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Data mining-based machine
learning methods for improving
hydrological data: a case study
of salinity field in the Western
Arctic Ocean
Shuhao Tao1,2, Ling Du1,2* and Jiahao Li1,2

1Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical
Oceanography Laboratory, Ocean University of China, Qingdao, China, 2College of Oceanic and
Atmospheric Sciences, Ocean University of China, Qingdao, China
The Beaufort Gyre is the largest freshwater reservoir in the Arctic Ocean. Long-

term changes in freshwater reservoirs are critical for understanding the Arctic

Ocean, and data from various sources, particularly observation or reanalysis data,

must be used to the greatest extent possible. Over the past two decades, a large

number of intensive field observations and ship surveys have been conducted in

the western Arctic Ocean to obtain a large amount of CTD (Conductivity,

Temperature, and Depth) data. Multi-machine learning methods were assessed

and merged to reconstruct the annual salinity product in the Western Arctic

Ocean over the period 2003-2022. Data mining-based machine learning

methods reconstructed salinity product based on input variables determined

by physical processes, such as sea level pressure, bathymetry, sea ice

concentration, and sea ice drift. The root-mean-square error of sea surface

salinity, in comparison to deep water, was effectively managed during machine

learning, which exhibits higher sensitivity to variations in the atmosphere, sea ice,

and ocean. The mean absolute errors in freshwater content and halocline depth

within the Beaufort Gyre region for the salinity product from 2003 to 2022 are

0.98 m and 1.31 m, respectively, when compared to observational data. The

salinity product provides reliable characterizations of freshwater content in the

Beaufort Gyre and its variations at halocline depth. In polar regions where lacking

observed data, we can build data mining-based machine learning methods to

generate reliable data products to compensate for the inconvenience.

Furthermore, the application potential of this multi-machine learning results

approach for evaluating and integrating extends beyond the salinity field,

encompassing hydrometeorology, sea ice thickness, polar biogeochemistry,

and other related fields.
KEYWORDS

salinity product, multi-machine learning, data merging, post calibrating, Western
Arctic Ocean
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1 Introduction

In contrast to the low- and mid-latitude oceans, the Arctic

Ocean is characterized by its extensive sea ice coverage and near-

freezing sea surface water. Variations in salinity in the Western

Arctic Ocean have profound implications for stratification strength,

ocean circulation patterns, and biogeochemical cycles (Carmack

et al., 2016; Cornish et al., 2020). Freshwater reservoirs and its

evolution, which are closely related to the change of seawater

salinity, have become the focus of research in the Arctic Ocean.

Consequently, acquiring precise salinity data is of paramount

importance for enhancing our understanding of this distinctive

oceanic environment. The wind-driven surface circulation in the

Arctic Ocean is primarily governed by two key factors: the anti-

cyclonic Beaufort Gyre and the Transpolar Drift. Moreover,

substantial quantities of freshwater accumulate in the Beaufort

Gyre in the Western Arctic Ocean. The release of the freshwater

exerts a significant impact on local climate dynamics as well as

global climate change at large scales (Carmack et al., 2008; Giles

et al., 2012; Proshutinsky et al., 2009, 2019).

The Western Arctic Ocean (140°E-120°W, 68°N-90°N) spans a

vast territory with the Beaufort Gyre, the largest freshwater

reservoir in the Arctic Ocean (Figure 1). In the Western Arctic

Ocean, sea ice blankets the region during winter; conversely, in

summer, a substantial expanse of sea ice at lower latitudes

undergoes melting. Nevertheless, multi-year ice persists in the

northeastern Canada Basin. Meneghello et al. (2018) introduced a

concept referred to as the ‘ice-ocean governor’. Sea ice drift could

influence Beaufort Gyre strength. Muilwijk et al. (2024) pointed out

that the weakening of sea ice amplifies the spin-up of the Beaufort

Gyre. The Western Arctic Ocean is mainly influenced by the anti-

cyclonic Beaufort High. In the western part of the Arctic Ocean,

there is the main circulation system of the Arctic Ocean, the

Beaufort Gyre, which accumulates a large amount of freshwater.

The strength of the Beaufort Gyre has been continuously increasing,

reaching a stable state after 2007, with changes in freshwater
Frontiers in Marine Science 02
content consistent with the strength of the Beaufort Gyre (Regan

et al., 2019). The area of the Beaufort Gyre expanded westward from

2003 to 2013, and contracted eastward back to the Canada Basin

after 2014 (Lin et al., 2023). Freshwater accumulation, storage, and

release from the BG exert far-reaching impacts on both regional and

global climate systems. Therefore, accurate salinity data is very

important for our study of Beaufort Gyre.

The presence of sea ice severely limits the availability of salinity

data in the Arctic Ocean, posing significant challenges to meeting the

demands of current research. Behrentdt et al. (2018) collected a large

amount of observed data to form a Unified Database for Arctic and

Subarctic Hydrography for the period 1980-2015, however, there is a

notable absence of hydrological data for recent years. In recent years,

highly developed measurement techniques were especially designed

for operation in the Arctic environment. Moreover, there is an

increasing number of research initiatives and international

collaborations, exemplified by the Beaufort Gyre Exploration

Project (BGEP), which has produced a substantial volume of

hydrographic data in the Western Arctic Ocean and subarctic seas

(Rabe et al., 2014). Despite the heightened focus on polar observation

initiatives, the temporal and spatial continuity of observational data

continues to pose a significant challenge to our exploration of the

Arctic. Shipborne observations of CTD and ITP (Ice-Tethered

Profiler) data are sporadic, posing challenges in obtaining reliable

salinity observations. The accuracy of both model and reanalysis data

is frequently subpar. Our research specifically focuses on a case study

of investigating salinity product improved by multi-machine learning

results evaluating and integrating within Western Arctic Oceans.

The advancement of stochastic computer science and

technology in recent years has led to an increasing utilization of

machine learning methods across various domains. Machine

learning methods have already demonstrated their efficacy in data

generation tasks. The machine learning model refers to the

algorithm that learns from input features. This can be

conceptualized as a system that generates predictions based on

input features. Readily accessible atmospheric and sea ice data are
FIGURE 1

Topography of the Western Arctic Ocean. The map also includes the Canada Basin (CB), Chukchi sea (CS), the Chukchi Plateau (CP), East Siberian
Sea (ESS) and Makarov Basin (MB).
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utilized as input features for salinity prediction, which is

subsequently extrapolated using a validated model. Various

machine learning models exhibit significant inter-model

differences in salinity prediction; consequently, we have employed

six machine algorithms to reconstruct salinity product. While

traditional statistical regression methods demonstrate some

efficacy in data reconstruction, their accuracy and applicability

are constrained by the complex nonlinear relationships inherent

in the atmosphere-ice-ocean system. In contrast, machine learning

excels at addressing complex nonlinear interactions and is well-

suited for data generation. Recently, it has seen extensive

application and advancement in this domain (Wang et al., 2022;

Chen et al., 2024). Previous studies have primarily concentrated on

middle and low latitudes where data availability is substantial, while

salinity is crucial for understanding the halocline dynamics of the

Arctic Ocean; however, there is a paucity of research utilizing

machine learning reconstruction methods to generate reliable

salinity data for the high-latitude Arctic Ocean. Consequently,

this paper employs several machine learning methods to produce

dependable salinity data surpassing widely used dataset like ORAS5

in the Western Arctic Ocean.

This study performed machine learning training on sea level

pressure, sea ice concentration, sea ice drift, as well as a large

amount of quality-controlled CTD (WOD18, UDASH and ITP)

data and EN4. The datasets were merged to generate a salinity
Frontiers in Marine Science 03
product with a resolution of 0.5°×0.25° above 1000m for the period

spanning from 2003 to 2022, encompassing a total of 48 vertical layers.

The performance of machine learning was assessed not only through

RMSE, but also by evaluating the uncertainty resulting from data

merging and post calibrating processes. The salinity of ORAS5

datasets were employed to investigate the Beaufort Gyre and Arctic

Ocean Hall et al., 2021. The accuracy and reliability of salinity product

was validated through comparisons with ORAS5, as well as observed

freshwater content and halocline depth in the Beaufort Gyre region.
2 Data and methodology

Our goal is to generate a set of salinity products that can be used to

analyze variations in freshwater and halocline depth in the Western

Arctic Ocean in recent years. The procedure of generating the salinity

product is primarily divided into four key modules: data selection,

machine learning, data merging, and post calibration (Figure 2).
2.1 Data selecting

2.1.1 Data
We have collected a large amount of CTD salinity data. The

CTD data was utilized in this study, which includes the WOD18,
FIGURE 2

Procedure for generating the salinity product in the Western Arctic Ocean through a data mining-based machine learning method.
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UDASH and ITP. The spatial distribution of CTD data from these

different sources exhibits some degree of overlap, yet notable

disparities persist. The World Ocean Database (WOD) is the

world’s largest collection of uniformly formatted, quality

controlled, publicly available ocean profile data (https://

www.nce i .noaa .gov/access /wor ld-ocean-database/b in/

getwodyearlydata.pl?Go=TimeSorted, last access: 8 December

2023). Unified Database for Arctic and Subarctic Hydrography

(UDASH) is a unified and high-quality temperature and salinity

data set for the Arctic Ocean and the subpolar seas north of 65°N

for the period 1980-2015 (https://essd.copernicus.org/articles/10/

1119/2018/, last access: 8 December 2023). Sea ice presents a

significant impediment to sustained observation of the Arctic

Ocean. Researchers designed and field tested an automated,

easily-deployed ITP for Arctic study. Building on the ongoing

success of ice drifters that support multiple discrete subsurface

sensors on tethers and the WHOI-developed Moored Profiler

instrument capable of moving along a tether to sample at better

than 1-m vertical resolution (https://www2.whoi.edu/site/itp/data/,

last access: 8 December 2023).

This study interpolates all data onto the vertical depth grid of

the WOD. Most of the CTD data was collected in late summer and

early autumn (August to October), while the least CTD data was

collected in June. The observed data is mainly concentrated in the

Canada Basin, with very few observed data in the East Siberian Sea

(Figure 3). After 2003, ITP provided a substantial amount of in situ

CTD data, enabling the generation of gridded data for the period

from 2003 to 2022. Considering the temporal and spatial
Frontiers in Marine Science 04
discontinuity of the observed data, we have introduced EN4

reanalysis data (https://www.metoffice.gov.uk/hadobs/en4/, last

access: 8 December 2023). Furthermore, considering the influence

of the atmosphere and sea ice on the ocean, we have also

incorporated SLP (Sea Level Pressure) data from ERA5 (https://

cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-

levels-monthly-means?tab=form, last access: 8 December 2023) and

sea ice concentration and sea ice drift data from National Snow and

Ice Data Center (NSIDC) (https://nsidc.org/home, last access: 8

December 2023). We use monthly salinity provided by the

European Centre for Medium-Range Weather Forecasts

(ECMWF) through the Ocean Reanalysis System’s version 5

(ORAS5), which uses the Nucleus for European Modeling of the

Ocean (NEMOv3.4) for its ocean model coupled with a sea ice

model to assess the performance of salinity product. In the data

selecting, this study synthesizes previous literature and selected the

sea level pressure, sea ice concentration, and sea ice drift data of the

Western Arctic Ocean as training variables for machine learning.

The CTD data collected includes a variety of issues such as

missing values, outliers, and duplicates as well as gaps in dates and

missing or incorrect latitude and longitude information. Therefore,

the collected raw data underwent pre-processing. Under normal

circumstances, missing data were interpolated, entries that could

not be completed were removed, and duplicate data were

eliminated. The pre-processing of our raw data primarily entails

two quality control (QC) steps. Firstly, WOD18 offers quality-

controlled data, with each data accompanied by extensive

metadata, and every data value is associated with a corresponding
FIGURE 3

(A–T) Annual sea surface salinity from 2003 to 2022 in the Western Arctic Ocean. The colored dots represent the sea surface salinity at the
CTD stations.
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quality control flag. We selected the highest quality data, specifically

those associated with flags 0 and 1. Secondly, we removed invalid

profile profiles from the datasets.

2.1.2 Initial value and independent validation data
World Ocean Atlas 18 (WOA18) (Zweng et al., 2019) salinity

consists of a description of data analysis procedures and horizontal

maps of climatological distribution fields of salinity at selected

standard depth levels of the World Ocean on a one-degree and

quarter-degree latitude-longitude grids. The series are used so

frequently that they have become known generically as the

“Levitus Climatology”. The observational-based gridded product

WOA18 was utilized to evaluate the performance of the Arctic

Subpolar Gyre State Estimate (ASTE) in the Arctic Ocean (Zhong

et al., 2024). We propose that the salinity of the Arctic Ocean can be

categorized into two components: the initial value determined by

WOA18, which reflects the constrained climate state, and the

subsequent changes in salinity predicted through our machine

learning methods based on this climate state. WOA18 data is also

used to evaluate the performance of generated salinity product.

Shipboard hydrographic data and water sampling observed on

board the CCGS (Canadian Coast Guard Shipboard) LSSL (Louis S.

St-Laurent) are carried out at about 30 standard sites on each cruise

(https://www2.whoi.edu/site/beaufortgyre/data/ctd-and-

geochemistry/, last access: 8 December 2023), the CTD data of LSSL

collected during the 2004 expedition was not utilized. The potential

temperature and density of the CTD data in 2004 are evidently

anomalous, suggesting a potential issue with the data storage

process, thus rendering them unsuitable for this study.
2.2 Machine learning

In the machine learning training process, we selected six widely

used methods: Random Forest (RF), K Nearest Neighbor (KNN),

LightGBM (LGB), CatBoost (CB), Neural Network (NN), and

Multilinear Regression (MLR). We determined the optimal values

of different machine learning method using optuna hyperparameter

methods (code from https://github.com/optuna/, last access: 20

March 2024) and GridSearchCV (from scikit-learning). We

employed six distinct machine learning methods to train the CTD

(WOD18, UDASH, ITP) and EN4.

The issue of overfitting must be addressed during the machine

learning process. The datasets utilized for prediction from each year

were randomized; subsequently, 90% of the data was designated for

training purposes, forming the training pool, while the remaining

10% was reserved for testing purposes, constituting the testing pool.

Training pool (90%) and testing pool (10%) in this study are divided

by space.

It is necessary to evaluate the accuracy of any model based on

certain error metrics before applying it to specific scenarios.

Common model evaluation metrics include mean absolute error

(MAE), root-mean-square error (RMSE). The mean squared error

(MSE) is the standard deviation of the residuals (prediction error),

and the residuals are the distances between the fitted line and the
Frontiers in Marine Science 05
data points (i.e., the residuals show the degree of concentration of

the reconstructed data around the regression line). In regression

analysis, RMSE is frequently used to verify experimental results. To

assess bias, the RMSE needs to combine the magnitude of the model

data and is calculated as follows:

RMSEkj =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(yikj − ŷ ikj)

2  

s
1

where n is the number of data points; k represents different

machine learning methods, and there are six types in total, which

are RF, KNN, LGB, CB, NN, MLR; j=1 represents WOD18 data, j=2

represents UDASH data, j=3 represents ITP data and j=4 represents

EN4 data; y is the training target; ŷ is the prediction result after

machine learning training.

Taking the results from 2008 of Random Forest as an example

(Figure 4), our analysis revealed that salinity predictions at 200 m

are more accurate than those at the surface (15 m) based on the

verification results from the testing pool, and it was observed that

the RMSE for EN4 is smaller than that for CTD. However, what is

exciting is that even for the weakest prediction ability of CTD at the

surface, the RMSE is less than 0.35 psu. Therefore, our evaluation of

the machine learning results will mainly focus on the surface with

larger prediction errors by RMSE.

In addition to Random Forest (RF), we also evaluated the

predictive performance of surface salinity using five other

machine learning methods (Table 1), with assessment based on

RMSE as outlined below:

We selected four machine learning methods whose predictions

is closer to the training target of sea surface salinity (with the

average of RMSE less than 0.25), which are RF, KNN, LGB, and CB

(Table 1). We employed the K-fold cross-validation during the

machine learning training process in the training pool. We used R2

to verify the ability of machine learning training which is calculated

as follows:

R2 = 1 − o
n
i=1(yi − ŷ )2

on
i=1(yi − yi)

2 2

where n is the number of data points; y is the training target data;

ŷ is the prediction result after machine learning training. We also

selected RF, KNN, LGB, and CB based on the results of cross-

validation. The four selected machine learning methods demonstrate

superior prediction results for EN4 in comparison to CTD. The errors

arising during the prediction process mainly come from the prediction

of CTD salinity. The annual variations in the predictive capabilities of

these four machine learning methods are highly significant. The

prediction results for RF were the best in 2005 and 2016, and the

worst in 2020, KNN had the best prediction results for 2016 and 2017,

and the worst prediction results for 2020. LGB had the best forecast

results for 2016 and 2017, and the worst forecast results for 2003. CB

had the best forecast results for 2016 and 2017, and the worst forecast

results for 2003. In the same year, some machine learning predictions

are good while others are poor. For example, in 2020, the mean RMSE

of RF (0.32) and KNN [CTD (0.45)] were poor, but the predictions of

LGB (0.14) and CB (0.14) were good.
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RMSE is the spatial average result (Table 1), so only considering

the numerical value of RMSE may ignore the predictive ability of

machine learning methods on different regions in space. After

training, we selected four machine learning methods with the mean

RMSE less than 0.25, which are RF, KNN, LGB, and CB. We take the

example of the prediction error of surface salinity in 2008 (predicted

value minus training target value) to analyze the salinity prediction

ability of machine learning methods in different regions. Machine

learning models exhibit significant spatial differences in predicting the

salinity of CTD (Figure 5). Specifically, there are larger prediction

errors in the Chukchi Sea, Chukchi Sea Shelf, southern continental

shelf slope of the Beaufort Gyre and central Canada basin. The largest

error occurred in the Chukchi Sea, which may be due to the influence

of Pacific water on the salinity of the upper layer of theWestern Arctic

Ocean. The four machine learning methods for predicting surface

salinity in EN4 are all very good. KNN, LGB, and CB even have

negligible prediction errors. RF exhibits a significant spatial

distribution in predicting surface salinity in EN4, characterized by

overestimations in the southeastern Canada Basin and the Western

East Siberian Sea, with prediction errors remaining below 0.2 psu. The

predictions are underestimated in the Chukchi Sea and the East

Siberian Sea. The prediction errors of different machine learning

methods vary, so different weights need to be considered in the data

mergence process.

In machine learning process, the dataset is typically partitioned

into three distinct subsets: the training set, the validation set, and

the testing set. The testing pool serves to evaluate the performance
Frontiers in Marine Science 06
of the final selected optimal model. To ensure the accuracy and

reliability of predicted salinity generated by machine learning

models and avoid overfitting, we employed the independent LSSL

CTD data as an independent dataset for independent validation

(Table 2). The selected four machine learning methods can be used

to generated salinity product in Western Arctic Ocean.
2.3 Data merging and post calibrating

During the data merging process, the training results of the four

most effective machine learning models were combined to generate

initial predicted salinity. MAE represents the average absolute

difference between the in situ data (true values) and the training

model results (predicted values). The sign of these differences is

ignored so that cancelations between positive and negative values

do not occur. RMSE and MAE are primarily used to represent the

uncertainty in reconstructed datasets. In this study, we choose MAE

as the criterion for assessing uncertainty. We introduced weights

and defined uncertainty, for selecting weights akj. The initial

merged results (Zj):

Zj =o4
k=1akjŷ kj 3

Where k represents different machine learning methods, and

there are four types in total, which are RF, KNN, LGB, CB; j=1

represents WOD18, j=2 represents UDASH, j=3 represents ITP and
FIGURE 4

Comparisons between the predicted salinity and train target salinity values in the testing pool for the Random Forest in 2008. (A) CTD salinity at
15m, (B) CTD salinity at 200m, (C) EN4 salinity at 15m, (D) EN4 salinity at 200m.
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j=4 represents EN4 data,  ŷ kj is different training results of machine

learning methods based on CTD (WOD18, UDASH, ITP) and EN4.

The uncertainty of data merging (CT1) represent the average of

MAE between the initial merged results (Zj) based on CTD

(WOD18, UDASH, ITP) and EN4 and the extracted

reconstruction results obtained from the four machine learning

methods, which is calculated as follows:

CT1 =
1
4o4

k=1

ŷ kj − Zj

�� ��
Zj

� 100% 4

We determined the threshold for CT1 based on a 2% of mean

surface salinity from 2003 to 2022, corresponding to 0.5 psu. The

data merging process described in this study concludes when CT1

falls below the threshold, resulting in the acquisition of the initial

predicted salinity (Ẑ j).

During the post calibrating process, initial predicted salinity was

utilized to generate salinity product. when there are at least three

CTD measurements available in the vicinity of the grid point, the

salinity value of the point is formed by merging the EN4 initial

predicted salinity and the CTD (WOD18, UDASH, ITP) initial

predicted salinity according to weights (b_j); otherwise, the salinity
value of the point is taken as the EN4 prediction result. We need to

check that salinity results (S)
Frontiers in Marine Science 07
S =o4
j=1b_jẐ j 5

The uncertainty of post calibrating (CT2) represent the average

of MAE between the initial salinity results (S) obtained from CTD

(WOD18, UDASH, ITP) and EN4, which is calculated as follows:

CT2 =
1
4o4

j=1

Ẑ j − S
�� ��

S
� 100% 6

We determined the threshold for CT2 based on a 3% of mean

surface salinity from 2003 to 2022, corresponding to 0.8 psu. When

CT2 falls below the prescribed threshold, the post-calibration

procedure is adjudged accomplished, thereby generating salinity

product (Ŝ ).
3 Result and discussion

The uncertainty of the salinity product in this study

(represented by MAE) includes three parts: one part is the

uncertainty generated during the machine learning training

process, with an uncertainty of 0.1 psu for surface salinity

predictions derived from CTD salinity and 0.01 psu for those

based on EN4 salinity; the other parts include uncertainties in
TABLE 1 Evaluation of predicted surface salinity of different CTD sources in the testing pool using different machine learning methods.

Machine learning
methods5

RMSEs1 UDASH WOD18 ITP EN4 Average 4

RF

Mean 2 0.29 0.21 0.36 0.06

0.23Min.2 0.09 0.01 0.11 0.04

Max. 3 0.88 (2014, 80) 1.21 (2014, 40) 1.16(2020,2180) 0.08 (2004, 1660)

KNN

Mean 0.27 0.17 0.32 0

0.19Min. 0.11 0.02 0 0

Max. 0.90 (2014, 80) 0.84 (2014, 40) 1.32(2020,2180) 0

LGB

Mean 0.26 0.22 0.35 0.01

0.21Min. 0.1 0.01 0.04 0.01

Max. 0.85 (2014, 80) 1.21 (2014, 80) 1.17 (2020, 2180) 0.01 (2007, 1660)

CB

Mean 0.27 0.19 0.34 0.01

0.20Min. 0.1 0.02 0 0.01

Max. 0.82 (2014, 80) 1.21 (2014, 80) 1.16 (2020, 2180) 0.01 (2010, 1660)

NN

Mean 0.85 0.66 1.02 1.06

0.90Min. 0.48 0.22 0.47 0.71

Max. 1.22 (2003, 860) 1.74 (2007, 100) 1.87 (2020,2180) 1.58 (2021, 1660)

MLR

Mean 0.87 0.69 1.08 0.58

0.81Min. 0.59 0.20 0.75 0.49

Max. 1.27 (2003, 860) 1.69 (2007, 100) 1.80 (2020,2180) 0.66 (2010, 1660)
1root-mean-square errors (Equation 1).
2RMSE statistics: mean and minimum of RMSEs in 2003-2022.
3RMSE statistics: maximum of RMSEs in 2003-2022, e.g. ‘0.88 (2014, 80)’ indicated the maximum = 0.88 occurred in 2014 with 80 casts.
4Average of RMSEs for the machine learning method in all salinity fields (incl. CTD and EN4).
5Machine learning methods includes Random Forest (RF), K Nearest Neighbor (KNN), LightGBM (LGB), CatBoost (CB), Neural Network (NN), and Multilinear Regression (MLR).
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data merging (Figures 6A, B) and post calibrating (Figure 6C). Two

sets of initial predicted salinity are utilized for data merging in the

machine learning methods: EN4 and CTD (WOD18, UDASH,

ITP). The uncertainty generated shows that the uncertainty

constrained by CTD data is larger in the central Canada Basin

and the Chukchi Sea Shelf and its adjacent ocean, reaching 0.46 psu

in the central Canada Basin. The uncertainty constrained by EN4

data is larger in the central Canada Basin and the East Siberian Sea,

reaching 0.12 psu in the East Siberian Sea. The uncertainty

generated during the post calibrating process is highest in the

Canada basin, with a maximum value of 0.7 psu.

We used salinity product to calculate the freshwater content in

the Beaufort Gyre region (black box in Figure 7A). To validate the

performance of the salinity product in calculating freshwater

content (Figure 7), we also utilized the freshwater content data

provided by BGEP, which is derived from LSSL data, for

comparison. On the other hand, the research of Hall et al., 2021

showed that the salinity of ORAS5 can be used to calculate the

freshwater content of the Arctic Ocean, and we also introduced the

results of the freshwater content calculation of ORAS5 (Figure 7B).

The FWC (freshwater content) was computed relative to 34.8 psu

following Proshutinsky et al. (2009):
Frontiers in Marine Science 08
FWC =
Z zsurface

z34:8

34:8 − s(z)
34:8

� �
dz 7

The absolute errors between the freshwater content derived from

BGEP and those from the generated salinity product as well as ORAS5

are 0.98 m, 4.28 m, respectively. Using the salinity product to calculate

the freshwater content in the Beaufort Gyre region can improve the

accuracy compared to ORAS5.We compared the spatial distribution of

freshwater content calculated from salinity product with that provided

by BGEP. Certain regions on the Mendeleev Ridge exhibit substantial

freshwater content, potentially resulting from freshwater advection

originating from either the East Siberian Sea or the Beaufort Gyre.

The depth of halocline base plays an important role in studying

the Beaufort Gyre dynamics (Manucharyan et al., 2016). The depth

of the halocline base is determined by taking the 33.9 psu contours

(Lin et al., 2023; Nyugen et al., 2012). All salinity data used were

interpolated vertically to 2 m to calculate the depth of the halocline

base. The salinity product, ORAS5 and WOA18 estimated the

halocline depth in Beaufort Gyre region of 192.35 m, 177.00 m

and 191.04 m, respectively (Figure 8D). The salinity product enables

a more accurate calculation of the depth of the halocline. Compared

with the results of ORAS5, the depth of halocline calculated by

salinity product increased significantly in the 2000s. We compared

the spatial distribution characteristics of the bottom halocline and

WOA18 obtained from salinity product (Figures 8A–C). The depth

of halocline is the deepest in the Canada Basin, but the salinity

product results are shallower and further east than WOA18. The

depth of the halocline base calculated by salinity product is

obviously 21m shallower in the southwest of the Canada Basin

and 23m deeper in the north of the East Siberian Sea.

The results of salinity product indicate that the study enhances

Arctic Ocean salinity data using machine learning and also provides

a precise understanding of freshwater content and depth variations

in the Beaufort Gyre, surpassing widely used dataset like ORAS5.

Salinity product can be utilized to examine the accumulation and
FIGURE 5

Error between the predicted salinity and real salinity values for the training pool and testing pool in 2008. (A–D) Evaluation of CTD salinity at 15m
reconstructed by RF, KNN, LGB and CB. (E-H) Evaluation of EN4 salinity at 15m reconstructed by RF, KNN, LGB and CB.
TABLE 2 Independent validation of selected machine learning model.

Machine learning
methods1

Accuracy (MAE/R2)

Mean Min. Max.

RF 0.18/0.88 0.02/0.28 0.37/0.99

KNN 0.05/0.99 0.01/0.95 0.14/1

LGB 0.06/0.96 0.01/0.59 0.17/0.99

CB 0.06/0.97 0.01/0.82 0.17/0.99
1Machine learning methods employed, please refer to Table 1.
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release of freshwater within the Beaufort Gyre, serving as a reliable

supplement to salinity data in the investigation of Beaufort Gyre

halocline dynamics associated. The surface salinity is characterized

by low salinity in the central Canada Basin and the East Siberian

Sea, which indicates the accumulation of freshwater there

(Figure 9). The continuous decrease in surface salinity before

2011 and the continuous increase in surface salinity after 2011

indicate that freshwater accumulated mainly at the surface before

2011 and decreased after 2011, which support the recent major

freshening event from 2012 to 2016 in the North Atlantic (Holliday

et al., 2020). In the east-west direction, the characteristics of low

surface salinity expanded westward from 2003 to 2013 and eastward

from 2014 to 2022, thereby supporting the conclusion that the

Beaufort Gyre has expanded westward (Regan et al., 2019; Armitage

et al., 2017) and shrunk eastward (Lin et al., 2023). In the north-

south direction, the characteristics of low surface salinity expanded
Frontiers in Marine Science 09
northward in 2007, 2008, 2015, and 2016. The surface salinity of the

East Siberian Sea experienced a significant decrease in 2008 and has

since remained at reduced levels. According to the characteristics of

surface ocean circulation (Armitage et al., 2017), surface freshwater

in the East Siberian Sea may enter the Beaufort Gyre or flow out of

the Arctic Ocean along the transpolar drift. The characteristics of

sea surface salinity indicate that Pacific water flows partially into the

northern Chukchi Sea, the Canada Basin, and the CAA (Canadian

Arctic Archipelago) along the Alaskan coastal current. The

decreased sea surface salinity of the Alaskan coastal current

suggests a diminished transport of Pacific water along this route,

indicating a weakening of the Alaskan coastal current, potentially

influenced by the intensified Beaufort Gyre.

To examine the salinity distribution at the base of the halocline,

approximately 200 meters below the surface in the Western Arctic

Ocean, we analyzed the salinity distribution at this depth. The results of
FIGURE 6

Spatial pattern of sea surface salinity uncertainty (psu) during the data merging (A), CTD; (B), EN4) and post calibrating (C).
FIGURE 7

Temporal and spatial variation of Freshwater Content (m). (A) Shadow represents Mean FWC from 2003 to 2022 derived from salinity product, color
dots represent FWC provided by BGEP. (B) Time series of FWC and LSSL CTD casts in Beaufort Gyre region, Beaufort Gyre region is the black box
in (A).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1490548
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Tao et al. 10.3389/fmars.2024.1490548
FIGURE 8

Temporal and special variation of halocline depth (m). (A) Mean halocline depth from 2005 to 2017 derived from salinity product (B) Mean halocline
base depth from 2005 to 2017 derived from salinity of WOA18. (C) Mean halocline depth difference between salinity product and WOA18 from 2005
to 2017. (D) Time series of halocline depth in Beaufort Gyre region. The dashed line is the mean halocline depth of ORAS5 and salinity product.
FIGURE 9

(A–T) Annual sea surface salinity fields in the Western Arctic ocean from 2003 to 2022. The color dots represent the measured CTD salinity, and the
white dots represent the measured sites that were deleted after quality control. Shadow represents the sea surface salinity of salinity product.
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salinity product indicate that salinity at 200 m is characterized by low

salinity in the central Canada Basin which indicates the accumulation

of freshwater in Canada Basin. Unlike the sea surface salinity, the

salinity at 200 m has remained a slow downward trend after a rapid

decline before 2008. This indicates that freshwater in the Canada Basin

remained relatively stable following a rapid accumulation prior to 2008.

Prior to 2008, freshwater in the Western Arctic Ocean accumulated in

substantial quantities at both the surface and the base of the halocline.

Following 2008, surface water experienced a significant decrease while

salinity at the bottom of the halocline continued to rise, suggesting that

freshwater may be redistributed within the Arctic Ocean through

westward and northward expansion into the Makalov Basin

(Bertosio et al., 2022), transported out of the Arctic Ocean (Zhang

et al., 2021), or pooled deeper within the water column. From 2003 to

2013, the range of low salinity characteristics of the halocline depth

expanded, indicating that the area of freshwater reservoir expanded and

the area of Beaufort Gyre expanded. The salinity at 200m in 2022

increases significantly, indicating that there may be a freshwater

migration process in 2022.

We conducted an analysis to determine the significance of five

input variables in predicting salinity, which serves as a reliable

indicator for identifying the key factors influencing salinity changes

(Figure 10). However, it is essential to recognize the potential

interactions among various variables. The significance of different

factors varies when predicting salinity in both EN4 and CTD datasets.

Notably, both datasets consistently identify sea level pressure as the

primary influencing factor for surface salinity prediction, while sea ice

concentration emerges as the principal determinant when forecasting

salinity at a depth of approximately 200 m. The impact of sea ice

movement on the surface is more significant than that on the bottom

of the halocline. The meridional ice speed is advantageous for salinity

prediction using CTD data, while the zonal flow speed is
Frontiers in Marine Science 11
advantageous for salinity prediction using EN4 data. However, the

contribution of water depth factors varies. CTD data indicates that

water depth has a dominant influence on salinity prediction in deep

layers, whereas EN4 data shows the opposite trend. Salinity is closely

associated with freshwater distribution. The transport and

accumulation of surface freshwater are regulated by the sea level

pressure field, and the melting of sea ice exerts a greater impact on

salinity compared to its movement.
4 Summary

Based on data mining-based machine learning method, we

provided an annual salinity product for the Western Arctic Ocean

with a resolution of 0.5°×0.25°for the period spanning from 2003 to

2022. This was achieved by establishing correlations between

bathymetry, sea ice dynamics, atmospheric conditions, and

seawater salinity. The input variables employed in our machine

learning model encompass sea level pressure from ERA5 and sea ice

concentration and motion fromNSIDC, as well as ETOPO1 dataset.

After filtering, we employ four machine learning methods (Random

Forest, K Nearest Neighbor, LightGBM, CatBoost) to train salinity

data obtained from CTD (WOD18, UDASH, ITP) and EN4.

Utilizing multiple machine learning methods can mitigate the

impact of inherent flaws in a specific method on the results.

During data integration, varying weight combinations of variables

greatly affect uncertainty; therefore, we implement an uncertainty

threshold to constrain appropriate weights. There are some

limitations in this study, including uncertainty from data merging

and post calibration processes, potential inaccuracies in the

reconstructed salinity product, and the limited focus on the
FIGURE 10

The importance of different input variables at sea surface and halocline depth in predicting CTD (WOD18, UDASH, ITP) salinity and EN4 salinity. (A)
CTD salinity at 15m, (B) CTD salinity at 200m, (C) EN4 salinity at 15m, (D) EN4 salinity at 200m.
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Western Arctic Ocean, leaving the method’s applicability to other

regions unexplored.

An accurate salinity product is crucial for understanding the

dynamics of the Beaufort Gyre and the redistribution of freshwater

in the Beaufort Gyre in the Western Arctic Ocean. Hall et al. 2021

demonstrated that ORAS5 salinity data are applicable for studies of the

Arctic Ocean. However, when compared ORAS5, salinity-derived

freshwater content aligns more closely with BGEP estimates,

suggesting superior accuracy in FWC calculations. Furthermore,

considering the precision of halocline depth, salinity products exhibit

greater accuracy than ORAS5. The findings from salinity product

reveal a significant increase in freshwater content throughout the upper

200 m of the Beaufort Gyre during the 2000s; however, surface

freshwater decreased while subsurface freshwater continued to

accumulate during the 2010s. It is likely that surface freshwater has

been redistributed toward the Makalov Basin (Bertosio et al., 2022),

potentially accumulating in subsurface layers due to Ekman Pumping.

The importance of various factors varies when predicting

salinity in both EN4 and CTD (WOD18, UDASH, ITP) data.

Interestingly, both datasets consistently highlight sea level

pressure as the primary influential factor for surface salinity

prediction, while sea ice concentration emerges as the main

determinant when forecasting salinity at a depth of approximately

200 m (corresponding to the halocline depth) (Figure 10). The

reconstruction of salinity data in the Western Arctic Ocean holds

significant scientific value. However, further research is needed to

incorporate other variables that influence salinity, such as the

Pacific Ocean inflow the and the ventilation process in the

Chukchi Sea, into the salinity data reconstruction process.

The salinity field of the Western Arctic Ocean is taken as an

example to construct a novel data mining method for polar sea areas,

utilizing multiple machine learning methods that integrate multiple

data sources and incorporate physical processes. The application

potential of this method extends beyond the salinity field and

includes other related fields like hydrometeorology, sea ice thickness,

polar biogeochemistry, among others. It effectively utilizes multi-

machine learning results for data evaluation and integration.
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