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relationship with convolutional
kernels and layers in
convolutional neural network
Longyu Jiang1, Quan Jin1*, Feng Hua1, Xingjie Jiang2,
Zeyu Wang1,2, Wei Gao1, Fuhua Huang1, Can Fang1

and Yongzeng Yang2

1Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou
University, Shantou, China, 2First Institute of Oceanography and Key Laboratory of Marine Science
and Numerical Modeling, Ministry of Natural Resources, Qingdao, China
The receptive field (RF) plays a crucial role in convolutional neural networks

(CNNs) because it determines the amount of input information that each neuron

in a CNN can perceive, which directly affects the feature extraction ability. As the

number of convolutional layers in CNNs increases, there is a decay of the RF

according to the two-dimensional Gaussian distribution. Thus, an effective

receptive field (ERF) can be used to characterize the available part of the RF.

The ERF is calculated by the kernel size and layer number within the neural

network architecture. Currently, ERF calculation methods are typically applied to

single-channel input data that are both independent and identically distributed.

However, such methods may result in a loss of effective information if they are

applied to more general (i.e., multi-channel) datasets. Therefore, we proposed a

multi-channel ERF calculation method. By conducting a series of numerical

experiments, we determined the relationship between the ERF and the

convolutional kernel size in conjunction with the layer number. To validate the

new method, we used the recently published global wave surrogate model for

climate simulation (GWSM4C) and its accompanying dataset. According to the

newly established relationship, we refined the kernel size and layer number in

each neural network of the GWSM4C to produce the same ERF but lower RF

attenuation rates than those of the original version. By visualizing the gradient

map at several points in West African and East Pacific areas, the high gradient

value regions confirmed the known swell sources, which indicated effective

feature extraction in these areas. Furthermore, the new version of the GWSM4C

yielded better prediction accuracy for significant wave height in global swell

pools. The root mean square errors in the West African and East Pacific regions

reduced from approximately 0.3 m, in the original model to about 0.15 m, in the
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new model. Moreover, these improvements were attributed to the higher

efficiency of the newly modified neural network structure that allows the

inclusion of more historical winds while maintaining acceptable

computational consumption.
KEYWORDS

convolutional neural network, effective receptive field, multi-channel samples, gradient
map, significant wave height, GWSM4C
1 Introduction

With the rapid development of deep learning, deep neural

network models have achieved significant achievements in artificial

intelligence (Ng et al., 2023). Convolutional neural networks (CNNs)

are a type of deep feedforward network characterized by local

connections and weight sharing (LeCun et al., 1989). They have

been applied extensively to various algorithmic structures and

domains, such as computer vision, image processing, semantic

segmentation, and time series prediction (Gu et al., 2017). CNNs

are composed of convolutional, pooling, and fully connected layers.

Among these, the convolutional layer can perform local operations

on input data via convolutional kernels to extract features. Each

convolutional kernel moves across input datasets through a sliding

window to generate feature maps. These feature maps signify abstract

representations of certain characteristics. As the network deepens,

these representations become increasingly complex and abstract,

which facilitates the learning of nonlinear features.

The concept of the receptive field (RF) is crucial to the

application and development of CNNs because the size of the RF

directly affects the performance of CNNs (Duffy and Hubel, 2007;

Chen et al., 2021). The RF typically refers to the projection area of

neurons in a CNN layer of the original input data. As the number of

network layers increases, the RF of subsequent layers becomes

larger. The size of RF impacts the understanding and processing

of the input datasets of a CNN. A smaller RF range is suited to

capturing smaller spatial extent and other detailed information,

whereas a larger RF captures contextual information with a wider

spatial range and larger scope, which is important for

understanding the complex structures and global information

within an image. Therefore, different RF sizes can help CNNs to

better capture features at different levels, which allows the network

to perform well in tasks.

The RF range is determined by several factors: the size of the

convolutional kernel, stride (convolutional steps), and pooling. In

some tasks, a degree of feature information is lost in several strides

or pooling. It is generally beneficial for the model to obtain a larger

RF by increasing the number of layers in the convolutional neural

network (i.e., by performing multiple convolution operations),

increasing the size of the convolutional kernel, and using dilated
02
convolution (Lei et al., 2019; Akhtar and Ragavendran, 2020).

Theoretically, if the size of the convolutional kernel is constant

during the training process, the RF will grow linearly with the

number of convolutional layers.

However, some numerical experiments have found that the RF

gradually decreases as the convolutional layer number increases

(Gilbert and Wiesel, 1992; Lee, 1996; Schwartz et al., 2012). In these

studies, they determined that all pixel points within the range have

different contribution distributions. Therefore, there was some

degree of attenuation of the RF for the CNNs. To characterize the

decay process of the RF and determine the actual RF size, the

concept of Effective Receptive Fields (ERFs) was proposed, which

describes the effective range of influence of the input on the output

(Luo et al., 2016). The variation of the target point output value on

the different pixel points of the input part was investigated in a

series of experiments using single-channel independent and

identically distributed (IID) sample data, and the gradient value

of the pixel points within 95.45% of the image (i.e., 2s) was defined
as the radius of the ERF. The contribution of different pixel points

largely obeys a Gaussian distribution. But in the actual tasks, it is

difficult to obtain single-channel and IID sample datasets (Zhou

et al., 2017). For example, the color image processing task usually

has three (i.e., R, G, and B) channels, and there will also be more

than one channel when the datasets contain multiple variable

features in certain scenarios.

In this study, we propose a new method to calculate ERF based

on multi-channel and non-IID datasets. Specifically, the effective

gradient range was modified according to the Gaussian distribution

to determine the proportion of valid sample points within a larger

confidence interval. Applying the method to GWSM4C (Jin et al.,

2024), which is a fully convolutional neural network with a non-IID

datasets. We optimized the GWSM4C model according to the new

calculation method of ERF. Its practicality was verified by the

characteristics of oceanic swell pools reported in previous studies

and the final simulation effect of the model. Meanwhile, the

structure of the improved model designed by the method we

proposed is simpler and the running efficiency of the model

is promoted.

The following sections are organized as follows. Section 2 details

the calculation method for the multi-channel ERF. The variation in
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the ERF for different convolutional layers and kernel sizes is also

provided in this section. The application of the proposed method in

GWSM4C is described in Section 3. Section 4 details the results of

the effective range of the gradient maps for the verification of swell

characteristics and the simulation results for global SWH. In

Section 5, the definition of the effective scope is discussed,

followed by the conclusions in Section 6.
2 Multi-channel ERF for CNNs

2.1 Background

The growth rate of the RF decreases as the number of

convolutional layers increases. The ERF can portray the actual

size of the RF and its decay process. With IID single-channel

sample data, the decay trend of the RF is thought to obey the

Gaussian distribution by portraying the change of the target point

to different pixel points in the inputs. The gradient values of the

pixel points in the input within 95.45% of the image (2s) are

defined as the radius of the ERF.

The contribution distribution (i.e., gradient values) of all pixel

points is considered when inscribing the ERF. These gradient values

are calculated from the weights of the convolution kernels. For

example, for a one-dimensional convolutional kernel, each kernel

signal is denoted as.

ker = o
k−1

m=0
w(q)d (t − q),  d (t) =

 1,   t = 0,

 0,   t ≠ 0:

(
(1)

where k denotes the kernel size, w  is the value of the

convolution kernel, and q denotes the position of each number in

a convolutional kernel. The output of the model is obtained using

Equation 1 and multiple convolution operations. Each convolution

operation is performed within a convolutional layer.

The pixel points of a single channel form a sequence in each

convolutional layer. Each layer constitutes an independent

mutually random sum of sequence based on IID data samples

and layer normalization. According to the central limit theorem,

the gradient values of different pixel points obey an asymptotic

Gaussian distribution. The range of the ERF is the standard

deviation of the gradient values of this sequence. The calculation

formula is as follows:

ERFsingle_channel = o
n−1

i=0
o
k−1

q=0
q2 · w  (q) − o

k−1

q=0
q · w  (q)

 !2" #
∝ k

ffiffiffi
n

p
: (2)

where n is the number of CNN layers. For multi-channel sample

data, different channels can also constitute an IID sequence, which

does not affect the result of Equation 2. However, this difference will

eventually be reflected in the varying gradient values of the input

sample data because of the varied assignment of importance among

different channels. This directly affects the calculation of the ERF for

multi-channel sample data. In addition, in some applications, the

input sample data of the model do not satisfy the condition of IID

data. Whether the 2s range for a Gaussian distribution is reasonable

requires further verification.
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2.2 Calculation of multi-channel
gradient map

Typically, the ERF of CNNs is the standard deviation

encompassing the sum of all pixel point sequences. For multiple

channels within a dataset, samples are merged into several

convolutional modules depending on the specific task. In non-IID

datasets and multi-module structures, the standard deviation of the

sequence sum is defined in different modules by:

ERF  ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
m−1

i=1
Var(Si) + o

m−1

j=1
o
m−1

k=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Sj)

q
·
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(Sk)

p
· r(Sj, Sk)

s
:

(3)

where Var is the variance of the gradient from the convolutional

module, S denotes the different convolutional modules in the

model, and r is the correlation coefficient of any two diffusion

modules. The subscripts i, j, and k for each S represent different

numbers. Each module (S) contains several channels that are spliced

together to produce an important feature combination in the CNN.

Theoretically, the ERF can be defined in any CNN using Equation 3.

However, calculating r between different modules is difficult

because all neural networks use black-box training processes and

structural operations. Therefore, when determining the ERF of a

CNN, RF attenuation characteristics of different modules must be

analyzed instead of directly obtaining it using Equation 3.

The decay of the CNN RF depends on the contribution of the

inputs to the outputs (Luo et al., 2016). In deep learning, this

contribution is called the credit assignment problem (CAP). CAP is

usually solved using the backpropagation (BP) algorithm during the

neural network training process. The BP algorithm constantly

updates the parameters of the CNN with the gradient value of the

loss function. Each gradient value reflects the effect of the loss

function on different pixel points in the input datasets. We

determined the range of the ERF by calculating the gradient value

of the BP process.

Before calculating the gradient, the loss function L is set to have

a gradient of 1 for the center target point and 0 for other points (Luo

et al., 2016; Liu et al., 2018), which is written as Equation 4. This

assumption is combined with the chain rule to ensure that the

gradient from the output (y) to the input sample points (x) is equal

to the error obtained by the loss function during the BP process.

∂ L
∂ x

=
∂ L
∂ y

·
∂ y
∂ x

=
∂ L

∂ ycenter
·
∂ ycenter
∂ x

=
∂ ycenter
∂ x

,
∂ L
∂ y

=
 1,  y is the central point;

 0,           others:

(
(4)

To determine the size of the ERF, the center point in each

channel is selected from the model’s output by summing all

channels to obtain j. The gradient distribution can be computed

using any pixel point as the target. Here, the center point of each

channel (C) is selected as the study object to describe how the

gradient is calculated. The calculation of the gradient of the input

points in different channels and all the gradient values produces a

gradient map, g(h,w), where h and w denote the positions of the
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pixel points. The expression of the gradient maps for a

convolutional module M = (M1, M2, … Ms), including s layers

and p channels is as follows:

g1(h,w) =
∂j

∂Ms(C1(x))
· ∂Ms(C1(x))
∂Ms−1(C1(x))

·⋯ · ∂M2(C1(x))
∂M1(C1(x))

,

g2(h,w) =
∂j

∂Ms(C2(x))
· ∂Ms(C2(x))
∂Ms−1(C2(x))

·⋯ · ∂M2(C2(x))
∂M1(C2(x))

,

⋯⋯⋯⋯

gp(h,w) =
∂j

∂Ms(Cp(x))
·

∂Ms(Cp(x))
∂Ms−1(Cp(x))

·⋯ ·
∂M2(Cp(x))
∂M1(Cp(x))

:

8>>>>>><
>>>>>>:

(5)

where each variable is a matrix containing multiple features.

The subscripts of C are arranged from largest to smallest,

corresponding to the BP process (Rumelhart et al., 1986). The

simplified process is shown in Figure 1, which illustrates the

outputs obtained for the input datasets using a 5 × 5

convolutional kernel. The first arrow indicates the CNN training

process, and the second arrow depicts how the gradient map is

updated. Negative gradient values are usually considered to be of

no practical significance in image processing tasks. But these

values reflect a negative feedback mechanism in many physical

situations. They are also an important part for gradient

contribution in CAP.

The ERF is usually calculated following two steps in the CNN:

(1) the gradient maps take the sum of square according to the

characteristics of different channels, which ensures that the effect of

the negative gradient values is considered in the calculation of ERF.

The ERF of a spatial point is then obtained by the square root of g.

(2) All the gradients of the spatial point, G, in the model are

summed and averaged by the number of samples N:

G =
1
N o

H

h=1
o
W

w=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(g1(h,w))

2 + (g2(h,w))
2 +⋯+(gp(h,w))

2
q

, g = ½g1, g2,⋯, gp�:

(6)

where H and W denote the number of spatial points contained

in the height and width of a gradient map, respectively. In some

applications, especially image processing tasks, it is possible to

convert the negative gradient values into zeros (Luo et al., 2016).

The simplest approach to achieve this is to process the obtained
Frontiers in Marine Science 04
gradient map using the rectified linear unit nonlinear function

before using Equation 6.
2.3 Numerical testing of the multi-channel
ERF and its relationship with convolutional
kernel sizes and layers

From the gradient map obtained in Section 2.2, we need to take

into account the correlation of different feature channels to

determine the range of the ERF. If the effective range (95.45%) is

used, a large amount of feature information about the target point is

lost. However, with the target point, spatial points greater than

99.73% of the overall gradient value (i.e., a range of 3s of the normal

distribution) are selected to determine the final area.

Based on Equations 4-6, numerical experiments are designed to

determine the ERF of multi-channel structures by modifying

convolutional kernel size and network layer number. We

constructed a random four-dimensional tensor with only one

sample and multiple channels. Each experiment was performed

within the same convolutional module. The ERF in the module was

recorded by fixing the size of the convolutional kernel and changing

the number of convolutional layers.

There are two ways to obtain the ERF: determining the

maximum square range (Ding et al., 2022) containing the ERF

based on Equation 6 or counting all pixel points within the range of

the ERF in the experiment. To enable a comparison with the range

of the RF, we chose the former scheme. We conducted the following

experiments to determine the relationship among ERF,

convolutional layer number, and kernel size. For the different

convolutional kernel sizes, we tested the ERF, ERF/RF, and RF

attenuation ratio (1-ERF/RF) for different convolutional layers. The

results curves are shown in Figure 2.

In all the experiments, the initial number of convolutional layers

for each module was 6 (3 × 3 and 5 × 5) or 7 (7 × 7 and 9 × 9). The

convolutional modules with fewer layers are not usually suited to

local feature extraction (Alzubaidi et al., 2021) because they lack

nonlinear characteristics. However, although a large convolutional
FIGURE 1

Obtaining a gradient map using the BP algorithm.
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kernel achieves the same range as several small kernels in the CNN, it

comprises a larger number of parameters and thus increases

computational power. Therefore, we selected the optimal

combination of lower RF decay and fewer parameters.
3 Application to GWSM4C

3.1 Datasets

The theory of multi-channel ERF for CNNs mentioned above

was applied to the designing of the improved GWSM4C. GWSM4C

is a fully convolutional model. It takes same convolution

(introducing Padding operation) to ensure that the size of the

feature map is the same as the input datasets at each convolution.

In addition, the model does not include pooling. The memory

occupied by the feature map increases rapidly with the number of

layers when simulating global waves. Our research area was 80° S–

80° N and 0° E–359° E. The datasets were the same as the GWSM4C

possessing the characteristic of non- independent and identically

distribution. The wind speed data were obtained at an altitude of 10

meters above sea level and comprised two components: u and v.

These data were obtained from ERA5 (fifth-generation reanalysis

datasets produced by the European Centre for Medium-range

Weather Forecasts; Hersbach et al., 2020; Bell et al., 2021) and

had a spatial resolution of 0.25° × 0.25°. The SWH data were

simulated by the third-generation Key Laboratory of Marine

Science and Numerical Modeling-Wave Model (MASNUM-

WAM) and had a spatial resolution of 0.5° × 0.5° (Yuan et al.,

1991, 1992; Yang et al., 2005). We selected wind speed data from

2016 to 2020 as the training set for the simulation of global SWH,
Frontiers in Marine Science 05
and data acquired in 2021 were used as the test set. The temporal

resolution for all data was 1 hour.
3.2 Model structure and design based on
the GWSM4C and ERF

The model framework is shown in Figure 3. Because the wind

field x = [u10, v10] on the sea surface is the main source of wave

energy, we made full use of the historical wind speed information at

different moments (T – 168, T – 144, …, T – 12, T – 6) during the

modeling process. In contrast to the GWSM4C, the interval of the

wind field at different moments was modified rather than using only

6 hours, which allowed the accumulation of more wind features to

portray energy diffusion features. This enabled the model to

simulate the process of wave energy diffusion in the current

moment. Based on this wave energy state, the wind field at the

moment of T − 0 was combined with other moments to obtain the

SWH in the ocean at any spatial scale.

Crucially, the diffusion time of wave energy was defined to

obtain the energy diffusion distance. Because the GWSM4C uses

wind speed features at 6-hour intervals as inputs, the model is

unable to incorporate more historical wind speed features. In our

model, wind field data spanned 7 days, and we defined three time

intervals, DT, for wind input at different historical moments. For

wind speed data after 1 day, we used an interval of 6 hours. For

historical wind field data on the second and third days, the time

period spanned 12 hours. If the time range of historical wind speed

data exceeded 3 days, an interval of 24 hours was chosen.

The process of wave energy diffusion is a crucial element in

determining the wave state. In wave intelligent models, CNNs and
FIGURE 2

Results of the CNN for ERF, ERF/RF, and RF attenuation ratio for different layer numbers with kernel sizes. (A) 3 × 3, (B) 5 × 5, (C) 7 × 7, and (D) 9 × 9.
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convolutional structures can simulate regional wave states and

avoid error accumulation caused by the iteration of network

parameters during the training process. This lays the foundation

for realizing global wave simulation. When designing the intelligent

wave model, we tried to incorporate the range of wave energy

diffusion to not only enhance the physical interpretation of the

model but also improve the ability to simulate waves. Therefore, it is

important to define the range of wave energy diffusion as well as

establish the link between distance and the model’s ERF. Following

previous studies on the relationship between dataset resolution and

wave propagation (Jin et al., 2024; Zhang et al., 2024), our goal for

the model’s ERF is represented by:

ERF =
cg · DT
111km

� 1
r

� �−1

�2 + 1: (7)

In Equation 7, the maximum diffusion distance of wave energy

at different time intervals is cg · DT, where cg is wave group

velocity, and DT indicates diffusion time. The unit length 111 km

indicates the approximate distance of one arc-degree on the

Earth’s surface, assuming the Earth’s radius to be 6371 km.

Additionally, 1/r is the resolution of the dataset for SWH. When

determining the maximum diffusion range of wave energy, cg is

the key element. We selected the maximum wind speed (36 m/s)

within the datasets and calculated the wave group velocity (22.5

m/s) that corresponded to peak frequency. We anticipated that the

model’s ERF would be equal to the model design goal in that it

matches the range of wave energy diffusion as calculated using

Equation 7. For the time intervals defined above, the range of wave

energy diffusion (d) and the corresponding ERF are shown

in Table 1.
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The structure of the energy confusion module in our model was

designed to convert wind speed characterization information. This

module became the driving force for wave energy diffusion. Each

module could extract two features, u and v, for wind speed and

generate 40 channels as the output. Importantly, the size of the

convolution kernel of each convolutional layer was 1 × 1 (Szegedy

et al., 2015), which ensured the completeness of the space feature

information of the wind speed in the ocean.

As shown in Table 1, the wave energy diffusion distance

corresponded to 19 for the model’s ERF when the time interval

was 6 hours. Figure 2A illustrates that, based on Equation 5, nine

convolutional layers are required when using 3 × 3 convolutional

kernels. It is worth noting that there is no attenuation in the RF at

this time. Similarly, the ERF of the model design goal was 36 with

the 12-hour interval. At this point, we had two options for designing

the module structure: (1) 22 convolutional layers are needed for 3 ×

3 convolutional kernels (according to Figure 2A) with RF

attenuation (0.2); (2) as shown in Figure 2B, we use 10 layers, so

that the size of the convolutional kernel is 5 × 5. For the latter

scheme, the decay ratio of the RF is 0.098. We compared the RF

attenuation and convolutional layers for a kernel size of 3 × 3 with

those for a kernel size of 5 × 5.

Specifically, when the interval is 24 hours, the goal of the ERF

should be 71. There are three options to achieve this: (1) According

to Figure 2B, more than 20 convolutional layers would be needed to

use several convolutional kernels of 5 × 5, accompanied by RF

attenuation (exceeding 0.3); (2) according to the statistical value in

Figure 2C, 15 layers could be used with an RF attenuation rate of

0.23 when the convolutional kernel size is 7 × 7; (3) according to

Figure 2D, if the convolutional kernel size is 9 × 9, 12 convolutional
TABLE 1 Wave energy diffusion distance and the ERF at different intervals.

DT(h)
6 12 24

T-6 T-12 T-18 T-24 T-36 T-48 T-60 T-72 T-96 T-120 T-144 T-168

d(km) 486 972 1944

ERF 19 36 71
fron
FIGURE 3

Model structure based on the improved GWSM4C.
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layers would be required with a decay rate of 0.25. The latter two

schemes have fewer convolutional layers to obtain the ERF. The

decay ratio of a 7 × 7 kernel size is lower than that of a 9 × 9 kernel

size. In addition, the number of parameters for model training using

scheme 2 would be 735 (only a one-feature channel), whereas the

number of parameters for scheme 3 would be 972. For 40-feature

channels, the number of parameters for a 9 × 9 kernel size would be

9480 more than that for a 7 × 7 kernel size. Such differences will

impact the training efficiency of this model. The hyperparameters in

the model energy diffusion module at different time intervals were

set as shown in Table 2 throughout the above analyses.
3.3 Model training and
evaluation indicators

The wind speeds, including the u and v components, were used

as inputs at different moments during the training process. There

were 12 energy diffusion modules in the wave energy diffusion

model, consisting of wind speed features with intervals of 6, 12, and

24 hours at different historical moments. All the features are

summarized in the energy conversion module at moment T – 0,

and the model had 26 feature channels. In addition, because the

wind speed datasets from ERA5 contain land wind data, the area

related to land was set to 0 (increasing the mask).

Selecting an appropriate optimization method and learning rate

for the neural networks is crucial because these factors enhance the

network’s learning ability. In the improved model, we used the

Adam optimizer (Kingma and Ba, 2014), which corrects the

updating direction of the parameters and adaptively adjusts the

learning rate during each iteration. The decay rates of the two

moving averages are 0.9 and 0.99. In addition, the learning rate

needs to be determined during the training process. Usually, the

decay in the learning rate is set according to the number of epochs.

However, the learning rate of our model was adjusted according to

the cosine decay (Loshchilov and Hutter, 2016; Jin et al., 2024). The

expression is shown in Equation 8.

aepoch = 1þ 1
2
cos

p · epoch
400

� �� �
� 0:9 þ  0:1

� �

� 0:001;  epoch  ¼  1,  2,⋯, 400: (8)

To evaluate the simulation results of the model, we used three

indicators to judge the accuracy of global SWH: the time correlation

coefficient (TCOR), root mean square error (RMSE), and bias

(BIAS). These indicators can be calculated using Equations 9-11.
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TCOR  ¼  
1
n

o
n

i=1
HM −HM

� �
HW −HW

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(HM −HM)

2

s
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(HW − HW)2

s , (9)

RMSE  ¼  
1
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(HM −HW)2

s
, (10)

BIAS  ¼  
1
no

n

i=1
(HM −Hw), (11)

where HM and HW represent the SWH calculated using the

improved GWSM4C and the MASNUM-WAM, respectively. The

line above the variable signifies that it is the mean value of that

variable, and n is the number of sample points participating in the

network test. For these evaluation metrics, if the value of TCOR is

sufficiently high and the RMSE and BIAS are low, the model

simulation is accepted.
4 Results

4.1 Gradient distribution in the West
African and the East Pacific area

The ERF calculated by the model characterizes the distribution

of different input sample point contributions; thus, it reflects the

importance of different input samples to the output results.

According to the model’s ERF mentioned in Section 3.2, the

characteristics of regional swells can be verified via comparison

with previous studies. The key element of the ERF is the gradient

map of wind speed characteristics at different moments. Each

gradient map portrays the importance of different output points

relative to different modules and their input channels. Theoretically,

the gradient values of different pixel points in the input should

decay around the target point following a Gaussian distribution.

The two-dimensional projections of the gradient values are circles.

However, the gradient distribution at the target point varies because

of many nonlinearities (e.g., nonlinear activation functions) in the

network structure. Notably, the maximum value of the ERF at the

earliest moment (i.e., T − 168) deviates from the center. The

expressions are shown as Equations 12, 13, which demonstrate

that the wind field in other sea areas impacts the SWH at this point.

This is because the waves are susceptible to swells generated by

storms from other sea areas. These swells are sufficient to propagate

to the target point within 7 days and have a significant effect on

wave height variations.

gu(h,w) =
∂j

∂M(T−0)(Cu(x))
· ∂M

(T−0)(Cu(x))
∂M(T−6)(Cu(x))

·⋯ · ∂M
(T−144)(Cu(x))

∂M(T−168)(Cu(x))
,

gv(h,w) =
∂j

∂M(T−0)(Cv(x))
· ∂M

(T−0)(Cv(x))
∂M(T−6)(Cv(x))

·⋯ · ∂M
(T−144)(Cv(x))

∂M(T−168)(Cv(x))
:

8><
>: (12)

G  ¼  
1
M o

H

h=1
o
W

w=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(gu(h,w))

2 + (gv(h,w))
2

q
: (13)
TABLE 2 Hyperparameter determination for the wave energy
diffusion module.

DT(h) 6 12 24

Layers 9 10 15

Kernel Size 3×3 5×5 7×7
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The variables in Equations 12, 13 are subscripted with wind speed

characteristics u and v. The upper right of each x is identified as the

moment. Other variables are the same as those in Equations 5, 6. In

our model, the values for H and W were 361 and 720, respectively,

based on the characteristics of our datasets mentioned in Section 3.1.

The gradient distribution can verify the characteristics of oceanic

swell. We selected the West African area, where the wave conditions

are complex and dominated by swells (Allersma and Tilmans, 1993;

Toualy et al., 2015; Almar et al., 2023). The swells primarily arise from

cyclones in the North Atlantic or storms in the Subpolar Westerlies of

the Southern Hemisphere (Southern Atlantic and Southern Ocean).

To verify swell-related areas in the West African area according to the

improvedmodel, we selected three points (0°, 25°W; 15° S, 20°W; and

15° N, 25° W) and their average values of gradient maps

corresponding to all T − 168 moments from 2021 (Figure 4).

Similarly, the gradient distribution based on the improved

GWSM4C can verify the characteristics of swells in the East Pacific

area, which also has complex wave conditions that are dominated by

swells (Jiang and Lin, 2019; Jiang et al., 2023; Zhang et al., 2023). For

this area, the spatial points in the northern, central, and southern

regions contain swells from the North Pacific, both the North and

South Pacific, and South Pacific, respectively. To verify the swell-

related areas in the East Pacific according to the improved GWSM4C,

we selected three points (25° N, 120°W; 0°, 110°W; and 20° S, 95°W).

Their average values of gradient maps corresponding to all T − 168

moments from 2021 are shown in Figure 5.

According to the distribution of gradient values, the high correlation

area of swells was largely consistent with the source of observation in the

West African and East Pacific areas. This also indirectly justifies the use

of our method for calculating the ERF and confirms that the improved

GWSM4C is more reliable. In addition, this finding verified that our

model can explain the results, which is particularly notable for

furthering the development of deep learning models of ocean waves.
4.2 Improvement of SWH prediction in
global swell pools

We compared the evaluation metrics of our model detailed in

Section 3.3 with those of the MASNUM-WAM to validate the
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learning ability of the model. The comparison results of the seasonal

distribution of SWH during 2021 are provided in Figure 6. Overall,

the RMSE was less than 0.2 m (approximately 0.15 m), and the

TCOR was more than 0.95 in most of the global ocean areas. The

absolute value for BIAS mostly fell within the range of 0.15 m. These

indicators showed that the simulation effect of the improved

GWSM4C was similar to that of MASNUM-WAM.

Additionally, we found that the TCORs near the equator were

lower than those of other areas; the TCORs fell between 0.7 and 0.8.

In contrast, the RMSE and BIAS remained largely unchanged. The

shorter time series of the wind fields could not effectively simulate

the wave energy diffusion process because of a windless zone

around the equator. Furthermore, swells propagating from

different directions caused complex wave characteristics in this

region that were similar to the eastern coast (Song and Jiang,

2023). The model structure was optimized by adding historical

wind field data based on the ERF. Compared with that in the

GWSM4C, the simulation effect was significantly better in swell

pools. The spatial distribution of the annual SWH RMSE for both

GWSM4C and the improved version is shown in Supplementary

Figure 1. In particular, the RMSE reduced from 0.3 to 0.15 m in the

West African and East Pacific swell pools. This demonstrates that

adding historical wind field information benefits the model’s

performance and its ability to learn the complex relationship

between wind and waves. Although there were small gaps in the

simulation of our model owing to the seasonal distribution of SWH

during 2021, the overall results were acceptable, except for those in

the equator and the eastern ocean. Compared with traditional

artificial intelligence models for wave prediction, the simulation

of SWH by our model is less impacted by seasonal climate events,

such as cold-air outbreaks. Therefore, our model can be used to

predict long-term wave characteristics and simulate wave climates.

It is also noted that the simulation results are less effective in the

Arctic Oceans. It is because the computational grids adopted in

GWSM4C are based on latitudes and longitudes, and the unit length

111 km presented in Equation 7 is acceptable to calculate the ERF

for the vast majority of grid points in the global ocean, however, the

distances between meridional grid points become much shorter

than the preset unit length in polar regions, letting the supposed

range of energy diffusion cannot be achieved and the ERF
FIGURE 4

Gradient distribution at different points (A) 0°, 25°W; (B) 15°S, 20°W; and (C) 15°N, 25°W in the West African area-based ERF.
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previously obtained and the convolutional neural network structure

established be no more suitable. More detailed information about

the poor performance of GWSM4C in higher latitudes can be

referred to (Jin et al., 2024).
4.3 Test results and analysis of some points
and areas

According to global ocean characteristics, we selected three

points to verify the long-term simulation effect of the wave energy

dispersion model. The three points were located in the South China

Sea (an almost enclosed sea area), the East Pacific Ocean

(dominated by several swells), and the Subpolar Westerlies of the

Southern Hemisphere (no land obstruction). Overall, SWHs

obtained from the GWSM4C and the improved model in areas

dominated by wind waves were highly correlated (TCORs of 0.98

and 0.99, respectively) with the results of the MASNUM-WAM

(The Scatter plot of two points is shown in Supplementary

Figure 2). However, the GWSM4C performed poorly in the East

Pacific swell pool whereas, the improved model performed

significantly better in this region. The scatterplot distributions are

shown in Figure 7. Taken together, the improved GWSM4C

simulates swell pool areas better than the original model.

In addition to the several special points mentioned above, we

divided the global ocean into seven regions to verify the

generalizability of our model to different areas: Northern Indian,

Southern Indian, Northern Atlantic, Tropical Atlantic, Northern

Pacific, Tropical Pacific, and Southern Ocean. The latitude and

longitude information is shown in Supplementary Table 1. For the

Northern Atlantic region, the area 0°–15° N, 260° E–275° E was not

included. The mean BIAS values of these areas in different seasons

were less than 0.2 m for most SWHs (Supplementary Figure 3).

Compared with the GWSM4C, the improved model showed a clear

decline in BIAS values. The East Pacific and West African swell

pools were included in the Tropical Pacific and Tropical Atlantic

regions, respectively. Compared with the GWSM4C results, the
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improved model reduced the average BIAS in these two swell pools

by approximately 0.1 m.
5 Discussion

The effective range of the gradient map from the CNN directly

determines the ERF. Global gradient values within 95.45% is

widely used in image processing tasks. Its application

presupposes that all trained samples are independent of each

other. Therefore, this range cannot be applied to intelligent

wave model datasets. The 3s principle of normal distribution

(99.73%) is defined for non-IID and multi-channel samples. To

test the applicability of the effective range in wave modeling, we

designed three fully convolutional models that were trained to

simulate global waves. The earliest wind field of these three models

was T − 72. The feature generated by the CNN was performed at 6-

hour intervals, alongside wind field features at the subsequent

moment. Twelve convolutional modules were used to realize wave

energy diffusion at different moments. There was a total of 24

feature channels per data sample because the two components, u

and v, were included in the wind field at each moment. The

module parameters (e.g., 9, 3 × 3 represents the layers and

convolutional kernel size, respectively) for these models are

shown in Table 3.

If the time span is too large, the wave energy propagation will be

blocked by land. This will lead to dispersion of the ERF, which is not

ideal for calculating the range. We selected the global center point

(i.e., 0°, 180° E) to ensure that the wave energy propagated fully

within a certain spatial range. The ERF of three models at different

times, based on Equations 12, 13, are shown in Figure 8. We

identified a significant gap between the ERF and the target RF

based on the 2s range up to moment T − 30. For Experiment 1, the

model’s ERF was unstable under the 2s principle. At moments T −

66 and T − 72, the ERF of Experiments 2 and 3 appeared to be upper

bounded (135), which was not consistent with the ERF changes.

Although the RF appeared to decay with the increase in the number
FIGURE 5

Gradient distribution at different points (A) 25°N, 120°W; (B) 0°, 110°W; and (C) 20°S, 95°W in the East Pacific area-based ERF.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1492572
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Jiang et al. 10.3389/fmars.2024.1492572
of convolutional layers in the CNN, this did not necessarily signify

that the ERF remained constant. If this principle was used according

to the number of layers in the model feature extraction, model

complexity, and consequently computational power, would become
Frontiers in Marine Science 10
excessive. Therefore, improving the simulation performance of the

model was deemed impractical.

In contrast, the ERFs of the three models based on the 3s
principle were similar to the goal ERF. The gradient value of 99.73%
FIGURE 7

Scatter plot of SWH at 5° S, 90° W. (A) GWSM4C and (B) the improved model.
FIGURE 6

Comparison between our model and the MASNUM-WAM for SWH. RMSE, TCOR, and BIAS are shown in the left, center, and right columns,
respectively. Seasonal distributions are shown for spring (A–C), summer (D–F), autumn (G–I), and winter (J–L).
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could calculate the ERF of the models in different modules. It is

worth noting that the similarity of the ERF to the goal range given

was used only as a foundation for the model structure design.

Specifically, we noticed that the ERFs of Experiment 3 did not

increase at each moment; they both showed a decrease at moment T

− 66, although they did not impact the ERF analysis. The ranges of

the three models increased from previous moments. Overall, we

considered using the 3s principle for the wave simulation model
Frontiers in Marine Science 11
because it will not result in a large amount of target point-related

feature information loss.
6 Conclusions

Based on existing methods for determining the range of ERFs, we

proposed a multi-channel ERF calculation method. We considered

the correlation between different channels and the distribution

characteristics of the general sample dataset. We then selected the

gradient value of 99.73% of the global range as the effective range. By

conducting numerical experiments, we determined the size of the

ERF corresponding to different convolution kernel sizes and

convolution layer numbers. Our method can be applied to the ERF

calculation of any dimensional data (i.e., non-IID data samples).

The GWSM4Cmodel was improved by targeting the range of the

ERF and establishing its connection with the diffusion range of wave

energy. We used the improved model’s ERF to explore the influence

of other wind fields at different spatial points on SWH. This feature

enabled us to use the gradient map of the ERF to investigate the

influence of regional wind fields on the regional swell characteristics

in the West African and East Pacific areas. Our results were largely

consistent with previous observations. In addition, the improved

model based on multi-channel ERF achieved better performance in

simulating global SWH, especially in oceanic swell pools.

The gradient value of the ERF reflects the contribution of each

spatial pixel point and illustrates the important features in the input

datasets. Furthermore, the ERF can be used to examine the
FIGURE 8

ERFs of historical wind speed characteristics under different models. The right axis represents the latitude and longitude of the wave energy diffusion
corresponding to the ERF.
TABLE 3 Module parameters of the three experiments.

Module Experiment1 Experiment2 Experiment3

T-72 9, 3×3 13, 3×3 13, 5×5

T-66 9, 3×3 13, 3×3 13, 5×5

T-60 9, 3×3 13, 3×3 13, 3×3

T-54 9, 3×3 13, 3×3 13, 3×3

T-48 9, 3×3 13, 3×3 13, 3×3

T-42 9, 3×3 12, 3×3 12, 3×3

T-36 9, 3×3 12, 3×3 12, 3×3

T-30 9, 3×3 12, 3×3 12, 3×3

T-24 9, 3×3 10, 3×3 10, 3×3

T-18 9, 3×3 9, 3×3 9, 3×3

T-12 9, 3×3 9, 3×3 9, 3×3

T-6 9, 3×3 9, 3×3 9, 3×3
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interpretability of the modules of the trained neural network model.

In future research, based on the existing ERF theory, we plan to

develop an evaluation method for an interpretable artificial

intelligence model (Bommer et al., 2024) that can be applied to

wave forecasting.
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