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Effectively assessing the basic genomic information of a species is fundamental for

conductingmolecular research and provides a foundation for constructing whole-

genome maps. Hapalogenys analis is a temperate and tropical nearshore marine

fish in China’s coastal waters, with significant economic value and high aquaculture

potential. However, the genomic differences between male and female individuals

of this species are not yet apparent. This study conducted whole-genome survey

analyses on male and female H. analis to provide basic genomic information.

According to K-mer analysis, the genome sizes of female and male fish were

436.24 Mb and 493.21 Mb. The heterozygosity rates were 0.58% for females and

0.23% for males. The proportion of repetitive sequences of female and male fish

were 42.95% and 51.20%. The GC content of the genomes was 43.30% for female

and 43.20% for male. The sizes of the assembled genomes were 589.18 Mb for

female and 592.02 Mb for male, with N50 lengths of 3,135 bp and 3,041 bp,

respectively. SSR screening results showed that 959,447 and 894,158 SSR

sequences were detected in the genomes of female and male, respectively. The

lengths of the assembled mitochondrial genome sequences were 19,755 bp for

female and 19,754 bp for male, each containing 38 genes. Among these

mitochondrial sequences, 13 protein-coding genes were identified, including 7

NADH dehydrogenase, 3 cytochrome c oxidase, 1 cytochrome b, and 2 ATP

synthase genes. Both sequences contained 23 tRNA genes and 2 rRNA genes. This

study provides a theoretical basis for constructing a high-quality whole genome of

H. analis and valuable data for subsequent molecular breeding research.
KEYWORDS

Hapalogenys analis, genome survey, genomic characteristics, genome assembly,
genomic comparison
1 Introduction

Hapalogenys analis Richardson (1844), belongs to the order Perciformes, the family

Pomadasyidae, and the genus Hapalogenys. It is widely distributed in the coastal waters of

China and is an economically important temperate and tropical nearshore marine fish

(Zheng et al., 2020; Sun et al., 2023). This species prefers to inhabit rocky reef areas at a depth
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of 30-50 meters. It feeds on small fish, crustaceans, and mollusks. Its

flesh is tender and flavorful, with high nutritional value, making it a

species with great potential for aquaculture (Mohapatra et al., 2013).

In recent years, due to the overexploitation of fishery resources and

the intensification of environmental pollution, the wild populations

of H. analis have sharply declined. Protecting and sustainably

utilizing these resources have become urgent issues that must be

addressed. The species’ euryhaline and cold-tolerant characteristics

make it particularly suitable for artificial breeding and stock

enhancement to restore resources. However, the genomic

differences between male and female individuals of this species

have not been systematically analyzed, severely hindering its

artificial breeding development. Therefore, analyzing the genomic

characteristics of male and female H. analis and gaining an in-depth

understanding of their genetic structure and gender differences are

crucial. This analysis can provide genomic resource data for

molecular breeding efforts.

With the rapid development of molecular biology techniques,

sequencing technologies have continuously advanced while costs

have decreased. Whole-genome sequencing has become a standard

method in biological research. Simplified genome sequencing based

on second-generation sequencing technologies has been widely

applied (Raffini et al., 2017). Genomic sequencing technology

provides a powerful tool for uncovering the genetic background,

sex differences, and adaptive evolution of species. Through genome

survey sequencing, the genomic structure of a species can be

analyzed, revealing functional genes and their regulatory

mechanisms. This provides a crucial foundation for species

conservation, breeding, and resource management (Goodwin et al.,

2017). Research on genomic differences between male and female

individuals is vital for understanding sex-related traits and

reproductive mechanisms. The H. analis exhibits significant sexual

dimorphism, with males and females showing notable differences in

growth rate, body structure, and reproductive capacity. These sex

differences are significant for biological research and provide new

insights for aquaculture and management. However, there have been

few reports on genomic research on H. analis. For example, Zheng

et al. (2020) obtained the complete mitochondrial genome of this

species using whole genome sequencing technology, and Sun et al.

(2023) studied its population structure. This has somewhat deepened

the understanding of the species at the genomic level.

Additionally, genome assembly based on next-generation

sequencing (NGS) technology can significantly improve the

integrity and continuity of the genome, facilitating more accurate

analysis of genome structure and function (Miller et al., 2010). As an

efficient molecular marker tool, the development and analysis of

simple sequence repeat (SSR) markers are widely used in genetic

diversity assessment, population structure analysis, and breeding

research (Vieira et al., 2016). Meanwhile, the annotation and

analysis of mitochondrial genomes also play an essential role in

understanding species’ evolutionary history, phylogeny, and

population dynamics (Boore, 1999). In recent years, remarkable

progress has been made in the genomic sequencing of male and

female fish. Researchers have utilized high-throughput sequencing

technology to perform genomic sequencing on various economically

important fish species and have analyzed their sex-related genes,
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includingNothobranchius furzeri (Reichwald et al., 2015),Danio rerio

(Wilson et al., 2014), Salmo salar L. (Timmerhaus et al., 2011) and

Thunnus alalunga (Montes et al., 2012). These studies provide

important genomic data and analytical tools for understanding

gender differences and evolution in fish.

This study aims to conduct genome survey sequencing of male

and female individuals of H. analis, perform genome assembly using

NGS technology, conduct SSR analysis, and annotate the

mitochondrial genome. Specific objectives include constructing

genomic drafts of male and female H. analis individuals, analyzing

genome size, GC content, repetitive sequences, and genome integrity,

providing a preliminary description of the genomic characteristics of

male and female individuals. This study will establish foundational

data for research on the genomic characteristics, genetic resource

development, and conservation management of H. analis.
2 Materials and methods

2.1 Sample collection, DNA extraction and
genome sequencing

The two H. analis samples (1 female and 1 male) used for

genome survey sequencing were collected from the Zhoushan sea

area in Zhejiang. Samples were cryopreserved and transported to

the Marine Fishery Resource and Biodiversity Laboratory of

Zhejiang Ocean University. Approximately 1 g of muscle tissue

was extracted from each sample for DNA extraction.

The phenol/Chloroform extraction method was used to extract

the DNA from muscle tissue (Sambrook et al., 1982). The extracted

DNA concentration was assessed using NanoDrop 2000 (Thermo

Fisher Scientific Inc, USA) and verified through 1% agarose gel

electrophoresis. After ultrasonic fragmentation, libraries were

constructed with insert fragment sizes of approximately 350 bp for

sequencing (Supplementary Figure S1). All libraries were sequenced

on the Illumina NovaSeq 6000 platform according to the

manufacturer′s protocol.
2.2 Data quality control and genome
survey analysis

We utilized FASTP (V0.23.2) (Chen et al., 2018) with default

parameters for raw data filtering and quality control, resulting in the

acquisition of clean data. Following the step, high-quality data of 82.26

Gb for female and 81.13 Gb for male (averaging 139.6× and 137.0×

coverage of the genome for female and male, respectively) were

retained for further analysis. Metrics such as quality values Q20 and

Q30, along with GC content, were calculated to assess sequencing

quality. GCE (V1.0.0) (Liu et al., 2013) was used to estimate each

sample’s genome characteristics, with a K-mer size of 17. The outcomes

of the K-mer analysis were leveraged to estimate genome size,

heterozygosity, and repeat ratio. The algorithm used for determining

genome size is as follows: genome size = K-mer_num/peak_depth,

where K-mer_num represents the total number of K-mers, and

peak_depth is the expected value of the K-mer depth.
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2.3 Genome assembly, evaluation and
SSR identification

SOAPdenovo2 (Vr240) (Luo et al., 2012) was employed to

assemble the clean reads into distinct contigs individually. The

assembly genome sequences were evaluated by Quast (V5.0.2)

(Gurevich et al., 2013). Simultaneously, the conserved gene

sequences of each genome were identified. Potential microsatellite

motifs were identified using the Perl script “misa.pl” from the MISA

software (Beier et al., 2017). The minimum number of SSR repeats for

dinucleotide, trinucleotide, tetranucleotide, pentanucleotide, and

hexanucleotide microsatellite motifs with 6, 5, 5, 5, 5, respectively.
3 Results

3.1 Genomic survey sequencing of male
and female H. analis

After quality control and filtering of raw data, sequencing data

of 82.26 Gb and 81.13 Gb were obtained from the libraries of female

and male H. analis, respectively. All samples’ Q20 and Q30 values

were higher than 97.93% and 94.52%, respectively, indicating an

exceptionally high overall sequencing quality (Table 1). Then, we

used the Basic Local Alignment Search Tool (BLAST), random

10,000 single-end reads from the libraries of male and female fish

were compared with the Nucleotide Sequence Database of the

National Center for Biotechnology Information (NCBI), revealing

no significant exogenous contamination in the reads

(Supplementary Tables S1, S2).
3.2 Genomic K-mer analysis

We conducted K-mer (K=17) analysis on the sequencing data to

evaluate the genome size, heterozygosity, and proportion of

repetitive sequences in different samples. The genome survey

results showed a main peak for females at a depth of 50

(Figure 1A) and for males at 73 (Figure 1B). After excluding K-

mers with abnormal depths, there were a total of 36,208,181,592 K-

mers used to estimate the genome length of females, and a total of

36,004,575,975 K-mers used to estimate the genome length of

males. All samples were diploid, with the genome size of female

dotted gudgeon was 436.24 Mb, heterozygosity was 0.58%, and

proportion of repetitive sequence was 42.95%. The genome survey

results for male showed that after excluding K-mers with abnormal

depths, the genome size of male dotted gudgeon was 493.21 Mb,

heterozygosity was 0.23%, and proportion of repetitive sequence
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was 51.20% (Table 2). This implies significant diversity in adequate

population size among these fish under natural conditions.
3.3 Genomic assembly and estimation

We used SOAPdenovo2 software to perform de novo genome

assembly on the NGS data of male and female H. analis. The total

length of contigs for females was 589.18 Mb, with a contig N50 of

3,135 bp, a maximum sequence length of 49,858 bp, and a genome

GC content of 43.30%. The total length of contigs for males was

592.02 Mb, with a contig N50 of 3,041 bp, a maximum sequence

length of 56 ,240 bp, and a genome GC content of

43.20% (Table 3).
3.4 Identification and statistics of SSR
molecular markers

Utilizing the assembled genome, we used the MISA software

(Beier et al., 2017) to predict simple sequence repeats (SSRs). The

predicted SSR counts for male and female H. analis were very close,

with 959,447 and 894,158 SSRs, respectively (Table 4); the SSR

distribution density showed extreme similarity between sexes, with

1628.44Mb SSRs for females genome sequence, while for males it was

1510.35 Mb SSRs. In the SSR sequences of female fish, dinucleotide

repeats were the most abundant (55.56%), followed by

mononucleotide repeats (11.30%) (excluding complex repeat types,

Figure 2A). In the SSR sequences of male fish, dinucleotide repeats

were the most abundant (54.94%), followed by mononucleotide

repeats (12.14%) (excluding complex repeat types, Figure 2B).
3.5 Assembly and annotation of
mitochondrial DNA genome

We used mitoz software (Meng et al., 2019) for the assembly

and annotation of mitochondrial sequences. The assembled

mitochondrial genome sequences of male and female H. analis

were 19,755 and 19,754 bp in length, respectively. The

mitochondrial genome contains 38 genes for each sex.

Meanwhile, in these mitochondrial sequences, we identified 13

protein-coding genes comprising 7 NADH dehydrogenases, 3

cytochrome c oxidases, 1 cytochrome b, and 2 ATP synthases.

The number of transfer RNA (tRNA) and ribosomal RNA (rRNA)

genes were consistent in number in both sequences, with both sexes

having 23 tRNA genes and 2 rRNA genes (Table 5). The results of

mitochondrial annotation circularization are shown in Figure 3.
TABLE 1 Statistics of Hapalogenys analis genome survey sequencing data.

Library Name Read Number Base Count (Gb) Q20 (%) Q30 (%) GC Content (%)

Female 553,160,370 82.26 97.93 94.52 41.04

Male 546,251,002 81.13 97.94 94.56 41.20
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4 Discussion

This study utilized NGS technology to conduct a genome survey

analysis of H. analis, obtaining data on genome size, heterozygosity,

proportion of repetitive sequences, GC content, and mitochondrial

genome assembly and annotation for both male and female. The
Frontiers in Marine Science 04
study comprehensively understood the genomic differences between

male and female H. analis through comparative analysis. There have

been few reports on genomic studies of the genus Hapalogenys. For

instance, Liang et al. (2012) and Zheng et al. (2020) conducted genomic

sequencing analyses at the chromosomal level for H. nigripinnis and H.

analis, respectively. Additionally, Zhang et al. (2024) explored the genetic

evolution mechanisms of H. analis using double-digest restriction site-

associated DNA sequencing (dd-RAD). Therefore, the present study is

significant for the whole-genome assembly and analysis and the

development of genetic breeding technologies for H. analis. Based on

the K-mer analysis results, the genome sizes of female andmale fish were

436.24 Mb and 493.21 Mb. Some polyploid fishes have undergone

genome doubling or polyploid events, resulting in larger genomes and

enhanced adaptability to their environments, such as Cyprinus carpio, its

genome size was about 1.7 Gb (Xu et al., 2014). Researchers also have

performed whole genome sequencing and comparative analyses of three

species in the cyprinid genus Sinocyclocheilus, a cavefish model, the

assembled genome sizes of S. grahami, S. rhinoce-rous, and S. anshuie-

nsis were 1.75 Gb, 1.73 Gb, and 1.68 Gb, respectively (Yang et al., 2016).

However, most reported fish genome sizes are less than 1.0 Gb. For

instance, a species of the family Haemulidae, Haemulon aurolineatum,

has been recorded that its assembled genome size was 954.6 Mb

(Pedraza et al., 2024). Meanwhile, the genome sizes of Cynoglossus

semilaevis (Chen et al., 2014) and Larimichthys crocea (Wu et al., 2014)
TABLE 2 The statistical information of K-mer-based genome survey result.

Sample
K-

mer Number
K-

mer Depth
Genome
Size (bp)

Revised Genome
Size (bp)

Heterozygous
Ratio (%)

Repeat
(%)

Female 36,208,181,592 83 436,243,164 428,635,353 0.58 42.95

Male 36,004,575,975 73 493,213,370 484,473,440 0.23 51.20
TABLE 3 Features of assembled Hapalogenys analis genomes.

Sex Total Length (bp) Total Nnumber
Total Number

(>= 2 kb)
Max

Length(bp)
N50 (bp) N90 (bp) GC Content (%)

Female 589,180,756 1,263,020 80,530 49,858 3,135 154 43.30

Male 592,021,119 1,215,993 80,395 56,240 3,041 159 43.20
TABLE 4 Statistics of microsatellite recognition results.

Characteristics
Female
H. analis

Male
H. analis

Total number of sequences examined 1,263,020 1,215,993

Total size of examined sequences (bp) 589,180,756 592,021,119

Total number of identified SSRs 959,447 894,158

Number of SSR containing sequences 561,383 513,498

Number of sequences containing more
than 1 SSR

203,632 190,948

Number of SSRs present in
compound formation

192,950 178,413

Total number of sequences examined 1,263,020 1,215,993

Total size of examined sequences (bp) 589,180,756 592,021,119
FIGURE 1

Distribution of K-mer (K=17) depth and frequency of female and male Hapalogenys analis: (A) Female Hapalogenys analis; (B) Male Hapalogenys analis.
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were reported as 520.0 Mb and 728.0 Mb, respectively. All samples in

this study aligned with this pattern. Meanwhile, the heterozygosity rates

were 0.58% for females and 0.23% for males, the proportion of repetitive

sequences of female and male fish were 42.95% and 51.20%. The higher

heterozygosity in female fish genomes highlights the complex

evolutionary mechanisms influenced by reproductive strategies,

environmental adaptability, and selective pressures. In some fish

species, the mechanisms of sex determination may affect genomic

heterozygosity. For example, in species with temperature-dependent

sex determination, females might need to exhibit greater adaptability to

environmental changes, resulting in increased genomic heterozygosity

(Wang, 2005). Additionally, females always experience stronger selective

pressures, particularly regarding mate choice and competition within

populations, which may further enhance the diversity of their genomes
Frontiers in Marine Science 05
(Mousseau and Roff, 1987). This finding deepens our understanding of

H. analis genomic evolution and provides a crucial theoretical

foundation for future research in this area. GC content is a crucial

sequencing metric that significantly impacts genome randomness (Xu

et al., 2014). Another species of genus Hapalogenys, H. nigripinnis was

reported that its GC content was about 43.84%, similar with our results

(Ji et al., 2020). TheGC content inmale and femaleH. analiswas 43.20%

and 43.30%, respectively, indicating a moderate level within the normal

range (Zhou et al., 2013; Chen et al., 2020). Overall, considering the

genome size, heterozygosity, repetitive sequence proportion, and GC

content, the genome of H. analis is relatively simple, making it suitable

for comprehensive whole-genome sequencing studies.

A large body of research shows that SSR are widely distributed in

eukaryotic genomes and can exhibit polymorphism at both individual
FIGURE 2

The frequency of simple sequence repeat (SSR) types in the female and male Hapalogenys analis genome survey. (A) Female Hapalogenys analis;
(B) Male Hapalogenys analis. Note: P1 to P6 are SSRs with repeat unit lengths ranging from 1 to 6; c and c* are complex repeat types formed by
mixing SSRs from P1 to P6.
TABLE 5 Statistics of mitochondrial genome assembly and annotations.

sex
Genome

Length (bp)
Contig
Number

Total
Gene Number

NADH
Dehydrogenase

Cytochrome
C Oxidase

Cytochrome
B

ATP
Synthase

Transfer
RNAs

Ribosomal
RNAs

Female 19,755 1 38 7 3 1 2 23 2

Male 19,754 1 38 7 3 1 2 23 2
fr
FIGURE 3

The mitochondrial annotation circular map of female and male Hapalogenys analis. (A) Female Hapalogenys analis; (B) Male Hapalogenys analis.
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and population levels (Li et al., 2002; Ellegren, 2004; Gadgil et al., 2017).

Short nucleotide repeat sequences are more abundant in most genomes

than long ones. In this study, as the number of nucleotide repeat

sequences increased, the quantity of all SSR sequences rapidly

decreased. Among them, dinucleotide repeat sequences were the

most abundant (female 719,060, male 662,242), while hexanucleotide

repeat sequences were the least abundant (female 8,106, male 7,776).

We speculate that this phenomenon may be related to the specific

structure and function of the genome. Dinucleotide repeat sequences

(such as AT/TA, AG/CT) are generally more common, possibly

because they occur relatively easily in the genome and may not

significantly affect gene function, thus they are more abundant in

quantity (Neff and Gross, 2001). In contrast, hexanucleotide repeat

sequences (such as ATAGAT, AGATCT) may be less abundant due to

their longer length, making them more prone to mutations or

selectively reduced in the genome. Specific reasons may also involve

genome structural stability, mismatch repair mechanisms during

replication, and the role of natural selection. Genetic diversity and

adaptability among different fish populations may also influence the

abundance and distribution of different nucleotide repeat sequences.

Overall, male and female H. analis genomes show high similarity in

SSR types and quantities.

Zheng et al. (2020) obtained the complete mitochondrial genome

of H. analis, excluding the control region, using whole-genome

sequencing technology. This study identified 2 additional tRNA

genes in both male and female in the newly assembled sequences.

The evolution of fish in various ecological environments may induce

changes in the number of tRNA genes, allowing them to adapt to

specific physiological needs and metabolic processes. For instance,

certain fish may need higher translation efficiency in their

environments, driving the expansion of tRNA genes (Fiteha and

Magdy, 2022). Additionally, gene duplication or loss can also

contribute to variations in gene numbers. These phenomena may

stem from genomic instability or selective pressures associated with

adaptation (Santos and Del-Bem, 2022). Furthermore, mitochondrial

annotation further refined the functional gene and provided insights

into the genomic structure of this species. These findings establish a

molecular research foundation for the evolution, breeding, and

taxonomy studies of H. analis and related species.
5 Conclusion

In summary, we conducted a genome survey analysis of H.

analis, obtaining data on genome size, heterozygosity, proportion of

repetitive sequences, GC content, and mitochondrial genome

assembly and annotation for both male and female. These results

are conducive to subsequent high-quality genome assembly,

providing necessary genomic resources for H. analis research.
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