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Predicting wave-induced liquefaction around submarine pipelines is crucial for

marine engineering safety. However, the complex of interactions between ocean

dynamics and seabed sediments makes rapid and accurate assessments

challenging with traditional numerical methods. Although machine learning

approaches are increasingly applied to wave-induced liquefaction problems,

the comparative accuracy of different models remains under-explored. We

evaluate the predictive accuracy of four classical machine learning models:

Gradient Boosting (GB), Support Vector Machine (SVM), Multi-Layer Perceptron

(MLP), and Random Forest (RF). The results indicate that the GB model exhibits

high stability and accuracy in predicting wave-induced liquefaction, due to its

strong ability to handle complex nonlinear geological data. Prediction accuracy

varies across output parameters, with higher accuracy for seabed predictions

than for pipeline surroundings. The combination of different input parameters

significantly influences model predictive accuracy. Compared to traditional finite

element numerical methods, employing machine learning models significantly

reduces computation time, offering an effective tool for rapid disaster

assessment and early warning in marine engineering. This research contributes

to the safety of marine pipeline protections and provides new insights into the

intersection of marine geological engineering and artificial intelligence.
KEYWORDS

submarine pipelines, gradient boosting, support vector machine, machine learning,
wave-current coupling
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1 Introduction

Submarine pipelines are vital infrastructures in the global

energy supply chain, connecting terrestrial and marine resources

to transport critical energy resources such as crude oil and natural

gas. With the continuous expansion of offshore resource

exploration, ensuring the stability of submarine pipelines under

extreme geological conditions becomes crucial. One significant

challenge is the liquefaction of seabed sediments under wave

action, which can jeopardize the stability and safety of these

pipelines. Therefore, it is of great significance to investigate the

liquefaction of sediments around submarine pipelines under wave

action and make accurate predictions for the safety of offshore

engineering and oil and gas development.

The stability of submarine pipelines is influenced by various

complex factors, including seabed scouring, wave actions, and

seismic activities. Scholars have extensively explored the processes

and mechanisms of seabed scouring near submarine pipelines

affected by waves and currents, employing diverse research

methodologies ranging from analytical solutions to numerical

calculations and laboratory wave flume tests (Kiziloz et al., 2013;

Sumer, 2014; Larsen et al., 2016; Guo et al., 2022; Ye and Lu, 2022;

Chen et al., 2023). These studies primarily focus on analytical

solutions for wave- induced residual liquefaction (Jeng et al.,

2007), the effective stress in seabed soil (Madsen, 1978), seepage

forces (Cheng and Liu, 1986), and the buoyancy of pipelines

(Magda, 1997), all crucial for the stability of the pipelines.

In seabed model research, scholars have explored the pore

pressures induced by waves and their effects on pipelines,

providing fundamental insights into the interactions between

waves and the seabed. By modeling the seabed as an elastic body,

Jeng and Cheng (2000) developed an analytical solution to

understand the wave-induced pore pressures around pipelines

buried in poro-elastic seabed soils. Further studies by Wang et al.

(2000) and Jeng (2001) investigated the wave-induced pore

pressures in anisotropic or nonhomogeneous seabeds, focusing

not only on pore pressure but also on the effects of soil-pipeline

contact on pipeline dynamics (Gao et al., 2003). More recent

studies, such as those by Zhou et al. (2013), have concentrated on

the dynamics of pipelines buried in single or multi-layer seabed,

highlighting the impact of complex geological structures on seabed

dynamics. Additionally, researchers have examined the dynamic

behavior of submarine pipelines in complex marine environments,

as well as their responses and stability under such conditions (Seed

and Rahman, 1978; Martin and Bolton Seed, 1983). Recent research

based on the Fssi-CAS model further refined the responses of

submarine pipelines to waves and earthquakes, exploring the

differences in dynamic responses of different pipeline types to

wave action and providing a detailed analysis of pore pressure

variations around pipelines (Ye et al., 2015; Ye and He, 2021; Ye and

Lu, 2022). These advancements have not only enhanced our

understanding of seabed liquefaction and its impacts on marine

structures but have also driven the development of predictive

technologies. These numerical studies and model tests have

largely met the research needs for addressing liquefaction issues
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around submarine pipelines under wave action and have made

significant progress in this field.

Despite the advancements in traditional numerical simulation

methods like finite element analysis for assessing liquefaction risks,

these techniques often suffer from long computation times and low

efficiency, making it difficult to provide rapid forecasts under

extreme weather conditions. Artificial intelligence and machine

learning, driven by data, can make predictions in a remarkably

short time, offering new avenues to address these challenges (Du

et al., 2022, 2023a, b). AI methods have already been successfully

applied in predicting liquefaction under seismic impacts (Rateria

and Maurer, 2022), simulating pore pressure data under wave

action (Du et al., 2023c). Initial progress has been made in the

research direction of hydrodynamics-seabed-submarine pipeline-

liquefaction, accurately predicting liquefaction depths using

decision trees. However, issues such as comparisons between

different machine learning models, analysis of their features, and

the impact of different input parameters on prediction accuracy

remain under-explored.

To address these gaps, this study proposes an innovative

approach that combines traditional finite element methods with

machine learning models. We selected four classic machine learning

models (Gradient Boosting (GB), Support Vector Machine (SVM),

Multilayer Perceptron (MLP), and Random Forest (RF)) to model

the liquefaction conditions around submarine pipelines under

wave-current interactions, providing a comprehensive assessment

of their predictive performance. By integrating the accuracy of finite

element simulations with the efficiency of machine learning

algorithms, this method offers a novel solution for rapid regional

liquefaction analysis, which has not been extensively explored in

previous research. By comparing the accuracy of these models and

studying the sensitivity related to different sets of input parameters,

this research aims to guide the optimization of prediction models

for wave-induced liquefaction. The findings of this study will aid in

the application of machine learning to wave-induced liquefaction,

enriching our knowledge in disaster prevention and mitigation in

marine engineering, and providing theoretical support for rapid

assessment and mitigation strategies in marine engineering safety

and disaster prevention.
2 Data and method

2.1 Dataset description

The dataset employed in this study (Du, 2024) is derived from

computational analyses using the finite element numerical model

FSSI-CAS (Fluid-Structure-Seabed Interaction, Chinese Academy

of science). FSSI-CAS is designed to simulate the complex

interactions among waves, currents, seabed sediments, and

submarine pipelines. It integrates the Volume-Averaged

Reynolds-Averaged Navier–Stokes (VARANS) equations (Hsu

et al., 2002) for modeling wave motion and porous flow within

the seabed, and the dynamic Biot’s equations (Zienkiewicz et al.,

1980) for the seabed’s dynamic response. By coupling these
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equations, FSSI-CAS captures fluid-structure-seabed interactions

under wave-current action. This model has been validated against

standard experimental datasets (Ye et al., 2015; Ye and Lu, 2022; He

and Ye, 2023), demonstrating its precision in calculating wave-

induced liquefaction problems.

The input parameters for the FSSI-CAS model include

hydrodynamic conditions and sediment properties, which directly

relate to the output parameters representing the seabed response.

The analyses focus on the seabed and surrounding sediment

liquefaction under wave-current interaction at the Yellow River

estuary, China. As illustrated in Figure 1, the computational model

represents a silt seabed with dimensions of 50 meters in length and

20 meters in depth. An embedded pipeline, 560 mm in diameter, is

positioned 2 meters below the seabed surface. The boundaries of the

computational domain mimic real-world conditions: the lateral

boundaries are fixed in the horizontal direction, the bottom

boundary is fixed in both horizontal and vertical directions, and

the top boundary represents the free surface. Considering that

liquefaction typically occurs in water depths ranging from 5 to 15

meters, the simulations were conducted within this depth range at

2-meter intervals. For each water depth, a range of wave heights

(H), wave periods (T), and seabed current velocities (V) were

selected based on long-term empirical observations in the Yellow

River estuary, including extreme conditions exceeding 100-year

return periods. These scenarios were expanded based on

empirical observations of water depths and bottom flow velocities

to encompass a wide spectrum of conditions for analysis. Table 1

presents the combinations of hydrodynamic conditions used in

the simulations.

The dataset records the seabed response parameters at specific

locations around the pipeline. The base image in Figure 2 shows the

generated mesh for the pipeline and seabed foundation in the

computation, illustrating the mesh division around the pipeline

and seabed. The red area represents the liquefied seabed, while the

yellow area represents the non-liquefied seabed. The four control

points are:
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Point A: Located directly beneath the pipeline, used to analyze

horizontal displacement (dis_x_b), vertical displacement (dis_z_b),

and liquefaction potential (Lp_b) at this point.

Point B: Located away from the influence of the pipeline, used

to determine the natural seabed liquefaction depth (Ld). This point

helps in assessing the seabed’s own liquefaction depth without

pipeline interference.

Point C: Located above the pipeline, used to assess the

liquefaction depth above the pipeline (Ld_a). This point helps in

understanding the impact of the pipeline on the liquefaction depth

directly above it.

Point D: Located at the side of the pipeline, used to assess

horizontal displacement (dis_x_s), vertical displacement (dis_z_s),

and liquefaction potential (Lp_s) at this location.

By analyzing these four points, we can study the seabed’s

liquefaction depth, pipeline displacements at different positions,

liquefaction potentials, and the influence of the pipeline on seabed

liquefaction. Points B and C are dynamic positions used to analyze

the seabed liquefaction depth and the pipeline’s effect on

liquefaction depth, providing two output parameters: Ld and

Ld_a. Points A and D each have three output parameters,

reflecting displacement and liquefaction tendency.

Table 2 presents the selected input variables critical for

capturing hydrodynamic conditions and sediment characteristics,

and the corresponding output parameters representing the seabed

and pipeline responses.

Employing this dataset, generated through the application of

the finite element method influenced by both waves and currents,

represents a crucial advance in understanding seabed pipeline

liquefaction under varied conditions. This strategy, integrated

with machine learning modeling, sets the stage for more effective

and expedient liquefaction disaster assessments in the study area.

By concentrating on hydrodynamic conditions and sediment

properties as input parameters, and displacement and liquefaction

conditions as output parameters, our research is aligned with the

requirements for a detailed comprehension of the mechanisms
FIGURE 1

Schematic diagram of the pipeline-seabed-wave/current system used in computation.
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governing seabed and pipeline interactions under wave-

current dynamics.

The dataset employed in this study covers all potential wave-

current interactions for the area, including extremes of 100-year

wave and current data to ensure that future conditions fall within

the established parameter ranges. By incorporating detailed

simulations at 2-meter depth intervals across potential

liquefaction zones, our dataset maps all pertinent geological and

hydrodynamic interactions. This coverage, derived from rigorous

finite element analyses, not only guarantees the model’s high

predictive accuracy for real-world scenarios but also justifies the

extensive computational efforts involved, providing a solid

foundation for applying machine learning techniques to predict

seabed liquefaction effectively.
2.2 Machine learning models

In our research, we used various machine learning (ML) models

to analyze seabed pipeline liquefaction under wave-current

interactions, concentrating on displacement and liquefaction

outcomes. The adoption of ML models was based on their

capacity to manage complex nonlinear relationships and
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exceptional predictive analytic prowess. Initially, six models

including Random Forests (RF), Support Vector Machine (SVM),

Gradient Boosting (GB), Multilayer Perceptron (MLP), K-Nearest

Neighbors (KNN), and Extreme Gradient Boosting (XGBoost) were

tested. After preliminary assessments, four models were chosen for

their pattern recognition capabilities and predictive strengths,

allowing a comprehensive evaluation of the dataset’s dynamics.

The selection was based on comparative performance, where RF,

SVM, GB, and MLP showed superior predictive accuracy and

consistency, leading us to exclude KNN and XGBoost from

further analysis.

While Convolutional Neural Networks (CNN) and Graph

Neural Networks (GNN) are powerful deep learning models, they

are particularly well-suited for data with spatial hierarchies (e.g.,

images) and graph-structured data, respectively. Our dataset

consists of numerical simulation results represented as structured

numerical features rather than images or graphs. Moreover, deep

learning models like CNNs and GNNs typically require large

amounts of data to train effectively, which may not be feasible

with our dataset size. Therefore, we selected models that are better

aligned with our data characteristics and research objectives.

2.2.1 Random forests
Random Forests (RF), developed by Leo (2001), is an ensemble

learning method that builds numerous decision trees at training

time and outputs the mode of the classes (for classification) or the

mean prediction (for regression) of the individual trees. The key

idea is to construct multiple decision trees using bootstrap samples

of the data and random subsets of features, then aggregate their

predictions to improve generalization. By averaging predictions

across multiple trees, each constructed on a random subset of the

data and features, Random Forests mitigate the overfitting issues

common to decision trees. This method enhances accuracy and

robustness, particularly for datasets with complex structures and

high dimensionality. In our study, RF is suitable due to its ability to

handle nonlinear interactions between hydrodynamic parameters
FIGURE 2

Definition of output parameters around the pipeline. The grid is the computational meshing for finite element computation, the blue dots are the
four study points, and the parameters in parentheses are the output parameters of the monitoring points.
TABLE 1 Combinations of hydrodynamic conditions used in simulations.

Depth (m) H (m) T (s) V (m/s)

15
3, 3.5, 4, 4.5, 5,

5.5, 5.9
T=1.0018H+4.8207 0, 0.5,1, 1.5

13 3, 3.5, 4, 4.5, 5, 5.3 T = 1.0277H + 4.7074 0, 0.5, 1, 1.4

11 3, 3.5, 4, 4.5, 4.8 T = 1.0473H + 4.6135 0, 0.5, 1, 1.2

9 3, 3.5, 4.1 T= 0.9967H + 4.7565 0, 0.5, 1

7 2, 2.5, 3, 3.2 T = 1.1984H + 4.0086 0, 0.5, 1

5 1.5, 2, 2.2 T = 1.4803H + 3.2931 0, 0.5, 0.8
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and seabed responses. Random Forests also handling missing

values, maintain performance with significant data missing, and

provide feature selection metrics. Despite its advantages, Random

Forests can be computationally intensive and might underperform

on unbalanced datasets without appropriate adjustments.

2.2.2 Support vector machine
The Support Vector Machine (SVM), developed by Cortes and

Vapnik (1995) at AT&T Bell Laboratories, is used for classification

and regression tasks by identifying the optimal hyperplane that

maximizes the margin between different classes or fits the data

within a specified error margin. With the kernel trick, SVMs

perform nonlinear classification by transforming the input space

into a higher dimension where linear separation is possible. SVMs

are particularly effective in high-dimensional spaces and are well-

suited for applications like text classification and bioinformatics. In

our research, SVM helps model the complex nonlinear relationships

between input features and liquefaction outcomes. However, they

require careful tuning of the kernel parameters and input feature

scaling to prevent overfitting.

2.2.3 Gradient boosting
Gradient Boosting (GB), a technique developed by Jerome H.

Friedman (2001), enhances the concept of boosting by sequentially

combining weak learners to form a predictive model, with each new

model addressing errors of its predecessors. This method, adaptable

to various differentiable loss functions, is effectiveness in many

predictive tasks. GB works by minimizing a loss function by adding

weak learners that are fit to the negative gradient of the loss

function. Gradient Boosting handles heterogeneous features and

is robust against outliers in output spaces. In our study, GB is

employed to capture the patterns and interactions in the dataset,

improving prediction accuracy for seabed liquefaction. However, it

demands careful tuning of parameters such as the number of stages,

learning rate, and tree depth to avoid overfitting. It can be

computationally demanding, especially with large datasets.

2.2.4 Multilayer perceptron
The Multilayer Perceptron (MLP) is a type of feedforward artificial

neural network with layers including input, one or more hidden layers,
Frontiers in Marine Science 05
and an output layer (David E et al., 1986). Nodes in each layer connect

via weights to subsequent layers, enabling the network to capture

complex relationships. MLPs employ nonlinear activation functions

essential for modeling nonlinear phenomena and are recognized for

their capability as universal function approximators, theoretically able

to model any continuous function with adequate data. However, MLPs

require significant computational resources and are sensitive to initial

settings and architecture, with performance heavily reliant on

network configuration.

2.2.5 Hyperparameter optimization
To ensure the optimal performance of each machine learning

model employed in this study, a hyperparameter tuning process was

undertaken. As seen in Table 3, the key hyperparameters for each

model were selected based on their influence on model

performance. For Random Forests, important hyperparameters

include the number of trees and the maximum depth of the trees,

which control the ensemble size and complexity. In the Support

Vector Machine model, the kernel type, regularization parameter

(C), and gamma define the transformation of the input space and

the trade-off between training error and model simplicity. Gradient

Boosting’s performance is affected by the number of boosting stages,

learning rate, and maximum depth of individual trees, which

balance learning capacity and overfitting risk. For the Multilayer

Perceptron, the architecture (number of layers and neurons),

activation function, and learning rate are important for capturing

patterns and ensuring convergence during training.

The chosen hyperparameters were validated through cross-

validation techniques, evaluating their effectiveness in improving

model accuracy and reducing overfitting. These tests involved

running multiple simulations with different subsets of the data to

ensure robustness across various scenarios. The final parameters

were selected based on their performance in these tests, aiming to

achieve the good generalization on unseen data while maintaining

computational efficiency.

This approach to hyperparameter optimization has provided

each model with a configuration for addressing the complex

dynamics of wave-current interactions impacting seabed pipeline

liquefaction, ensuring that the predictive models are both accurate

and reliable.
TABLE 3 Hyperparameter optimization summary.

Model
Tuning
Method

Final Hyperparameters

Random
Forests

Grid Search Number of Trees: 100, Max Depth: 30

SVM Grid Search Kernel: RBF, C: 10, Gamma: 0.1

Gradient
Boosting

Grid Search
Number of Stages: 200, Learning Rate:

0.1, Max Depth: 3

Multilayer
Perceptron

Manual Tuning
Layers: [100, 100], Activation: ReLU,

Learning Rate: 0.001
TABLE 2 Parameter settings of liquefaction of submarine pipeline and
surrounding sediments under wave-current coupling.

Input parameters Unit Output parameters Unit

D m dis_x_b m

H m dis_z_b m

T s Lp_b –

V m/s Ld m

Kev0 kPa Ld_a m

Ges0 kPa dis_x_s m

Mf – dis_z_s m

Mg – Lp_s –
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2.3 Experimental steps

As shown in Figure 3, the experimental steps are mainly divided

into data pre-processing, model establish, and model evaluation.

2.3.1 Data pre-processing
Data pre-processing is an essential phase in machine learning,

preparing raw data for effective modeling. This phase includes

techniques such as normalization and dataset splitting to prepare

the data for modeling. These steps are pivotal for addressing scale

disparities among features and evaluating model performance on

new data, ensuring the efficacy and generalizability of our machine

learning applications.

Normalization, or feature scaling, is crucial for standardizing

the range of independent variables or features within the data. This

step is vital because scale disparities can cause some algorithms to

weigh larger values more heavily. To address this, we apply Min-

Max Scaling, which adjusts features to a uniform scale. By rescaling

the data typically between [0, 1] or [-1, 1], we ensure each feature

equally influences the model’s predictions, enhancing the training

process and comparability across different features.

Following normalization, we split the dataset into training and

testing sets to train the models and assess their predictive

capabilities on unseen data. Specifically, we allocated 80% of the

dataset for training and 20% for testing. This split allows us to

evaluate how well the models generalize to new data not used

during the training process. By assessing the models’ performance

on the independent test set, we can ensure that our conclusions

about model effectiveness are based on their ability to predict new

cases accurately.
Frontiers in Marine Science 06
2.3.2 Correlation analysis
Correlation analysis helps us understand the interrelations

among different parameters within our dataset. We employ the

Pearson correlation coefficient to quantify the linear relationships

between each variable pair. We aggregate these coefficients and

display them in a heatmap (Figure 4) to identify significant

predictors for our models.

Our findings indicate that wave height (H), wave period (T),

and water depth (D) are highly correlated with the output

parameters, with sum of correlation coefficients of 2.627, 2.484,

and 2.029 respectively, highlighting their importance in predicting

seabed pipeline and sediment liquefaction. Conversely, parameters

such as sediment friction angle (Mf) and sediment cohesion (Mg)

show moderate correlations, with sums of 1.871 and 1.714,

indicating a less dominant impact compared to primary

hydrodynamic factors. The bulk modulus (Kev0), shear modulus

(Ges0), and flow velocity (V) exhibit the lowest correlations, with

sums of 0.882, 0.882, and 0.757 respectively, suggesting a minor

influence on the outputs in this study’s context.

To ensure input parameters are not only statistically significant but

also physically meaningful, we organize them into three computational

scenarios: (1) using all eight parameters to maximize informational

breadth; (2) using H, T, D, Mf, Mg, and V to incorporate all

hydrodynamic factors with the highest correlating sediment

parameters; and (3) selecting H, T, D, and V, focusing on core

hydrodynamic parameters. This tiered approach allows thoroughly

explore data, maintaining both statistical relevance and physical

comprehensiveness, supporting the analysis of hydrodynamic

impacts on seabed pipeline and sediment liquefaction. It enables us

to develop robust, insightful predictive models.
FIGURE 3

General flow of model establishing.
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2.3.3 Cross validation
In our study, cross-validation plays a pivotal role in refining the

performance and reliability of all employed models, including SVM,

Random Forests, Gradient Boosting, and MLP. This method verifies the

effectiveness of machine learning models by dividing the dataset into

multiple folds. Each fold is sequentially used for validation while the

remaining serve as training data. This process ensures that every segment

of the dataset is used for both training and validation, thereby enhancing

the model’s ability to generalize to new, unseen data. Cross-validation is

essential for fine-tuning model parameters, boosting their performance

and ensuring an unbiased evaluation of their predictive accuracy.
2.3.4 Model establishing
Building upon the insights gained from our correlation analysis,

we utilize four machine learning models: Random Forests, SVM,

Gradient Boosting, and MLP. Each model is trained across three

sets of input parameters, designed to maximize the extraction of

relevant insights from our dataset. This includes using all eight

parameters, a focus on key hydrodynamic factors with highly

correlated sediment parameters, and a strategy concentrating on

essential hydrodynamic factors. This structured variation in

parameter utilization is designed to assess the potential of our

dataset in predicting seabed dynamics under varying conditions.
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By systematically training each model with these diverse input

setups, we aim to uncover the specific impacts of different

parameter emphases on the prediction of pipeline displacement,

seabed liquefaction, and adjacent liquefaction phenomena caused

by wave-current interactions. This comprehensive training

approach not only elucidates the strengths and flexibility of each

model but also enhances the trustworthiness of their predictions

across various scenarios, thereby ensuring a thorough evaluation of

seabed and pipeline behaviors in response to hydrodynamic forces.

2.3.5 Model evaluation
For evaluating the four models’ accuracy in predicting wave-

induced liquefaction, we employ Mean Squared Error (MSE) and

Mean Absolute Error (MAE) as our primary metrics. These indicators

quantify the average discrepancies between the predicted values and the

actual outcomes. MSE is particularly valuable for its sensitivity to larger

errors, making it crucial in scenarios where such errors are less

tolerable, while MAE provides a straightforward average error

magnitude, offering an intuitive gauge of prediction accuracy without

unduly emphasizing larger mistakes. The choice of these metrics

ensures a balanced assessment of model performance, highlighting

not just the average accuracy but also how the models handle more

extreme cases, which are critical in understanding and mitigating the

risks associated with seabed instability.
FIGURE 4

Correlation coefficient heatmap. Colors closer to red indicate stronger positive correlation between parameters, colors closer to blue indicate
stronger negative correlation, and colors closer to white indicate weaker correlation.
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2.4 Experimental environment

All finite element simulations using the FSSI-CAS model and

the machine learning computations were performed on the same

workstation to ensure consistency in computational time

comparisons. The computations were executed on a high-

performance Dell 3660 workstation equipped with an Intel Core

i9-12900K CPU, 128 GB of RAM, and an NVIDIA RTX 4090 GPU,

providing the necessary computational power to efficiently handle

intensive numerical simulations and machine learning tasks. The

machine learning models were implemented using scikit-learn, a

widely used Python library renowned for its comprehensive tools

for machine learning and statistical modeling. This setup provided a

robust platform for both the intensive numerical simulations and

the efficient training and execution of the machine learning models.
3 Results

3.1 Accuracy of different models

To evaluate the accuracy of various machine learning models in

predicting wave-induced liquefaction, this study used a dual

approach: direct visual comparisons between actual and predicted

values, and a detailed statistical analysis. Figure 5 illustrates the

discrepancies in predictions across four machine learning models

for eight distinct output parameters, offering a comprehensive view

of the prediction performance. Notably, the Multi-Layer Perceptron

(MLP) model demonstrated the lowest accuracy across all

parameters, underscoring its limitations in addressing the specific

challenges of wave-induced liquefaction prediction. On the other

hand, the Random Forest (RF) model displayed consistent

predictions, though it exhibited slight deficiencies in accurately

predicting the liquefaction potential (Lp_b).

The Support Vector Machine (SVM) and Gradient Boosting (GB)

models generally provided predictions that were closely aligned with

actual values, indicative of their higher accuracy. However, the SVM

model encountered significant discrepancies specifically in predicting

the z-direction displacement beside the pipeline (dis_z_s), deviating

markedly from the ideal prediction trajectory. Conversely, the GB

model, despite some parameters not fitting as accurately as those of

the SVM, presented smaller overall prediction errors and consistently

delivered more precise predictions across all eight output parameters.

To ensure the stability of the models and conduct a

comprehensive evaluation, each model was run 20 times

independently with different random seeds. This approach

allowed us to assess the performance of each model under varied

initial conditions, thereby enhancing the reliability of the results.

Figure 6 presents the normalized statistical data on prediction

accuracy, where the Gradient Boosting (GB) model exhibited a

compact distribution across Mean Squared Error (MSE), Mean

Absolute Error (MAE), and the newly included metrics of Root

Mean Squared Error (RMSE) and R-squared (R2). This compact

distribution suggests minimal predictive errors and enhanced
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performance consistency. The Random Forest (RF) model showed

a slightly broader distribution, particularly in RMSE and R2,

indicating some variability in its predictions. In contrast, the

distribution for the Multi-Layer Perceptron (MLP) model was

notably wider, reflecting lower precision and higher variability in

performance. The RF and Support Vector Machine (SVM) models

demonstrated moderate accuracy levels, with the RF model showing

higher MAE and RMSE in the upper quartile, indicating potential

discrepancies in certain predictions. While the SVM model

maintained a lower median in MAE and RMSE, suggesting

generally superior precision, its higher R2 values in the upper

quartile hinted at significant errors under complex scenarios,

especially in cases where R2 was negative.

Table 4 summarizes these findings by summarizing the

statistical indicators for each model. The GB model consistently

outperformed the others, as highlighted by the bolded values, which

represent the best performance in each category. Specifically, the

GB model achieved the lowest maximum and average MSE and

MAE, reinforcing its superior predictive accuracy and stability

across the test cases. The SVM model, while showing a strong

performance in terms of the minimum MSE and MAE, struggled

with the R2 metric, particularly evidenced by negative values in

complex scenarios, which reflects its occasional instability. The

MLP model, although useful, exhibited the widest range in error

metrics, indicating a higher degree of variability and lower

reliability in predictions.

In this evaluation, with the inclusion of RMSE and R2 as

additional performance metrics, the GB model consistently

demonstrated the highest predictive accuracy, particularly

excelling in MSE and MAE. The SVM model also performed well

in terms of MAE and RMSE, but the occurrence of negative R2

values indicates potential stability issues in certain scenarios. The

RF model, while showing competitive results, exhibited a broader

range of errors, especially in the upper quartiles of RMSE and MAE,

indicating variability in specific predictions. Overall, the GB model

remains the most effective across various metrics, with the SVM

model following closely behind, though with less stability under

complex conditions.
3.2 Performance of different
output parameters

This section delves into the predictive accuracies concerning the

liquefaction of submarine pipelines and adjacent sediments under

the effects of wave-current interactions. Through analysis using

normalized Mean Absolute Error (MAE) and Mean Squared Error

(MSE) heatmaps (Figure 7) and detailed bar charts (Figure 8), we

categorized the prediction errors across various output parameters

into three principal groups.

The first group consists of parameters that demonstrated

minimal predictive errors: the z-direction displacement beneath

the pipeline (dis_z_b), the liquefaction potential beneath the

pipeline (Lp_b), and the seabed liquefaction depth (Ld). For these
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parameters, normalized MAE values were typically below 0.2,

suggesting a high level of accuracy in model predictions. The

second group encompasses parameters with moderate predictive

challenges, including the x-direction displacement beneath the

pipeline (dis_x_b), the x-direction displacement beside

the pipeline (dis_x_s), and the liquefaction potential beside the

pipeline (Lp_s). Here, some models showed normalized MAE
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values exceeding 0.2, indicating increased difficulty in

accurate predictions.

The third group featured the most significant predictive errors,

particularly for the liquefaction depth above the pipeline (Ld_a) and

the z-direction displacement beside the pipeline (dis_z_s), where

normalized MAE values generally surpassed 0.2. Notably, the SVM

model exhibited a particularly high MAE when predicting the z-
FIGURE 5

Comparison of output results of different machine learning models with actual results. The red line represents the ideal relationship between the
true and predicted values, indicating the target prediction, with points closer to the line reflecting better prediction performance.
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direction displacement beside the pipeline (dis_z_s), underscoring

the substantial challenges involved in forecasting these parameters.

These variations in predictive accuracy underscore the differing

dynamic responses of the seabed and pipeline environment under

hydrodynamic influences. Specifically, the area beneath the pipeline

is characterized by more stable and less complex physical processes,
Frontiers in Marine Science 10
which typically results in lower predictive errors. Conversely, the

pipeline’s lateral regions, heavily influenced by dynamic

hydrodynamic factors, exhibit more complex changes, making

accurate predictions more challenging. Moreover, the liquefaction

depth above the pipeline (Ld_a) shows higher prediction difficulties

compared to the more distal seabed liquefaction depth (Ld), likely
FIGURE 6

Normalized statistics of prediction accuracy for different machine learning models.
TABLE 4 Prediction accuracy statistics of different machine learning models.

Model
MSE MAE

Max Min Avg Median Max Min Avg Median

RF 1.031 0.000 0.140 0.006 0.738 0.004 0.150 0.064

SVM 1.016 0.000 0.137 0.003 0.797 0.004 0.150 0.041

MLP 1.214 0.000 0.166 0.009 0.740 0.005 0.159 0.080

GB 0.523 0.000 0.076 0.007 0.547 0.003 0.123 0.061

Model
RMSE R2

Max Min Avg Median Max Min Avg Median

RF 1.015 0.005 0.198 0.079 0.539 -0.262 0.128 0.146

SVM 1.008 0.006 0.193 0.057 0.894 -23.487 -2.768 0.275

MLP 1.102 0.006 0.221 0.094 0.002 -0.454 -0.092 -0.028

GB 0.723 0.004 0.164 0.085 0.542 -0.911 0.123 0.310
The bolded data indicates the best value in that column and represents the best prediction accuracy among different models.
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due to the direct impacts affecting the area above the pipeline. This

reflects the inherent complexity and variability of liquefaction

phenomena close to submarine infrastructures.
3.3 Effect of different input parameters

In examining the effects of different input parameter

combinations on prediction accuracy, this analysis focuses on the

Gradient Boosting (GB) model within three distinct scenarios: the

first incorporating all eight parameters, the second utilizing six

parameters emphasizing hydrodynamic factors alongside highly

correlated sediment characteristics, and the third limited to four

core hydrodynamic parameters.

Insights drawn from Figure 9’s boxplots indicate closely aligned

median and interquartile ranges for the MSE across the three
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configurations of the GB model, suggesting a negligible difference

in overall prediction performance. However, the MAE metrics

present a nuanced picture: GB1 showcases a lower median yet a

higher upper quartile, indicative of generally superior performance

but interspersed with notable errors. Conversely, GB3 exhibits the

highest upper limit in MAE, highlighting possible prediction

inconsistencies under certain conditions.

A granular analysis provided in Figure 10 assesses the predictive

performance for each output parameter. For parameters such as

dis_x_b, dis_z_b, Lp_b, and Ld, all three GB model configurations

demonstrated comparable accuracy levels in both MSE and MAE

metrics. The rest of the parameters displayed slight discrepancies,

with GB2 marginally outshining both GB1 and GB3. Observations

from Figure 11 further corroborate these findings, showing similar

error distributions across the models, with GB2 generally

surpassing GB1 and GB3 in terms of overall predictive accuracy.
FIGURE 8

The MAE bar charts for different output parameters. (A–H) correspond to the eight different output parameters.
FIGURE 7

The normalized MSE and MAE heatmaps between different models for output parameters. (A) is the normalized MSE, and (B) is the normalized MAE.
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The experimental setup entailed distinct groups: the first

exploited all eight parameters, the second omitted two sediment

parameters of lower correlation, retaining six, while the third was

restricted to just four hydrodynamic parameters. Ultimately, each

group’s modeling yielded fairly consistent predictions, with no

significant discrepancies observed. The modest superiority of GB2

over GB1 could be attributed to the exclusion of two lesser-

correlated sediment parameters, which ostensibly streamlined the

model’s fitting and predictive accuracy. Despite omitting all

sediment-related factors, GB3 maintained commendable accuracy,

likely due to the sediment characteristics in the study area -

predominantly silt - exhibiting only minor variations.

Collectively, all input configurations achieved satisfactory

predict ion accuracy, with the models including both

hydrodynamic and sediment parameters, particularly GB1 and

GB2, demonstrating enhanced precision. Nonetheless, for

computational efficiency, models employing only key

hydrodynamic parameters-depth, wave height, and current—may

suffice for effective training and prediction.
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4 Discussions

4.1 Comparative analysis of
model performance

This discussion elaborates on the comparative performance of

different machine learning models as presented in the results

section, focusing on their efficacy in addressing wave-induced

liquefaction and the influence of varied input parameters. The

Gradient Boosting (GB) and Support Vector Machine (SVM)

models emerged as superior in most tested scenarios, attributable

to their inherent mathematical frameworks and suitability for the

complexities of wave-induced liquefaction phenomena. The GB

model, with its robust nonlinear modeling abilities and efficient

gradient boosting processes, is particularly effective in tackling

intricate geological challenges. In contrast, the SVM model, which

strategically optimizes category margins to maximize inter-class

distance, excels in scenarios with well-defined physical boundaries

such as those presented by wave-induced phenomena.
FIGURE 9

Normalized prediction accuracy of GB models with different input parameters. (A) Boxplot of Normalized MSE for GB1, GB2, and GB3 models.
(B) Boxplot of Normalized MAE for GB1, GB2, and GB3 models.
FIGURE 10

Comparative Heatmaps of Prediction Errors for GB Models, (A) Heatmap of Normalized MSE showing the distribution of prediction errors for GB1,
GB2, and GB3 across the different output parameters. (B) Heatmap of Normalized MAE illustrating the error consistency and outliers for each GB
model variant in relation to the output parameters.
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However, challenges persist with other models; the Multilayer

Perceptron (MLP), due to its deep learning architecture, is prone to

overfitting unless adequately tuned, which can diminish its

predictive accuracy. The Random Forest (RF) model, typically

reliable in both classification and regression settings, did not

reach its full potential in this study’s specific scenarios, likely due

to its inherent randomness and sensitivity to data anomalies.

Deeper investigation into the models’ performance across

various parameters indicates that straightforward geological

contexts, like the seabed liquefaction depth (Ld), allow most

models to predict with reasonable accuracy. This success

underscores the models’ capability to effectively capture essential

dynamics when geological influences are less complex. In contrast,

the areas adjacent to pipelines, significantly influenced by dynamic

hydrodynamic forces, present a greater challenge, exhibiting more

intricate geological behaviors and subsequently, lower predictive

accuracies, particularly for parameters like the liquefaction potential

beside the pipeline (Lp_s).

The computational efficiency of the machine learning models

presents a significant advantage over the traditional finite element

method. Specifically, the FSSI-CAS finite element simulations

required approximately 5 hours per data point to compute the

seabed liquefaction around the buried pipeline, amounting to a total

of over 70 hours for all 14 data points on the Intel Core i9-12900K

workstation. In contrast, the trained machine learning models,

including the Gradient Boosting model, generated predictions for

all 14 data points in seconds on the same hardware configuration.

This dramatic reduction in computational time underscores the

practicality of the machine learning approach for real-time

predictions and large-scale simulations, facilitating more efficient

engineering analyses and decision-making processes.

The complexities observed near the pipeline, exacerbated by the

interactive effects of waves and currents, make these areas
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particularly difficult to model accurately. These findings highlight

the nuanced requirements of predictive models under variable

geological conditions and emphasize the necessity of selecting

appropriate machine learning strategies that align with the

specific nature of the geological phenomena under study.
4.2 Outlook

In this study, we utilized four machine learning models to predict

wave-induced liquefaction and observed notable achievements.

Although these models are widely recognized within the machine

learning community, the extensive variety of available methodologies

suggests that alternative models could potentially yield better

outcomes for specific challenges. This insight drives our intention

to explore a wider array of machine learning models in future

research to pinpoint the optimal approach for distinct scenarios.

Regarding the dataset used for wave-induced liquefaction

studies, current limitations are evident. The existing data

primarily addresses the static relationship between input and final

state parameters without incorporating time-series data that

capture the sediment dynamics over time. To enhance our

predictive accuracy and model the dynamic process of wave-

induced liquefaction more effectively, we plan to develop a

comprehensive dynamic dataset that includes temporal

dimensions. Future efforts will include experimenting with the

integration of Recurrent Neural Networks (RNNs) and Gradient

Boosting (GB) models, exploiting their strengths in processing

time-series data to refine our predictions.

Additionally, the application of machine learning to predict

wave-induced liquefaction significantly enhances time efficiency.

Machine learning methods can achieve results comparable to those

of traditional finite element numerical approaches but in a fraction
FIGURE 11

The Bar Charts of Predictive Performance Across Output Parameters for GB Models. (A–H) Bar charts representing the Normalized MSE and MAE for
each output parameter, respectively, across the three GB model scenarios, displaying the comparative analysis of prediction errors: (A) dis_x_b,
(B) dis_z_b, (C) Lp_b, (D) Ld, (E) Ld_a, (F) dis_x_s, (G) dis_z_s, and (H) Lp_s.
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of the time, offering a substantial advantage for the rapid assessment

and forecasting of marine disasters. Our future work will focus on

further refining these models to improve both their efficiency and

accuracy in disaster prediction scenarios.

Overall, despite the progress made, opportunities remain for

advancements in model selection, dataset enhancement, and the

application of models. We are committed to ongoing research and

innovation to more effectively harness machine learning for the

prediction of wave-induced liquefaction and other complex marine

geological challenges, aiming to bolster marine engineering safety

with robust technological support.
5 Conclusions

This study conducted a detailed comparison of the predictive

effectiveness of four classic machine learning models on the

complex issue of wave-current-pipeline-liquefaction interactions,

examining the predictive accuracy of different models, the impact of

various input parameters on prediction accuracy, and the accuracy

levels of different output parameters. Through this process, we have

deepened our understanding of the performance of each model in

predicting geological disasters and unveiled the potential and

challenges of applying machine learning in marine geological

engineering predictions. The main conclusions are as follows:
Fron
(1) Model Performance Comparison: The GB and SVM

models demonstrated higher predictive accuracy in most

test scenarios. The GB model provided stable and accurate

predictions across all output parameters, while the SVM

model showed inaccuracies in predicting certain

parameters but was highly accurate for others. Overall,

the GB model is characterized by its stability, powerful

nonlinear fitting capabilities, and efficiency in processing

complex geological data.

(2) Impact of Input Parameters: The combination of different

input parameters significantly affects model predictive

accuracy. Reducing parameters with low correlation in

sediment characteristics led to lower prediction errors.

Retaining only hydrodynamic parameters increased errors

but within an acceptable range, highlighting the importance

of selecting appropriate input parameters to improve

prediction accuracy.

(3) Importance of Rapid Prediction: Compared to traditional

finite element numerical methods, using machine learning

models for wave-induced liquefaction predictions can

significantly reduce computation time, providing a

powerful tool for rapid disaster assessment and early

warning in marine engineering. This capability to rapidly

predict is crucial for enhancing the safety and response

efficiency of marine engineering projects.

(4) Dataset Construction and Limitations: Despite the progress

made, this study underscores the need for comprehensive

dataset development, particularly the inclusion of time-

series data to capture the dynamics of wave-induced
tiers in Marine Science 14
liquefaction. Future efforts should focus on enriching

datasets with temporal dimensions to enhance model

accuracy and generalization, addressing a critical gap in

current research methodologies.
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