STAKF in the presence of

process noise mutations. Observational data of port street lighting

illuminance, influenced by oceanic meteorological factors, will be

utilized to compare the tracking performance of STF, STAKF, and

STF-STAKF. This evaluation will further validate the effectiveness

of STF-STAKF in real-world scenarios where both process noise

and state value mutations occur simultaneously.The experimental

Root Mean Square Error (RMSE) formula is:
FIGURE 5

Flowchart of algorithm based on STF-STAKF combination.
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T o

T

K=1
(Ê x

kjk − Ex
k)

2

s
(53)

The advantage of RMSE in measuring filter performance lies in

its ability to effectively quantify the differences between predicted

values and true values, providing an intuitive understanding of

estimation errors and making it easier to identify situations of

poor performance.
5.1 Computer data simulation

This part mainly uses computer numerical simulation examples

to verify the effectiveness of combined filtering in the event of

sudden changes in process noise. Since the research object of this

study is extreme oceanic meteorological conditions, the relevant

parameters may change suddenly in a short period of time, and the

response scenarios mostly involve short-term parameter mutations

and filter tracking. To analyze the tracking effect of the combined

tracking filter when the process noise changes abruptly, the

parameters and model of the simulation system are set as follows,

and the filtering effect is analyzed.

The observation matrix and observed noise covariance are as

follows:

H =

9 2 1

1 1 1

1 2 1

2
664

3
775,R =

5 8 6

8 5 6

6 6 5

2
664

3
775 (54)

define the process noise covariance as follows

Q =

4 1 0

1 8 0

0 0 1

2
664

3
775 , 1 < t ≤ 15

20 5 0

5 30 0

0 0 5

2
664

3
775 , 15 < t ≤ 30

30 10 0

10 50 0

0 0 10

2
664

3
775 , 30 < t ≤ 45

50 20 0

20 80 0

0 0 20

2
664

3
775 , 45 < t ≤ 50

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(55)

The initial state vector and the initial state vector covariance are

divided into:

Ê x
0j0 =

0

0

1

2
664

3
775,   P0j0 =

1 0 0

0 1 0

0 0 1

2
664

3
775 (56)

In this subsection, computer simulation experiments are

conducted by pre-setting parameters artificially, fixing certain
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model parameters (H, R and P), while configuring Q in a

dynamic form to simulate an environment of abrupt process

noise changes. The experimental interval is set to 1 second, and a

total of 1000 Monte Carlo simulations are performed.

The following will compare the three filtering methods of

the STF algorithm, the STAKF algorithm, and the fusion

algorithm discussed in this paper, and analyze the filtering effects

of the three.

In Figure 6, the root mean square error (RMSE) of both STAKF

and combined filtering is lower than that of STF, indicating good

tracking performance for STAKF, with the combined filtering curve

being close to or slightly better than STAKF, demonstrating

effective filtering.

In cases of sudden changes in process noise, STAKF shows good

filtering effects, and combined filtering can closely approach the

STAKF curve in real time, often providing better tracking

performance. This experiment verifies that under such conditions,

the estimation error of STAKF is smaller than that of STF, with the

overall root mean square error of combined filtering (refer to

Table 1) being better than STAKF, achieving improved

tracking effects.
5.2 Experiment on actual observational
data of port street lighting under rain and
fog conditions

This subsection uses actual observational data of port street

lighting under rain and fog conditions to simulate and verify the

effectiveness of the combined filter for tracking dimming in extreme

oceanic weather conditions. Most of the street lighting and ocean

weather data are sourced from the Qiandao Lake Research Institute

and Guangdong Ocean University.

5.2.1 Single head streetlight
During extreme oceanic weather conditions such as rain and fog

at the port, there may also be sudden changes in the observation

data itself, leading to some uncertainty. This section analyzes the

tracking effect of the fusion tracking filter when the observed data

changes abruptly. Here, the change curve of streetlight dimming

illuminance in rainy and foggy weather is selected to experiment

with the tracking effect of combined filtering and illuminance. This

observational data can be directly collected by the weather

perception and video monitoring modules of the smart

streetlights in the actual project. The photovoltaic panel on top is

calculated simply.

This part of the experimental principle obtains the

observational data of sudden changes in rainy and foggy weather

by monitoring the illuminance of the nearest single-head streetlight

using the monitoring device (refer to Figure 7), which does not

affect the verification of the effectiveness of the combined strong

tracking filter for tracking dimming in this experiment. In the actual

project, the observational data obtained by adjusting the dynamic

weights of turbidity after observing multiple streetlights or multi-

head streetlights in the current weather (such as ELM), according to
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the actual streetlight placement and the position of the observation

camera, can be used as the final observational data.

In calm and clear oceanic meteorological conditions, the

adjustment of port streetlight brightness is related to factors such

as traffic flow and the speed of port vehicles from morning to night.
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The experiment collected relevant information through the camera

to detect the lighting output values when different port vehicle flows

and speeds were matched. The lighting output calculation program

is developed based on PSO-FNN. As shown in Figure 8, the lighting

trend meets the requirements for urban lighting energy
frontiersin.or
FIGURE 6

Estimation error. (A) Estimation error of state 1. (B) RMSE of state 1. (C) Estimation error of state 2. (D) RMSE of state 2. (E) Estimation error of state 3.
(F) RMSE of state 3.
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conservation control. To better reduce the residues between actual

and predicted values, the residues were optimized using BLS. The

results are shown in Figure 9. This method can effectively fit the

actual port streetlights based on small experimental samples.
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In rainy and foggy weather, the size of air particles changes,

fog suddenly appears and disappears, natural illuminance

suddenly increases and decreases, and the extinction coefficient

changes abruptly. These factors lead to sudden changes in the

observed values. Through the video surveillance system installed

under the smart streetlight, the above factors and turbidity t in

rainy and foggy weather were estimated. Figure 10 shows the

change curve of the observation data of streetlight illumination

and the filtered curve during rainy and foggy conditions over a

short period.

As shown in Figure 11, when the observation data is abrupt, the

tracking effect of STF is better than that of STAKF, and the

combined filtering has a conservative tracking effect, positioned

between STF and STAKF at this time. According to Table 2, the

overall estimation error of the combined filter is better than that of
FIGURE 7

Observation and shooting map of smart streetlight in rainy and foggy weather.
TABLE 1 Mean square error of three algorithms.

RMSE STF STAKF STF-STAKF

X1RMSE 0.6085 0.1332 0.1362

X2RMSE 3.0825 0.3842 0.3840

X3RMSE 4.3652 3.4802 3.4708

MEAN 2.6854 1.3325 1.3324
FIGURE 8

Lighting fitting results based on PSO-FNN.
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STF when observed mutations occur. From this, it can be predicted

that when multiple observations undergo mutations, the estimation

error of combined filtering will increasingly approach and exceed

the current optimal filtering.
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This experiment verifies that the estimation error of STF is

smaller than that of STAKF in the case of sudden changes in

extreme weather observation data, with STF showing better

tracking performance at that time. The combined filtering curve
FIGURE 9

Output results after BLS optimization.
FIGURE 10

Illuminance observation curve of streetlight in rainy and foggy weather.
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lies between the STF and STAKF curves during abrupt changes (as

shown in Figure 11), and the overall root mean square error of the

combined filtering (see Table 2) is better than that of STF, achieving

improved tracking effects.
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5.2.2 Multiple streetlights
Since, in extreme oceanic weather conditions, any possible

situation is unpredictable, data exchange between multiple port

streetlights may sometimes fail to work for special reasons,

preventing effective communication of the average illumination of

the surrounding environment. Under this assumption, three adjacent

streetlights are dimmed and tracked using the same method as

described in section 5.2.1, and the noise parameters are as follows

(This data is sourced from Guangdong Ocean University, and the

relevant parameters were obtained by collecting hardware

information from three adjacent smart streetlights):
FIGURE 11

Filtering part diagram. (A) Filtering part diagram 1. (B) Filtering part diagram 2. (C) Filtering part diagram 3.
TABLE 2 Mean square error of three algorithms.

STF STAKF STF-STAKF

RMSE 20.1759 20.7000 20.1680
frontiersin.org

https://doi.org/10.3389/fmars.2024.1493275
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jiang et al. 10.3389/fmars.2024.1493275
Q =

4 1 0

1 8 0

0 0 1

2
664

3
775 , 1 < t ≤ 15

40 5 0

5 25 0

0 0 5

2
664

3
775 , 15 < t ≤ 30

15 10 0

10 35 0

0 0 10

2
664

3
775 , 30 < t ≤ 45

20 5 0

5 30 0

0 0 5

2
664

3
775 , 45 < t ≤ 50

,R =

5 8 6

8 5 5

6 5 6

2
664

3
775 , 1 < t ≤ 15

5 10 0

10 50 0

0 0 25

2
664

3
775 , 15 < t ≤ 30

50 25 0

25 80 80

0 80 20

2
664

3
775 , 30 < t ≤ 45

30 40 0

40 80 0

0 0 80

2
664

3
775 , 45 < t ≤ 50

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(57)

Through preprocessing and noise simulation of the actual data

collected, each streetlight is independently estimated based on the

processed data, and its observational data is dynamically affected by
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the dimming of other streetlights. When both the observational data

and noise are abrupt, the dimming error of the three filters after 50

Monte Carlo simulations is shown in Figure 12 and Table 3, with

the error of combined filtering being significantly smaller than that

of STF and STAKF. This demonstrates that in extreme oceanic

climate conditions, whether it is a single-head streetlight under data

interconnection or multiple streetlights under data interconnection,

combined filtering exhibits a certain effectiveness and versatility,

effectively addressing the impacts of extreme weather.
FIGURE 12

Estimation error of streetlight. (A) Estimation error of streetlight q1. (B) Estimation error of streetlight q2. (C) Estimation error of streetlight q3.
TABLE 3 Mean square error of three algorithms.

RMSE STF STAKF STF-STAKF

q1RMSE 3.396 2.922 3.039

q2RMSE 14.36 15.86 12.34

q3RMSE 3.202 3.109 2.857

MEAN 6.986 7.297 6.078
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6 Conclusions

Under challenging conditions influenced by various factors, the

causes of visibility mutations in coastal ports typically stem from the

weather’s impact on the environment surrounding the port

streetlights. When the mutation arises from process noise, STF-

STAKF can closely approximate the current optimal STF in real-

time and outperform STF in most states. When the mutation arises

from the state value itself, observation noise, and process noise, the

combined filtering approach can dynamically approach and surpass

the current optimal tracking performance of STAKF. Experimental

data from STF-STAKF demonstrate its overall real-time tracking

performance, closely approximating and exceeding the current

optimal filtering method. This tracking performance is highly

suitable for scenarios with unknown mutations in extreme

oceanic climate conditions. Moreover, due to limited

computational resources at the edge of the port streetlight

network, the proposed STF-STAKF approach can effectively

utilize edge computing power to implement adaptive dimming at

the edge. Considering that the dimming basis of port streetlights in

actual projects will be based on regulations and standards stipulated

by the state, the dimming standards should be set according to the

environmental regulations of the streetlights. In practical

engineering, the calculation methods for pavement materials,

reflection coefficients, and brightness distribution have been

studied in more detail, allowing for more accurate initial

estimates and calibration judgments. However, these corrections

do not affect the core idea of this paper, and it can be considered to

further improve accuracy by combining and comparing more actual

data in larger-scale application processes.
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