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Spatial distribution
characteristics, ecological
risk assessment, and source
analysis of heavy metal(loid)s
in surface sediments of the
nearshore area of Qionghai
Junyi Jiang †, Miao Fu †, Jianying Yang*, Yanwei Song*,
Guowei Fu, Hongbing Wang, Cong Lin and Yang Wang

Laboratory of Haikou Marine Geological Survey Center, China Geological Survey (CGS), Haikou, China
To understand the pollution characteristics and potential sources of heavy metal

(loid)s in the nearshore sediments of Qionghai, 93 surface sediment samples

were collected from the region. The concentrations of 20 elements, including Fe,

Mg, Ca, Ti, Mn, Ba, Cr, Sr, Ni, Cu, Zr, As, Hg, Se, Be, Co, Mo, Cd, Ga, and Pb, were

measured. The extent of contamination and ecological risk posed by these heavy

metals/metalloids were evaluated using the geo-accumulation index, potential

ecological risk index, and Nemerow comprehensive risk index. Additionally,

correlation analysis, principal component analysis (PCA), and positive matrix

factorization (PMF) were employed to identify the potential sources of these

elements in the sediments. The findings reveal the following: (1) The mean

concentrations of Fe, Ca, Mg, Ti, Cu, Sr, Zr, Mo, Cd, Pb, Hg, As, and Se exceed

the background values for shallow sea sediments in China. Notably, Ca, Ti, Sr, Zr,

Mo, Hg, and As exhibit coefficients of variation greater than 51%, indicating

significant spatial variability primarily driven by anthropogenic activities. (2) The

ecological risk assessment identifies Sr, Hg, and As as the principal pollutants and

key potential ecological risk factors in the study area, necessitating prioritization

in subsequent monitoring efforts. (3) Correlation and source analysis suggest that

As and Mn primarily originate from agricultural activities, Sr, Ca, and Mg from

aquaculture, Zr, Ti, Mo, Se, Pb, Be, Co, Cu, Ga, Ni, Fe, and Cd from natural

sources, and Hg, Ba, and Cr from transportation sources. Additionally, this study

identified Sr, Hg, and As as the primary pollutants in the Qionghai nearshore area,

with sources predominantly linked to agriculture, aquaculture, and traffic.

Regular monitoring will help track the effectiveness of implemented control

measures and provide data for ongoing risk assessments, ensuring the protection

and sustainability of the marine environment.
KEYWORDS
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1 Introduction

The nearshore marine area represents a zone of dynamic

interaction between the ocean and land, encompassing diverse

ecosystems including estuaries, bays, coral reefs, and seagrass

beds. This region is characterized by a rich natural environment

and abundant resources (Gao et al., 2014; Arikibe and Prasad,

2020). Since the mid-20th century, rapid economic and social

development in coastal regions has driven significant growth in

manufacturing, agriculture, transportation, and tourism. While

these developments have provided substantial economic benefits

and improved quality of life, they have also intensified

environmental challenges in nearshore marine areas, with heavy

metal pollution being a critical concern. Heavy metal(loid)s pose

significant challenges due to their high toxicity, persistence, and

resistance to degradation. Their ability to bioaccumulate through

the food chain further amplifies their potential to cause serious

ecological harm (Mirza et al., 2019; Lu et al., 2020).

Sediments serve as major sinks for heavy metal(loid)s, playing a

critical role in the environmental cycling of these contaminants.

Variations in environmental conditions, such as pH, redox

potential, and organic matter content, along with processes like

sediment resuspension, can trigger the release of heavy metal(loid)s

from sediments into the overlying water column, resulting in

secondary pollution (Gao et al., 2014; Tramonte et al., 2018).

Once released, these contaminants can bioaccumulate and

biomagnify through the food chain, posing significant threats to

local biota and ecosystems. Consequently, understanding the

spatial distribution and sources of heavy metal(loid) pollution in

sediments is vital for assessing the potential ecological risks and

contamination status of nearshore marine environments. Natural

and anthropogenic sources are recognized as the two major

contributors to heavy metal(loid) contamination in sediments.

Natural sources encompass processes such as volcanic eruptions

and the weathering of parent rocks (Niu et al., 2021),

Anthropogenic sources, including industrial emissions, vehicular

discharges, fossil fuel combustion, and the application of pesticides,

fertilizers, and animal feed, are significant contributors to heavy

metal(loid)s contamination (Sheng et al., 2022). Since the advent of

industrialization, the release of heavy metal(loid)s from human

activities has greatly exceeded natural sources, establishing itself as

the primary contributor to environmental contamination (Nriagu,

1979). Given this, selecting appropriate source apportionment

methods tailored to specific environmental conditions is critical

for accurately identifying the origins of heavy metal(loid) pollutants

and enabling targeted remediation efforts.

Among the widely adopted methods for source apportionment

are receptor models, principal component analysis/factor analysis

(PCA/FA), and positive matrix factorization (PMF) (Nan et al.,

2011; Fang et al., 2016; Xiao et al., 2021; Ouyang et al., 2024). PMF,

endorsed by the U.S. Environmental Protection Agency, is a

quantitative source apportionment model with distinct

advantages. It does not require detailed source profile information
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and can effectively manage missing or imprecise data. Additionally,

PMF applies non-negative constraints to the factor decomposition

matrix, ensuring that the resulting source profiles and contribution

rates remain positive, thereby producing more accurate and

interpretable results (Rizzo and Scheff, 2004).

Qionghai located in the eastern part of Hainan Province, is a key

coastal tourism area where environmental quality is crucial for

regional ecosystem stability and sustainable socio-economic

development. In recent years, the rapid expansion of tourism,

commerce, aquaculture, and land reclamation, driven by the

growth and influence of the Boao Forum for Asia, has led to the

overexploitation of bay resources. Concurrently, agricultural

activities and urban wastewater discharge have intensified

ecological pressure on the nearshore marine environment.

Although research on trace metals in Hainan has grown, most

studies have focused on river outlets and estuarine regions (Nan

et al., 2011; Hu et al., 2013; Fu et al., 2013; Fu et al., 2023a; Jiang et

al., 2023), often with limited sampling density and greater distances

from the shore. This study aims to address these gaps by

establishing 93 sediment sampling points in the nearshore area of

Qionghai and analyzing the concentrations of heavy metal(loid)s in

the sediments. The research assesses the pollution status and

potential ecological risks associated with these elements and

conducts a preliminary source analysis. This comprehensive

assessment of the ecological quality of Qionghai’s nearshore

sediments is intended to provide scientific evidence to support

environmental protection and the sustainable use of coastal

resources in the region.
2 Materials and methods

2.1 Sample collection processing
and analysis

In June and July 2020, 93 sediment sampling points were

established in the nearshore waters of Qionghai. Surface sediment

samples (0–10 cm) were collected using a grab sampler, with the

sampling locations displayed in Figure 1. The procedures for sample

collection, storage, and transportation were rigorously followed in

accordance with the “Marine Monitoring Specifications Part 3:

Sample Collection, Storage, and Transportation” (GB 17378.3-2007).

The sediment samples collected for this study were analyzed at

Laboratory of the Golden Ninth Detachment of the Chinese

People’s Police Armed Forces. Samples were air-dried, ground,

and sieved through a 200-mesh screen before undergoing

microwave digestion to prepare the test solutions. The

concentrations of Fe, Mg, Ca, Ti, Mn, Ba, Cr, Sr, Ni, Cu, and Zr

were measured using an X-ray fluorescence spectrometer (Axios

Pw4400). As, Hg, and Se concentrations were determined using a

dual-channel atomic fluorescence spectrometer (AFS-9800), while

Be, Co, Mo, Cd, Ga, and Pb were analyzed using an inductively

coupled plasma mass spectrometer (ICAPQ).
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2.2 Methods for ecological risk assessment
and source apportionment of heavy
metal (loid)s

2.2.1 Ecological risk assessment of heavy
metal (loid)s
2.2.1.1 The index of geo-accumulation

The Index of geo-accumulation (Igeo), also known as the Müller

Index, is a comparative measure that evaluates the concentration of

metals in soil samples against their background levels. Initially

developed for assessing sediment pollution, this index has been

widely adopted since the late 1960s for evaluating the pollution

levels of heavy metal(loid)s in soils. A key advantage of the Igeo is its

consideration of natural diagenetic processes that may cause

variations in background values, distinguishing it from other

pollution assessment methods. The calculation formula is as

follows:

Igeo = Log2
Ci

K�Bi

� �
(1)

In Equation 1, Ci represents the concentration of heavy metal

(loid)s in the soil (mg·kg-1); K is a constant factor (typically K=1.5)

that accounts for natural fluctuations in background values; and Bi is

the reference background concentration of heavy metal(loid)s in the

soil (mg·kg-1). The study area is located in the nearshore region of

eastern Hainan Island. Therefore, this study uses the background

concentrations of heavy metal(loid)s in Chinese shallow sea

sediments as reported by Zhao and Yan (1993). The background

values for Fe, Mg, Mn, Ti, Ba, Cr, Cu, Ni, Sr, Zr, Co, Ga, Mo, Cd, Pb,

Hg, As, and Se are as follows: 3.1%, 1.11%, 0.05%, 0.36%, 412 mg·kg-1,

61 mg·kg-1, 15 mg·kg-1, 24 mg·kg-1, 230 mg·kg-1, 210 mg·kg-1,
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12mg·kg-1, 14 mg·kg-1, 0.52 mg·kg-1, 0.065 mg·kg-1, 20 mg·kg-1,

0.025 mg·kg-1, 7.7 mg·kg-1, 0.15mg·kg-1. The classification of the

Igeo and the corresponding pollution levels are presented in Table 1.
2.2.1.2 The Nemerow integrated risk index

The Nemerow Integrated Risk Index (NIRI) is a comprehensive

tool for assessing the ecological risk levels of heavy metal(loid)s in

regional soils. This index integrates the strengths of the Potential

Ecological Risk Index (PERI) and the Nemerow Integrated

Pollution Index (NIPI), incorporating both the toxicity of

environmental pollutants to biological communities and the toxic

response factors of each heavy metal(loid). As a result, NIRI offers a

more precise evaluation of the environmental impact of multiple

elements (Men et al., 2020). The calculation formula is as follows:

NIRI =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Ei

r−max)
2+(Ei

r−ave)
2

2

q
(2)

Ei
r = Ti

r � Ci
Bi

(3)

In Equations 2 and 3, Ei
r represents the potential ecological risk

factor for an individual metal. Ci and Bi are the same as defined in

Equation 1. Ti
r is the biological toxicity coefficient for different metals.

Based on existing research and the heavy metal(loid) concentrations

measured in this study, toxicity response coefficients were determined

for 10 elements: Hg, Cd, As, Pb, Cu, Ni, Co, Cr, Mn, and Ti. The

coefficients are 40, 30, 10, 5, 5, 5, 5, 2, 1, and 1, respectively (Xu et al.,

2008). NIRI represents the Nemerow Index, Ei
r−max is the maximum

value among all single-factor pollution indices for heavy metal(loid)s

and Ei
r−ave is the average value of all single-factor pollution indices.

The classification standards for Ei
r and NIRI are presented in Table 1.
FIGURE 1

Field sampling sites for sediment heavy metals((loid)s.
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2.2.2 Source apportionment methods for heavy
metal(loid)s in sediments
2.2.2.1 The coefficient of variation

CV serves as an indicator of the spatial variability of heavy

metal(loid) elements in sediments. A CV below 20% signifies low

variability, 20%-51% indicates moderate variability, 51%-100%

represents high variability, and a CV greater than 100% denotes

extremely high variability (Phil-Eze, 2010). Low variability

typically suggests similar pollution sources or diffuse pollution,

whereas high variability points to significant differences in

pollution sources or the presence of prominent point

source pollution.

2.2.2.2 Principal component analysis

PCA is a statistical technique used for dimensionality reduction or

feature extraction. By applying linear transformations, it reduces the

original set of numerous, correlated variables to a smaller set of

uncorrelated principal components. These components capture the

essential information from the original data, allowing for the

explanation of the majority of the variance with fewer representative

factors. This method is also effective in inferring potential pollution

sources, making it a valuable tool in environmental studies.

In this study, there were 93 soil samples and each sample was

analyzed for 20 heavy metals. The accumulations of each soil heavy

metal are transformed into a dimensionless standardized form,

Zik =
(Aik−Ai)

si
(4)

In Equation 4, Aik is the accumulation value of heavy metal i at

location k, �Ai and si are the mean and standard deviation,

respectively, of accumulations of heavy metal i in the study area.

and the PCA model is expressed as

Zik =o
p

j=1
ɡkjhij (5)

In Equation 5, k=1,…, p denote sources, and gki and hij are the

factor loadings and factor scores, respectively. This equation is

solved by eigenvector decomposition, Varimax rotation is often
Frontiers in Marine Science 04
used to redistribute the variance and provide a more interpretable

structure on the factors. It is worth noting that, in the present work,

the PCA was applied on the spatial soil heavy metal accumulation

distributions considered at dates other than the sampling date for

source identification purposes using factor extraction with

eigenvalues > 1 after varimax rotation.
2.2.2.3 Positive matrix factorization

PMF, developed by Paatero and Tapper (1994), is a quantitative

source apportionment model grounded in multivariate factor

analysis. PMF decomposes the sample data matrix (X) into two

matrices: a factor contribution matrix (G) and a factor profile matrix

(F). This approach enables the identification of factor profiles and the

quantitative determination of factor contributions for each sample.

The fundamental equation governing PMF is as follows:

X = GF + E (6)

In Equation 6, the sample concentration matrix (X) represents

the concentrations of m compounds across n samples(n×m); G is

the contribution matrix(n×p); F is the factor profile matrix(p×m)

and E denotes the residual matrix(n×m). The equation can be

transformed into the following form:

Xij =op
k=1(Gik � Fkj) + Eij (7)

In Equation 7, Xij represents the concentration of the jth element

in the ith sample, which forms the sample concentration matrix. Gik

denotes the contribution of source k in the ith sample, forming the

source contribution matrix. Fkj is the concentration of the jth element

in source k, representing the source profile matrix. Eij denotes the

residual matrix, which corresponds to the portion of the

concentration matrix E that cannot be explained by the PMF model.

The PMF model analyzes the matrices mentioned above by

defining an “Objective Function” (Q) and minimizing its value.

When the value of the objective function Q is minimized, the model

decomposes the receptor concentration matrix X into matrix G

matrix (factor contribution matrix) and the F matrix (factor profile

matrix). The calculation formula is as follows:
TABLE 1 Classification of heavy metal(loid)s rank of Igeo, Ei
r and NIRI.

Igeo Ei
r NIRI

Scope Pollution Rank Scope Risk Rank Scope Risk Rank

Igeo ≤ 0 Unpolluted; Ei
r<40 Low risk NIRI<40 Low risk

0<Igeo ≤ 1 Unpolluted to moderately polluted 40≤ Ei
r<80 Moderate risk 40≤ NIRI<80 Moderate risk

1<Igeo ≤ 2 Moderately polluted 80≤ Ei
r<160 Considerable risk 80≤ NIRI<160 Considerable risk

2<Igeo ≤ 3 Moderately to heavily polluted 160≤ Ei
r<320 High risk 160≤ NIRI<320 High risk

3<Igeo ≤ 4 Heavily polluted Ei
r≥320 Extremely high risk NIRI≥320 Extremely high risk

4<Igeo ≤ 5 Heavily to extremely polluted

Igeo>5 Extremely polluted
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Q =o
n

i=1
o
m

j=1

Eij

Uij

 !2

(8)

In Equation 8, Uij represents the uncertainty of the jth element

in the ith sample. Uncertainty directly affects the weighting of

particulate matter mass concentration and component

concentration data input into the PMF model. The calculation

formula is as follows:

For C≤MDL:

Uij = 5=6�MDL (9)

For C>MDL:

Uij =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EF � C2 + (0:5�MDL)2

p
(10)

In Equations 9 and 10, EF represents the error factor, which

typically ranges from 0.1 to 0.6. A larger error factor is used when

sample concentrations are unstable or near the detection limit.

Additionally, when there is a significant amount of missing

concentration data, a larger error factor may be applied. In this

study, EF is set to 0.1 based on the specific conditions. C denotes the

measured element concentration, and MDL refers to the method

detection limit.
2.3 Data analysis and processing

Descriptive statistics were conducted using Microsoft Excel 2016.

Correlation analysis and PCA modeling for source identification of

heavy metal(loid)s in the soil were performed using SPSS 22.0. Source

apportionment was carried out using EPA PMF 5.0 software. ArcGIS

10.0 was utilized for mapping the study area and sampling points,

with Kriging spatial interpolation employed to create spatial

distribution maps of soil heavy metal(loid) concentrations. All

other figures were generated using OriginPro 2021.
3 Results and discussion

3.1 Heavy metal(loid)s concentrations and
distribution in sediments

The concentration characteristics of 20 elements in the sediment

samples from the study area are summarized in Table 2. The mean

concentrations, in descending order, are as follows: Ca (20.07%) >Fe

(3.14%) >Mg (1.84%) >Ti (0.65%) >Sr (1581.5 mg·kg-1) >Zr

(957.65mg·kg-1) >Ba (116.78 mg·kg-1) >Cr (45.67 mg·kg-1) >Pb

(20.28mg·kg-1) >Cu (17.08 mg·kg-1) >Ni (16.34 mg·kg-1) >Ga

(13.09 mg·kg-1) >As (11.94mg·kg-1) >Co (6.49mg·kg-1) >Be (1.29

mg·kg-1) >Mo (0.78 mg·kg-1) >Se (0.18 mg·kg-1) >Cd (0.09 mg·kg-1)

>Hg (0.04 mg·kg-1). Notably, the mean concentrations of Fe, Ca, Mg,

Ti, Cu, Sr, Zr, Mo, Cd, Pb, Hg, As, and Se exceed the background

values for Chinese shallow sea sediments. Furthermore, the mean

concentrations of Cr, Cu, Cd, Hg, and As are higher than the

background values for Hainan Island soils. These findings indicate
Frontiers in Marine Science 05
that the surface sediments in the study area may be contaminated

with heavy metal(loid)s.

In this study, the CV for Fe, Mg, Cu, Cd, Pb, and Se fall within

the 20%-51% range, indicating moderate variability. Similarly, the

CV for Ca, Mn, Ba, Ni, Sr, Be, Co, Mo, Hg, and As are within the

51%-100% range, reflecting high variability. Notably, the CV for Ti,

Cr, Zr, and Ga exceed 100%, indicating extremely high variability.

Specifically, Ti, Zr, and Ga exhibit exceptionally high

concentrations at stations qwbc80 and qwbc138, while Cr shows

similarly high values at station qwbc85, suggesting prominent point

source pollution. These findings indicate that the enrichment of

heavy metal(loid)s in the sediments of the study area is potentially

influenced by human activities. Guo et al. (2012) and Zhao et al.

(2019) suggested that an increase in the coefficient of variation is

indicative of a higher likelihood that soil heavy metals content is

influenced by anthropogenic activities. Therefore, the coefficient of

variation can serve as an initial indicator for determining whether

heavy metal levels in the study area are impacted by

human interference.
3.2 Ecological risk assessment of heavy
metal(loid)s contamination in sediments

Igeo was used to assess the pollution levels of Fe, Mg, Ba, Sr, Zr,

Be, Co, Mo, Cu, Ni, Cr, Cd, Pb, and As. The results are presented in

Figure 2. The mean Igeo values of heavy metal(loid)s in sediments,

in descending order, are: Sr (1.53) > Mg (0.11) > Cd (-0.32) > Hg

(-0.33) = Ti (-0.33) > As (-0.47) > Cu (-0.48) > Zr (-0.50) > Fe

(-0.76) > Pb (-0.91) > Mo (-1.16) > Mn (-1.29) > Ni (-1.59) > Cr

(-1.72) > Co (-1.80) > Ba (-3.05).

Among the sediment samples, Ba and Co exhibited no pollution

(Igeo ≤ 0) across all sites, while 98% of samples for Cr and Ni, and

97%, 92%, 88%, 86%, 84%, 73%, 67%, 53%, 46%, 43%, 40%, 30% for

Mo, Fe, Mn, Pb, Cu, As, Cd, Hg, Zr, Ti, Mg, and Sr, respectively,

also showed no pollution. A proportion of the samples exhibited no

pollution to moderate pollution (0<Igeo≤ 1), including 60% for Mg,

52% for Ti, 32% for Cd, 30% for Hg, and lower percentages for Zr,

Cu, Pb, As, Mn, Fe, and Sr. Around 1% of samples for Cr, Ni, and

Mo fell into this category.

Moderate pollution (1<Igeo ≤ 2) was observed in 27%, 17%,

15%, and 8% of samples for Zr, Hg, As, and Sr, respectively.

Additionally, 3% of samples for Mn, Ti, and 1% for Ni, Mo, and

Cd displayed moderate pollution. Moderate to heavy pollution

(2<Igeo ≤ 3) was observed for 34% and 6% of samples for Sr and

Zr, respectively, and 1% for Cr, Mo, and As. Heavy pollution

(3<Igeo ≤ 4) was found in 23%, 2%, and 1% of samples for Sr, Ti,

and Zr, respectively, while 8% of samples for Sr showed heavy to

extremely heavy pollution (4<Igeo ≤ 5). Finally, 2% of Zr samples

were categorized as having extreme pollution (Igeo > 5).

These results indicate that Ba, Cu, Co, Pb, Fe, and Mg are in a

clean state and pose minimal risk of surface sediment

contamination. However, Sr, Zr, Hg, and As present moderate to

high pollution levels at over 65%, 37%, 17%, and 16% of the

sampling sites, respectively.
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The results of the potential ecological risk index Ei
r for heavy

metal(loid)s (Figure 3) indicate that the mean Ei
r values for the

elements in the sediments, in descending order, are as follows: Hg

(66.31) > As (15.51) > Cu (5.69) > Pb (5.07) > Ni (3.40) > Co (2.71) >

Ti (1.80) > Cr (1.50) > Mn (1.01) > Cd (0.13). Among these, the

sediments from all sampling sites exhibited slight ecological risk for

Cr, Cu, Ni, Co, Pb, Mn, Ti, and 92% and 40% of the sites for As and

Hg, respectively (Ei
r<40). Moderate ecological risk (40 ≤ Ei

r<80) was
Frontiers in Marine Science 06
observed for Hg and As at 24% and 8% of the sites, respectively. Hg

presented a strong ecological risk (80≤Ei
r<160) at 35% of the sites, and

very strong ecological risk (160≤Ei
r<320) at 1% of the sites. These

findings suggest that Hg and As are the primary contributors to

ecological risk in the surface sediments of the study area, particularly

Hg, which aligns with the geo-accumulation index results. Although

Hg’s pollution level is relatively low, its high potential ecological risk

is attributed to its significant toxicity coefficient.
TABLE 2 Statistical results of heavy metal(loid) concentrations in sediments/mg·kg-1.

Fe Ca Mg Mn Ti Ba Cr Cu Ni Sr

mean 3.14 20.07 1.84 0.05 0.65 116.78 45.67 17.08 16.34 1581.50

± SD 1.38 14.15 0.4 0.04 0.7 109.7 50.68 5.47 15.18 1200.94

CV/% 43 72 21 89 108 93 110 32 92 75

Background values a 3.10 3.79 1.11 0.05 0.36 412 61 15 24 230

Background values b / / / / / / 27.5 6.1 / /

Zr Be Co Ga Mo Cd Pb Hg As Se

mean 957.65 1.29 6.49 13.09 0.78 0.09 20.28 0.04 11.94 0.18

± SD 3135.85 0.71 3.42 15.76 0.57 0.04 9.67 0.03 10.01 0.07

CV/% 327 54 52 120 72 43 47 70 83 38

Background valuea 210 / 12 14 0.52 0.07 20 0.03 7.70 0.15

Background values b / / / / / 0.04 24.4 0.02 1.34 /
fro
aBackground values for Chinese shallow sea sediments (Zhao and Yan, 1993).
bBackground values for heavy metal elements in Hainan Island soils.
/: Data not available.
In the table, Fe, Ca, Mg, Mn, and Ti are measured in percentage (%).
FIGURE 2

Box plot of heavy metal(loid)s accumulation index in sediments.
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Except for the pollution and ecological risk assessment of the

individual metal(loid)s, the integrated assessment was also

performed. The Nemerow Integrated Risk Index (NIRI) results

are shown in Figure 4. Figure 4A indicates that the contribution

of Ei
r to NIRI, ranked from highest to lowest, is: Hg (64.3%) > As

(15.0%) > Cu (5.7%) > Pb (4.9%) > Ni (3.4%) > Co (2.7%) > Ti

(1.8%) > Cr (1.5%) > Mn (1%) > Cd (0.1%). Analysis of the NIRI

results for the 93 sediment samples (Figure 4B) reveals that 31% of

the samples exhibit moderate ecological risk (40≤NIRI<80), and
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20% exhibit strong ecological risk (80≤ NIRI<160). The ecological

risk contribution of heavy metal(loid)s, as measured by Ei
r   (Li et al.,

2022a), identifies Hg as the primary element contributing to

ecological risk in the surface sediments. This finding is consistent

with previous studies (Zhuang et al., 2020; Hu et al., 2024), both of

which highlight the high ecological risk posed by Hg in sediments.

As noted by Sun et al. (2022), even at very low concentrations, Hg

can significantly impact human health and ecosystem stability.

Therefore, Hg should be prioritized as a key focus in the ongoing
FIGURE 4

Values of heavy metal(loid)s of Ei
r (A) and NIRI (B).
FIGURE 3

Potential ecological risk index of heavy metal(loid)s in sediments.
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management efforts in this study area. Recent studies frequently rely

on RI values to evaluate the ecological risks of metal(loid)s in

sediments (Ji et al., 2019; Zhang et al., 2019). However, since RI

merely sums the risks of individual metal(loid)s, the integrated risk

becomes significantly influenced by the number of metal(loid)s

considered. In this study, the NIRI method is employed to correct

the variability in RI due to the number of metal(loid)s, improving

the comparability of results across different studies.
3.3 Source apportionment of heavy metal
(loid)s: linking risks to pollution sources

Correlation analysis and cluster analysis are commonly

employed to qualitatively identify the sources of heavy metal(loid)

s, as metals that share a common or composite source often exhibit

significant correlations (Fu et al., 2023a). In this study, Spearman

correlation analysis of heavy metal(loid) elements in the sediment

samples reveals a strong positive correlation between Fe and

common rock-forming elements such as Ti and Mn (p<0.001).

This suggests that Fe in the sediments primarily originates from

terrestrial detritus and is closely linked to the precipitation of

authigenic Fe-Mn oxides. Additionally, the significant positive

correlations between Fe and elements like Ba, Cr, Cu, Ni, Zr, Be,

Co, Ga, Mo, Pb, and Hg indicate that these metals may be associated

with terrestrial or allochthonous silicate minerals (Miola et al.,

2016). Similarly, Ti, as a representative indicator of terrestrial

detritus, shows positive correlations with other metals (like as

Mn, Ba, Cr, Cu, Ni, Zr, Be, Co, Ga, Mo, Pb, and Hg), supporting

a similar origin. In contrast, Sr exhibits significant negative

correlations with other heavy metal(loid)s (like as Fe, Mn, Ti, Ba,

Cr, Cu, Ni, Be, Co, Ga, Pb, Hg and Se), suggesting that Sr may have

a different source or behavior. Previous research by Murray and

Leinen (1993) found that Sr in marine sediments is typically

biogenic, primarily derived from biological processes. As a
Frontiers in Marine Science 08
biophilic element, Sr is mainly enriched in coarse-grained

calcareous shells and detritus. The study area, located in a low-

latitude region with a hot climate and high biological productivity,

has a high biogenic carbonate content, which dilutes terrestrial

detrital deposits and highlights biogenic sedimentation, leading to

peaks in Sr content. The region’s high biological activity results in

abnormally high CaCO3 levels, which in turn elevate Sr

concentrations. These findings suggest that metal concentrations

in sediments are influenced not only by the sources of metal input

but also by various geochemical processes.

Cluster analysis using the “complete”method shows that the 20

heavy metal(loid) elements in the sediments can be grouped into

four clusters (Figure 5B): the first cluster includes Ga, Ti, Zr, and Ba;

the second cluster includes Co, Be, Hg, Cr, Pb, and Fe; the third

cluster includes Cd, Mo, Ni, Mn, Se, and Cu; and the fourth cluster

includes As, Mg, Sr, and Ca. Correlation analysis results reveal

highly significant correlations (p<0.01) between Ga-Ti-Zr-Ba, Co-

Be-Hg-Cr-Pb-Fe, Cd-Mo, Ni-Mn-Se-Cu, As-Mg and Sr-Ca, which

are consistent with the cluster analysis findings. Based on these

results, it can be preliminarily inferred that Ga, Ti, Zr, and Ba share

a common or similar source, while Co, Be, Hg, Cr, Pb, and Fe likely

originate from the same source. Although Cd, Mo, Ni, Mn, Se, Cu,

As, Mg, Sr, and Ca may have a common source, their modes of

migration could differ, which aligns with the correlation analysis

conclusions. The sources of heavy metal(loid)s pollution in

sediments are complex, and further in-depth analysis of different

sources is required.

After normalizing the heavy metal(loid)s data in the sediments,

the Kaiser-Meyer-Olkin (KMO) and Bartlett’s sphericity tests were

conducted to assess the suitability of the data for factor analysis. A

KMO value above 0.7 generally indicates that the data are

appropriate for factor analysis. In this study, the KMO value was

0.7922, and Bartlett’s test of sphericity yielded a chi-square value of

22,948.226 with 190 degrees of freedom and a significance level of

0.000, which is well below the threshold of 0.05. These results
FIGURE 5

Correlative heat map of sediments heavy metal(loid)s content (A) and cluster analysis (B).
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confirm strong correlations among the heavy metal(loid) elements,

making the data suitable for factor analysis. To improve the

interpretation of the principal components, the Kaiser

normalization method with varimax rotation was applied to the

data, and the rotated data were used for further analysis. The results

of the principal component analysis (PCA) for heavy metal(loid)s in

surface sediments are presented in Table 3. Four factors with

eigenvalues greater than 1 were extracted, which collectively

account for 81.35% of the total variance, capturing most of the

information related to the sources of heavy metal(loid)s.

Specifically, PC1, PC2, PC3, and PC4 explain 36.52%, 22.11%,

14.70%, and 8.03% of the variance, respectively.

PC1 is primarily characterized by high loadings of Be, Sr, Ca,

Co, Hg, Pb, Fe, Cr, Ba, Mg, and Se. Wei and Algeo (2020) noted that

Sr can substitute for Ca in various rocks and minerals, including

gypsum, plagioclase, aragonite, calcite, dolomite, celestite (SrSO4),

and strontianite (SrCO3), due to the similarity in their ionic radii

(Roden et al., 2002). The significant positive correlation between Sr

and Ca observed in this study is consistent with these findings. Sr is

most commonly found in sedimentary carbonates, while Mg is a

widespread element in carbonate materials, further supporting the

observed positive correlation between Mg and Sr. These results

suggest that Sr, Mg, and Ca in the sediment samples are likely

associated with the natural variation of carbonate components. In

this study, the mean Hg content was found to exceed both the

background values for Chinese shallow sea sediments and those for

heavy metal(loid)s in Hainan Island soils (Table 2). The risk

assessment indicates that Hg poses a potential ecological risk,

suggesting the presence of an external pollution source for Hg in

the sediments. Previous studies have demonstrated that Hg is highly

volatile and can be emitted into the atmosphere during industrial
Frontiers in Marine Science 09
processes. It can undergo long-range atmospheric transport before

being deposited into the soil through dry and wet deposition

processes (Tian et al., 2012; Fu et al., 2023b). Therefore, it is

inferred that PC1 represents a mixed source, combining both

natural and anthropogenic origins.

PC2 is primarily characterized by high loadings of Fe, Zr, Ti, Ga,

Ba, and Mn. In soil environments, Ti typically originates from

terrestrial detritus. Zr, an inert element with high chemical stability,

is commonly enriched in oxides and silicates. During weathering,

fine Zr particles remain in the soil, forming sand deposits widely

distributed in nature (Liu et al., 2012). Ga in sediments is mainly

found in clay and aluminum-bearing minerals, with its migration

and precipitation largely influenced by the geochemical properties

of aluminum (Breiter et al., 2013). Therefore, PC2 is interpreted as

representing a natural source.

PC3 is primarily characterized by high loadings of Mn, As, Cd,

Mg, Mo, and Ni. The significant loadings of Mn in both PCA2 and

PCA3 suggest differences in its sources. Research by (Kikuchi et al.,

2009) indicates that manganese pollution in water bodies is mainly

associated with untreated domestic and industrial wastewater.

Meanwhile, the primary source of As is agricultural pollution

(Jiao et al., 2012). The use of arsenic-rich pesticides, fertilizers,

and herbicides in agricultural activities likely accounts for the

presence of As in the sediments of the study area. Therefore, PC3

is interpreted as representing anthropogenic sources.

PC4 is primarily characterized by high loadings of As, Cu, and

Se. The low correlation between As and Se (p>0.05) suggests that

PC4 represents multiple sources. The majority of sampling points

show Cu in a non-polluted state, indicating that Cu in the sediments

primarily originates from natural sources. In addition to

accumulation from agricultural activities, As in the soil
TABLE 3 Rotated component matrix according to varimax normalized for sediments.

Elements PC1 PC2 PC3 PC4 Elements PC1 PC2 PC3 PC4

Be 0.946 0.069 -0.072 0.206 Mn 0.222 0.457 0.760 -0.231

Sr -0.945 -0.141 -0.124 0.006 As -0.152 -0.251 0.733 -0.431

Ca -0.941 -0.219 0.062 -0.107 Cd -0.272 0.360 0.579 0.375

Co 0.940 0.154 -0.036 0.215 Mg -0.415 -0.387 0.550 -0.106

Hg 0.891 -0.083 -0.073 0.029 Ni 0.389 -0.035 0.461 0.017

Pb 0.837 0.276 0.359 0.113 Cu 0.290 0.164 -0.159 0.791

Fe 0.834 0.486 0.070 0.157 Se 0.406 -0.340 0.318 0.582

Cr 0.583 0.255 -0.083 0.271 Eigen value 7.303 4.422 2.939 1.607

Zr -0.034 0.984 0.032 0.006 % variance 36.516 22.108 14.696 8.034

Ti 0.302 0.936 -0.053 0.074 Cumulative variance 36.516 58.624 73.320 81.354

Ga 0.213 0.931 0.019 0.108

Ba 0.596 0.731 -0.085 -0.042

Mo 0.049 -0.048 0.816 0.141
fr
Bold values indicates a load factor greater than 0.4.
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environment is also associated with aquaculture and the

combustion of diesel and gasoline by ships (Hu et al., 2013;

Soroldoni et al., 2018; Cheng et al., 2018). Se mainly originates

from mining, wastewater discharge, and coal combustion (George

et al., 2020). Considering the presence of numerous ports in the

study area, including Qingge Port, Boao Port, Millennium Fishing

Port, and Tanmen Port, it is possible that ship activities, such as hull

corrosion, paint peeling, and fuel combustion, contribute to As and

Se pollution. Therefore, PC4 is identified as a mixed source of

natural and anthropogenic origins.

The PMF model enables quantitative analysis of pollutant

sources in soils and other environmental media, as well as the

determination of the contribution rate of each source. In this study,

experimental data were processed using the EPA PMF 5.0 software.

Notably, the number of factors set in the model scenarios

significantly impacts the source apportionment results. In this

study, different scenarios with varying numbers of factors (2 to 5)

were initially set, and the number of runs was set to 20 to minimize

theQ value and control the scaled residuals. The model achieved the

smallest Qrobust/Qture value (2.45) when the number of factors

was set to 5, with most residual values concentrated between -3

and 3. Thus, the optimal number of factors for this study was

determined to be 5. Additionally, the r2 values for most elements,

except for Cr, Cu, Ni, Mo, and Cd, were greater than 0.6 (Table 4),

indicating a high level of confidence in the PMF model’s source

apportionment results and that the chosen number of factors

adequately explains the information contained in the original

data. The results of the source apportionment for heavy metal

(loid)s in sediments based on the PMFmodel are shown in Figure 6.

The contribution rates of the five factors are as follows: Factor 1

(15%), Factor 2 (19%), Factor 3 (13%), Factor 4 (27%), and Factor

5 (26%).

In Factor 1, the primary loading elements are As and Mn, with

contribution rates of 90.6% and 47.3%, respectively. Correlation

analysis shows a significant positive correlation between As and Mn

(p < 0.001), indicating a shared source. As discussed earlier, the

accumulation of As in sediments is primarily influenced by
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agricultural activities (Li et al., 2022b). The study area is

surrounded by extensive farmland, where large quantities of

pesticides and insecticides are used in agricultural production,

serving as the main source of As in the sediments. Therefore,

Factor 1 potentially identified as an agricultural source.

In Factor 2, the main loading elements are Sr, Ca, and Mg, with

contribution rates of 83.0%, 81.3%, and 36.7%, respectively. Sr, Mg,

and Ca are primarily found in carbonate minerals, with Sr

accumulating in association with calcium-rich biological

materials. The study area shows elevated Sr levels, significantly

above Chinese shallow sea sediment background values, with

moderate to high pollution levels at more than half of the

sampling sites. This indicates that Sr enrichment is influenced by

both biological factors and anthropogenic activitie. Castillo et al.

(2024) found that microplastics can adsorb environmental

pollutants, including metals. The widespread aquaculture

activities in the area, involving the use of PE floatation devices

and fishing gear, contribute to Sr accumulation through

microplastic pollution. Thus, Factor 2 suggests source as an

aquaculture-related anthropogenic source.

In Factor 3, the primary loading elements are Zr and Ti, with

contribution rates of 90.6% and 42.5%, respectively. Zr is mainly

found in oxides and silicates, while Ti, as a rock-forming

element, aids in Zr accumulation in sediments. Therefore,

Factor 3 suggests source as a natural source related to parent

material weathering.

In Factor 4, the main loading elements are Mo, Se, Pb, Be, Co, Cu,

Ga, Ni, Fe, and Cd, with contribution rates of 59.4%, 51.1%, 46.7%,

45.7%, 43.4%, 41.3%, 38.1%, 37.5%, 35.8%, and 33.9%, respectively.

The mean concentrations of these elements in sediments are either

below or close to the background values for Chinese shallow sea

sediments, indicating that their levels are primarily controlled by

natural geological backgrounds. This conclusion is supported by the

results from the geo-accumulation index and the potential ecological

risk index, which show that these heavy metal(loid)s generally fall

into the non-polluted or low ecological risk categories. Therefore,

Factor 4 potentially identified as a natural source.
FIGURE 6

Source analysis of heavy metal(loid)s in sediments.
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In Factor 5, the primary loading elements are Hg, Ba, and Cr,

with contribution rates of 80.5%, 65.0%, and 52.5%, respectively.

Since the pre-industrial era, human inputs of mercury into the

oceans have increased significantly, with 90% of riverine mercury

buried in coastal sediments (Yin et al., 2015). Research indicates

that over two-thirds of Hg in the natural environment originates

from human activities, with coal combustion being a major source

(Rashid et al., 2022). The results from the geo-accumulation index

and potential ecological risk index also indicate that sediment Hg at

some sampling sites falls within the moderate to high ecological risk

categories. Reports show that coal combustion is a major source of

Hg emissions, accounting for 33.4% of all energy consumption in

Hainan Province (Tian et al., 2012). Ba, often used in cleaning

agents for diesel engines and other internal combustion engines,

likely originates from traffic pollution. Based on this analysis, Factor

5 potentially identified as a traffic-related source.

A comparison of the PCA and PMF models reveals several

similarities and differences in source apportionment. 1) Number of

Identified Sources: PCA identified 4 principal components, while

the PMF model determined that the optimal number of factors is 5,

showing inconsistency between the two methods. 2) Identification

of Marker Elements: The primary loading elements associated with
Frontiers in Marine Science 11
each source are largely consistent between PCA and PMF. However,

the PMF model provides a more detailed breakdown of

anthropogenic sources, whereas PCA does not further distinguish

these sources into separate factors. 3) Source Contribution Rates:

Compared to PCA, the PMF model has the advantage of assigning

weights to each data point based on its uncertainty. Additionally, it

applies non-negativity constraints on factor loadings and scores

during the solution process, preventing the occurrence of negative

values during matrix decomposition. This approach enhances the

interpretability and feasibility of the source contribution rates

derived from the PMF model (Fei et al., 2020; Anh, 2022).

In conclusion, the PMF model proves to be more advantageous

for source apportionment of regional soil heavy metal(loid)s in this

study. The comparison of the results from the two methods also

improves the reliability of the source apportionment conclusions.
4 Conclusion

This study analyzed 93 surface sediment samples from the

nearshore area of Qionghai, using geo-accumulation index,

potential ecological risk index, correlation analysis, principal

component analysis (PCA), cluster analysis, and Positive Matrix

Factorization (PMF) to assess heavy metal(loid) pollution risks and

sources. The key findings are:

The average concentrations of elements, from highest to lowest,

are: Ca > Fe > Mg > Ti > Sr > Zr > Ba > Cr > Pb > Cu > Ni > Ga > As

> Co > Be >Mo > Se > Cd > Hg. The mean concentrations of Fe, Ca,

Mg, Ti, Cu, Sr, Zr, Mo, Cd, Pb, Hg, As, and Se exceed background

levels for Chinese shallow sea sediments. Elements like Ca, Mn, Ba,

Ni, Sr, Be, Co, Mo, Hg, As, Ti, Cr, Zr, and Ga show high variability

(CV > 51%), suggesting potentially influence from human activities.

Sr, Hg, and As are identified as the primary pollutants and key

ecological risk factors based on geo-accumulation index, potential

ecological risk index, and Nemerow index.

Correlation and source apportionment analyses show that As

and Mn are mainly from agricultural sources, Sr, Ca, and Mg from

aquaculture, and Zr, Ti, Mo, Se, Pb, Be, Co, Cu, Ga, Ni, Fe, and Cd

from natural sources. Hg, Ba, and Cr are primarily linked to traffic

sources. The strong correlation between PMF-predicted and

observed heavy metal(loid) concentrations confirms the

effectiveness of PMF for source apportionment. The consistency

between PCA and PMF results further supports the reliability of

these findings. This version removes redundancy and streamlines

the content while maintaining clarity and precision, making it more

suitable for a Frontiers conference paper.

To sum up, there are certain pollution risks in the study area, and

the main pollutants are Sr, Hg, and As. The accumulation of major

pollutants in the environment is mainly affected by agricultural

activities, aquaculture and traffic emissions. Therefore, in the

follow-up management, corresponding measures should be taken

in these aspects to reduce pollutant emissions and ensure the

protection and sustainability of the Marine environment.
TABLE 4 Basic parameters of PMF model.

Heavy metals Category S/N r2 P Value

Fe Strong 8.686 0.954 0.017

Ca Strong 8.996 0.981 0.316

Mg Strong 8.801 0.628 0.233

Mn Strong 5.624 0.728 0.367

Ti Strong 8.841 0.983 0.023

Ba Strong 2.155 0.907 0.957

Cr Strong 3.996 0.414 0.012

Cu Strong 3.427 0.400 0.948

Ni Strong 2.854 0.133 0.002

Sr Strong 8.773 0.945 0.425

Zr Strong 5.921 0.978 0.000

Be Strong 7.725 0.962 0.943

Co Strong 8.878 0.978 0.193

Ga Strong 8.979 0.866 0.213

Mo Strong 8.899 0.312 0.004

Cd Strong 2.409 0.322 0.687

Pb Strong 6.409 0.925 0.143

Hg Strong 6.996 0.922 0.707

As Strong 8.869 0.958 0.038

Se Strong 8.921 0.671 0.384
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