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Real-time ocean wave
prediction in time domain
with autoregression and
echo state networks
Karoline Holand and Henrik Kalisch*

Department of Mathematics, University of Bergen, Bergen, Norway
This study evaluates the potential of applying echo state networks (ESN) and

autoregression (AR) for dynamic time series prediction of free surface elevation

for use in wave energy converters (WECs). The performance of these models is

evaluated on time series data at different water depths and wave conditions,

including both measured and simulated data with a focus on real-time prediction

of ocean waves at a given location without resolving for the surrounding ocean

surface, in other words, short-time single-point forecasting. The work presented

includes training the models on historical wave data and testing their ability to

predict phase-resolved future surface wave patterns for short-time forecasts.

Additionally, this study discusses the feasibility of deploying these models for

extended time intervals. It provides valuable insights into the trade-offs between

accuracy and practicality in the real-time implementation of predictive models

for wave elevation, which are needed in wave energy converters to optimise the

control algorithm.
KEYWORDS

wave energy converters, neural networks, autoregression, predictive models, wave
prediction, systems control, signal processing
1 Introduction

Renewable energy resources are increasingly contributing to the world’s energy

generation, and ocean waves have emerged as a significant competitor to offshore wind

power. Indeed, ocean power is a promising renewable energy source with an estimated

resource potential of 2 TW based on average wave energy density and global coastline

length (Cruz, 2008). Since the first wave farm in Portugal started operation in 2008, the

substantial potential of wave energy has led to the establishment of wave power farms in

various countries, aiming to harness energy from the ocean (Ringwood et al., 2014; Ge and

Kerrigan, 2016). In most wave energy converters, the energy conversion is based on the

relative oscillation between bodies or oscillating pressure distributions within fixed or

moving chambers. As explained in Budar and Falnes (1975), in order to exploit inherent

resonances in these systems, the energy converter needs to be controlled in an appropriate
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way. In fact, it can be shown that a well-designed control algorithm

can significantly enhance the power take-up of the WEC (Falnes,

2007; Ringwood et al., 2014; Falnes and Kurniawan, 2020) and also

reduce stress on the components (Laporte Weywada et al. (2021)).

Real-time control of wave energy converters in turn, requires

accurate forecasting of future incident wave elevation, and this is

the main topic of the present contribution.

In Fusco (2009) and Fusco and Ringwood (2010), an AR model

for short-time wave forecasting and real-time control for WECs was

introduced and initiated in some cases from low-pass filtered wave

data. To improve the accuracy of short-time prediction models, the

high-frequency components in the wave records are removed by

realising a low-pass filter. Different approaches are suggested for

enhancing the traditional AR model for multi-step ahead prediction

for system control of WECs. Fusco (2009) proposed updating the

AR parameters when new data are received using recursive least

squares (RLS) with a forgetting parameter. There are some trade-offs

with this method such as the low-pass filter introduces a delay that

needs to be compensated for by adjusting the original wave record,

there is no method to determine the forgetting parameter, and after

a specific time, the magnitude of the AR coefficients calculated by

RLS may explode (Fusco, 2009; Ge and Kerrigan, 2016).Another

approach was to minimise the error of a set of multi-step ahead

prediction equations to find the AR coefficients that best describe

the surface elevation instead of solving a linear ordinary least square

problem (OLS) (Fusco and Ringwood, 2010). Other methods

examined by Fusco and Ringwood (2010) are neural network,

cyclical model and sinusoidal extrapolation with the extended

Kalman filter, but all of these were found to be less promising

methods for WECs than AR.

The wave records used in Fusco and Ringwood (2010) were

from buoys moored in 20 and 40 meters depth. The wavelength-to-

depth ratio is too small to classify as shallow water, and based on the

data used, it appears that a model with an inherently linear bias such

as the ARmodel is sufficient, and there is no need for using methods

allowing nonlinear effects, and this is also borne out in the results in

Fusco and Ringwood (2010). Now wave energy devices can be

placed at more or less any depth (Drew et al., 2009), and wave

forecasting in shallow water may require methods which are more

adept at handling highly nonlinear signals expected due to the

shoaling waves (see Cervantes et al. (2021) and references therein).

In the present paper, we set out to test a certain type of artificial

neural network, the so-called Echo State Network (ESN) which was

introduced in Jaeger and Haas (2004). Considering the ESN

architecture with a large reservoir of non-linearly interconnected

neurons and a single dedicated output neuron, this type of network

appears to be perfectly suited for predicting ocean waves,

particularly for large waveheights where non-linearity is expected

to be a dominant factor. In addition, since only one layer of weights
Abbreviations: AR, Autoregression; BOSZ, Bossinesq model; ESN, Echo state

network; GN, Gauss-Newton iterative method; NNRCMP, National Network of

Regional Coastal Monitoring Programmes; RLS, Recursive least square method;

RMSE, root mean square error; RNN, recurrent neural networks; OLS, Ordinary

least square method; WEC, Wave energy converter.

Frontiers in Marine Science 02
(connecting to the output neuron) needs to be tuned, updating the

network weights can be done efficiently and quickly.

The main aim of the present work is to investigate the actual

performance of a short-term wave prediction model under realistic

conditions, and we take an approach which we believe is necessary

to successfully run a wave signal prediction in real-time for several

hours. Consequently, the present work’s short-time ocean wave

prediction is based on the original wave record rather than the

corresponding low-pass filtered record. This approach also ensures

a fair comparison between the AR and ESN approaches. As will

come to light, both AR and ESN are viable approaches for

optimising WEC in water depths of about 5 to 30 meters. Both

models accurately predict the wave phase over 4 hours with a 20-

second prediction horizon without calibrating the models. The

advantage of the AR models calculated with ordinary least

squares is that they can work effectively with limited access to

data and are computationally cheap. ESN models require more data

for training but can make predictions over a longer time horizon

without recalculating the network’s output weights.
2 Available time series data

We utilise various types of surface ocean data to compare the

performance of the different short-time prediction models and

evaluate their potential for real-time implementation in WECs.

This includes shallow, intermediate, and deep-water data,

encompassing real-world measurements and simulated data.

These diverse datasets offer a comprehensive basis for assessing

and validating the wave prediction models in this study.

The simulated data are generated using the JONSWAP

spectrum for deep-water time series simulation and the Bossinesq

Surf and Ocean Model (BOSZ) for various water depths Roeber

et al. (2010); Matysiak et al. (2024). JONSWAP simulations provide

a time series with a sample rate of 1.25 Hz at infinite water depth

and a frequency spectrum between 0.04 Hz and 1.25 Hz. For the

JONSWAP data, the significant wave height is 1.9 meters, and the

significant wave period is 11.2 seconds.

Conversely, Boussinesq models such as BOSZ allow us to study

nonlinear nearshore wave processes at depths of 30 meters or less.

The data used here have a sampling rate of 1 Hz and a time series

length of 2 hours. The spectrum of the simulation is divided into

central frequency bins between 0.03 Hz and 0.16 Hz (Matysiak

et al., 2024). In this study, we used data generated by BOSZ with a

number of sea states. The significant wave height Hs varies between

0.5 meters and 3.7 meters, and the significant wave period Ts varies

between 7.7 and 11.1 seconds for BOSZ at 30 meters depth. For the

BOSZ model output at 5 meters depth, the significant wave height

varies between 0.5 and 2.2 meters, and the significant wave period

varies between 7.6 and 16.6 seconds.

Buoy data is provided by the National Network of Regional

Coastal Monitoring Programmes (NNRCMP) and measured at

Bideford Bay in England; the wave buoy location is 51° 03.48’ N

004° 16.62’ W. The Datawell Directional WaveRider Mk III buoy

was deployed on 17 June 2009 and measures surface elevation with

a sampling rate of 1.28 Hz at a water depth of about 11 meters. The
frontiersin.org

https://doi.org/10.3389/fmars.2024.1486234
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Holand and Kalisch 10.3389/fmars.2024.1486234
datasets used in the analysis are taken from 25 January to 29

January 2024 between 10:00:00 and 18:00:00 GMT (NNRCMP,

2024). The sea state in the different datasets varies, with a significant

wave height between 0.8 and 1.9 meters and a significant wave

period between 8.6 and 12.4 seconds.
3 Forecasting models

Most works focus on short-time prediction models that predict

only seconds to hours of forecast with higher accuracy and

confidence (Yevnin et al., 2023), see e.g. Duan et al. (2020); Ma

et al. (2021) and Kagemoto (2020). On the other hand, long-time

prediction focus on prediction of long-term statistical ocean wave

properties (significant wave height, etc.) over several hours and days

(Meng et al., 2022; Yevnin et al., 2023). Our study involves training

and testing the models on historical wave data to predict future

surface wave patterns in the seens of short-time dynamic wave

prediction. This section describes the short-time prediction

methods examined in the present contribution.
3.1 Autoregressive model

Assume that time series data of surface water waves can be

described by a stationary stochastic linear model, a so-called

autoregressive (AR) model. Here, stationary refers to second-

order stationary, which means that the time series’ statistical

properties, mean and variance, are time-independent and finite

(Box et al., 2008).

The sea surface elevation at the current time t is denoted as h(t)
and is supposed to be linearly dependent on a number p of its past

values, h(t − i) for t =  1, 2, · · ·, p and a stochastic term, є(t), which

is supposed to be Gaussian and white noise. Equation 1 expresses

mathematically an AR model of order p, where p represents the

number of lagged values to include in the model (Box et al., 2008;

Fusco and Ringwood, 2010).

h(t) =o
p

i=1
aih(t − i) + є(t) (1)

The regression parameters of the autoregressive model, a1, a2, · ·

·, ap, have the property aij j < 1 for i =  1, 2, · · ·, p to represent a

stationary process (Box et al., 2008).

When using AR as a model for predicting future surface

elevation, the parameters ai are estimated as â i, and the l step

ahead prediction of the surface elevation at an instant time t is given

by ĥ (t + l) in Equation 2.

ĥ (t + l) =o
p

i=1
â iĥ (t + l − i) (2)

As long as t + l − i ≤ t,   ĥ (t)  = h(t) since the information is

already acquired in the data set and there is no need for prediction

(Fusco and Ringwood, 2010).

When applying machine learning techniques such as

autoregression (and neural networks), hyperparameters must be
Frontiers in Marine Science 03
determined before training the model. For example, in an

autoregressive (AR) model, the order p is a key hyperparameter

that must be known before estimating the coefficients â 1,  â 2,   ·   ·

  ·  ,  â p. These hyperparameters can be determined by splitting the

data into training and testing sets, and evaluating the model’s

performance on these sets.

There are different approaches for estimating the model

coefficients, e.g., maximum likelihood, method of moments, and

ordinary least square estimation (OLS) (Fusco and Ringwood,

2010). The coefficients can be calculated from a number n of

batch wave elevation observations, h(t − i) for all i =  1, 2, · · ·, n,

which could be written as a system of one-step ahead prediction

equations, Equation 2 where l =  1.

The AR model will be used for a multi-step ahead prediction in

this contribution. So instead of minimising the OLS problem for a

one-step ahead prediction, we follow the recommendations in the

literature to introduce a multi-step ahead prediction cost function

which is given in Equation 3. Minimising this l-step ahead cost

function allows the estimation of parameters to improve the

accuracy of the multi-step ahead predictions.

J =o
n

t=1
 o

N

j=1
½h(t + l − j) − ĥ (t + l − j)�2 (3)

The multi-step ahead prediction cost function J in Equation 3

quantify the error in predicting future values h(t), using an AR

model. The cost function is formulated as the sum of squared

prediction errors over the prediction horizons N, and for multiple

time steps n. The predicted value is denoted ĥ (t − j) with the

corresponding observations, h(t − j).The optimisation goal is to

minimise the cost function given in Equation 3. This can be done

using standard algorithms for solving nonlinear least square

problems, such as the Gauss-Newton iteration, initialised with the

OLS solution for a one-step ahead prediction (Liu et al., 1999; Fusco

and Ringwood, 2010).
3.2 Echo state networks

Neural networks are machine learning models inspired by the

architecture of biological brains. The standard method for training

these networks is error backpropagation, a significant achievement

in cognitive processes. Echo state networks (ESNs) are an

alternative to backpropagation based RNNs. ESN is a simple type

of RNN, mainly known for their more efficient learning of series

and signal forecasting compare to standard RNN. A key feature of

ESNs is their nonlinear behaviour, and in order to achieve high

performance with ESNs, tuning the network’s hyperparameters

properly is an important step (Lukosěvičius, 2012). Echo state

networks are a type of RNN composed of three layers: an input

layer, one single hidden layer (also known as the reservoir, and an

output layer. The weights between the input layer and reservoirWin

and within the reservoir units Wr are initialised randomly and

remain fixed during training. This reduces the number of

parameters to train compared to traditional RNNs, where all

weights are trained. Only the output weights Wout are adjusted to
frontiersin.org
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match task-specific data, learning to reproduce temporal patterns

efficiently (Jaeger, 2001; Lukosěvičius, 2012).

ESNs are applied for supervised machine learning tasks where

the input signal u(n) ∈ RNu is used for training the target signal,

ytarget ∈ RNy . Here, n represents a discrete time series, and T is the

number of samples in the training dataset. The objective is to train

the model output, y(n), to match the actual measurements closely

ytarget(n) by minimising the error measure E(y(n), ytarget(n) and

generalising well to unseen data. The root mean square error

(RMSE) is a typical error measurement and is mathematically

given in Equation 4. The RMSE in Equation 4 is averaged over

Ny, the dimension of the output here.

E(y(n), ytarget(n)) =
1
Ny
o
Ny

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T o

T

n=1
(yi(n) − ytargeti (n))2

s
(4)

The ESN update state ~x(n) ∈ RNx is given by Equation 5, where

a ∈ (0,1] is the leaking rate, x(n) ∈ RNx represent the reservoir

units activation and is given by Equation 6. The activation function

tanh is applied element-wise.

~x(n) = tanh  Win
1

u(n)

" #
+Wx(n − 1)

 !
(5)

x(n) = (1 − a)x(n − 1) + a~x(n) (6)

The linear readout layer is given by Equation 7.

y(n) = Wout

1

u(n)

x(n)

2
664

3
775 (7)

Here, y(n) is the ESN output, and Wout is the output weight

matrix. The architecture of an ESN is illustrated in Figure 1

(Lukosěvičius, 2012). Connections directly from the input units

and between output units are allowed (Jaeger, 2001).
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The method of reservoir computing by ESN involves three main

steps presented in Jaeger (2001).
1. Generate the reservoir: Construct a large RNN with

random recurrent connections, termed the reservoir (Win,

 W ,  a).
2. Train RNN: Run the RNN using the training input u(n)

and collect corresponding reservoir activation states x(n).
3. Use the trained network: Apply the trained network to new

input data u(n) with the trained output weights Wout to

compute the prediction y(n).
3.2.1 Reservoir hyperparameters
The reservoir has to be generated rigorously to implement an

ESN with high performance. Key hyperparameters for optimising

the ESN reservoir include input scaling, spectral radius, reservoir

size and leaking rate. Proper tuning of these parameters is crucial

for high performance (Lukosěvičius, 2012). Input scaling refers to

adjusting the scaling of the input weight matrix Win to control the

reservoir’s nonlinear response. Making the reservoir connectionsW

sparse is also recommended, and the non-zero elements are

Gaussian distributed. The spectral radius of the reservoir

connection matrix W is denoted as r(W). It is the maximum

eigenvalue of this matrix, affecting the stability and memory of

the reservoir. To ensure stability, the echo state property, r(W) < 1,

should be selected to maximise the model’s performance. The

reservoir size and the number of units in the reservoir influence

the model’s capacity to capture input dynamics. Larger reservoirs

typically perform better, given appropriate regularisation (Jaeger,

2001; Lukosěvičius, 2012).

The most pragmatic way to evaluate a reservoir is by training

the output weights using Equation 7 and measuring its error

through validation or test error. To ensure deterministic

repeatability in experiments, fixing a random seed in the
FIGURE 1

Example of an echo state network architecture with one input and one output neuron.
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programming environment is crucial for making the random

aspects of the reservoir identical over several trials. Automated

selection of hyperparameters is preferred for efficiency and

reproducibility. When tuning an ESN’s hyperparameters, grid

search is the most straightforward option. Implementing a grid

search involves nested loops, making it easy to explore a wide range

of parameter values. A reasonable approach is to perform a coarser

grid search over a wide range, followed by a finer search over more

promising parameter ranges. If the best performance in the coarser

grid is found at the boundary, the optimal hyperparameters may lie

outside the initial grid range. The best choice of hyperparameters is

often to average the best parameters in the search. Additionally,

plotting some reservoir activation signals x(n) can provide insights

into the internal dynamics of the reservoir (Lukos ̌evičius and

Uselis, 2019).

3.2.2 Training output weights
ESNs work by linearly combining the input and reservoir units

to generate the network output. To find the optimal Wout that

minimises the RMSE between the output y(n) and the target time

series ytarget(n), the ridge regression solution is commonly used and

given by Equation 9 where Ytarget is defined as in Equation 8, the

matrix form of Equation 7, I is the identity matrix, and b is the

regularisation coefficient. X is here used for notional brevity instead

of X = [1;U;X] as a vertical matrix concatenation.

Ytarget = WoutX (8)

Wout = YtargetXT (XXT + bI)−1 (9)

Regularisation helps prevent overfitting by adding a penalty to

the model’s loss function, maintaining its complexity while

ensuring it generalises well to unseen data (Lukosěvičius, 2012).

A powerful extension of the basic ESN approach is training

many smaller ESNs in parallel and averaging their outputs, Wout .
Frontiers in Marine Science 05
This reduces the random component of the model output, and in

some cases, this approach has drastically improved the ESN model

performance (Jaeger et al., 2007).
4 Results

Figures 2, 3 illustrates the decrease in accuracy of respectively ESN

and AR models of different order after n-step ahead prediction. For

BOSZ data, 1 second into the future corresponds to a one-step ahead

prediction. This study aims for a 20-second wave prediction to account

for the diminishing accuracy of the models as the prediction horizon

extends. After 20 seconds, the AR prediction get out of phase with the

data, as the value of the RMSE indicates. The RMSE for models with a

prediction horizon longer than 20 seconds is unacceptable high. ESN is

more accurate over a longer time horizon with respect to both phase

and amplitude as Figure 3 shows. The RMSE (unitmeters) for the ESN

model is 0.23 after 60 second and is still almost exactly in phase, but for

the AR-OLS models the RMSE varies between 0.30 and 0.45, which are

unacceptable high in the case of a sea state with a significant wave

amplitude of 0.5 meters. However, the AR models capture the first

seconds of prediction with higher accuracy on the examined data than

ESN overestimates the amplitude. After 20 seconds prediction the AR-

OLS models and the prediction with ESN give similar accuracy,

respectively RMSE (unit meters) 0.18 and 0.14. By focusing on a 20-

second prediction time frame we ensure a fair comparison between AR

and ESN, and we aim to capture the wave dynamics precisely.

Start by looking at the simulated data, which is essentially

low-pass filtered by design. Table 1 presents RMSE for AR models

of different orders and ESN for JONSWAP and BOSZ data for a

200-2second prediction length with a 20-second prediction

horizon. After every 20 seconds, the AR(p) model takes the last

p measurements as new input without recalculating the AR

coefficients, and ESN is trained again without calibrating

the hyperparameter.
FIGURE 2

AR models of order 8, 16, 32 and 64 calculated with the OLS method over 60 step ahead prediction corresponds to 60 seconds prediction horizon
for BOSZ simulated data at 30 meters depth. (A) Plot of the prediction models (solid lines) and the target signal (dashed line). (B) RMSE (unit: meters)
of the AR models after n seconds.
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The AR coefficients are computed with the standard OLS method

for all AR models and compared with the alternative approach, which

minimises the multi-step cost function, Equation 3. Here, the Equation

3 is minimised by Gauss Newton’s iteration for a multi-step prediction

of 20 seconds (GN-20). All AR models are fitted against a 10-minute

wave record training data to approximate the parameters, as this time

length gave the most accurate AR coefficients. AR models calculated

with GN have lower overall performance; see Table 1. No RMSE was

reported for some AR-(GN-20) models of order 64 since the predicted

signal “exploded” or the RMSE were unacceptable high. Figure 4

compares the performance of AR(32) for GN-20 and OLS on

JONSWAP deep-water data. GN is computationally more expensive

and does not yield significantly better results, so AR-GN models will

not be considered further. Tables 2, 3 presents RMSE for AR models

calculated with OLS and ESNmodels for real-world data fromBideford

Bay at 11 meters depth.

The ESN models are trained on as much data as is available for

training, leaving 10 minutes for testing to get the possible model

performance. The 10-minute testing data is the same dataset used

for testing the AR models, so all models are tested on the same wave

record and time range. The BOSZ and JONSWAP data are trained

on about 100 minutes of wave record. Different lengths of training

data, from minutes to hours, are used to train an ESN for Bideford
Frontiers in Marine Science 06
Bay buoy data. In our code, the ESN model is initiated with

Gaussian distributed reservoir weights, and 128 units in the

reservoir are used. This reservoir size provided the best

performance. The ESN models predict the waves’ proper phase,

but the amplitude of the waves is generally too low; see Figures 5A,

6. The accuracy of ESN predicting JONSWAP data in Figures 5A, B

is lower than expected from Figure 3; but can probably be explained

by more varying wave conditions.

In Table 2, the models are tested on data used for training and

compared with unseen data, respectively RMSEReconstruction and

RMSEPrediction as suggested in Wu et al. (2023). Both prediction

and reconstruction length is 200 seconds, and the models updated

every 20 second with the last 20-seconds of measurements without

updating the model itself. The RMSE are very close in the

reconstruction and prediction stage, this ensure overfitting is not

present. For the AR models, there is no clear trend between the

performance in the reconstruction and prediction stages, see

Table 2 and Figure 6. However, the ESN model performs better

in the reconstruction part than in the prediction, see Figure 7.

Figure 6 compare the prediction of AR(64) model with

measurements from Bideford Bay 25 January 2024 and has

allover a RMSE (unit meters) of 0.47, and in Figure 7 the ESN

prediction in the same case is given with a RMSE of 0.52. As
FIGURE 3

ESN prediction over 60 step ahead prediction corresponds to 60 seconds prediction horizon for BOSZ simulated data at 30 meters depth. (A) Plot of
the models (solid lines) and the target signal (dashed line). (B) RMSE (unit: meters) of the ESN prediction after n seconds.
TABLE 1 RMSE (unit: meters) for different AR models and ESN for multi-step ahead prediction for 20 seconds and 10 updates, total prediction length
of 200 seconds on simulated data.

JONSWAP
Ts = 11.2s, Hs = 1.9m

BOSZ 30m
Ts = 7.3s, Hs = 1.0m

BOSZ 5m
Ts = 7.7s, Hs = 0.9m

AR(8) [OLS | GN-20] 0.48 0.80 0.18 0.25 0.19 0.28

AR(16) [OLS | GN-20] 0.40 0.48 0.17 0.27 0.19 0.28

AR(32) [OLS | GN-20] 0.38 0.38 0.16 0.17 0.20 0.22

AR(64) [OLS | GN-20] 0.37 – 0.20 – 0.23 0.24

ESN 0.54 0.26 0.24
AR models are calculated using OLS (left column) and GN-20 (right column).
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demonstrated in Tables 2 and 3, allover acceptable accuracy for AR-

OLS and ESN predicting real-world buoy data from Bideford Bay

under different wave conditions.

As expected, the performance of the prediction models on field

data is lower than the performance of similar models on the

simulated data due to the relatively larger share of high-frequency

oscillations in the buoy records. Still, the models capture the main

surface elevation, which is the low frequencies and the waves with

the most energy. The higher-order AR model increases the

complexity of the models, and in the case of measurements, it

also generalises to unseen data better. Tables 1–5 show that a higher

order of the AR model does not necessarily result in higher
Frontiers in Marine Science 07
performance, so the best AR model depends on the complexity of

the sea state. The performance of ESN prediction is allover lower,

but not significantly lower than for the AR models.

In order to investigate the conditions of the models performance

and verify the results of this studyall prediction models are tested on a

multiple simulated and measured wave records in intermediate to

shallow water for different sea states. The results are shown in Tables 4

and 5. It is evident that data featuring higher significant wave heights

have higher lead to larger allover RMSE and for such sea states higher

RMSE can still give acceptable results. The overall performance of the

models on these datasets, with high significant wave height, is relatively

lower than for the wave records with smaller waves. However, it is
FIGURE 4

(A) The AR model of order 32 for JONSWAP deep-water computed with the OLS method in blue and computed by minimising Equation 3 with GN-
20 in red, and the data in dashed grey. Prediction length of 180 seconds with 20 seconds prediction horizon. (B) RMSE (unit: meters) of AR-OLS
(blue) and AR-GN (red) model of order 32 as a function of time for JONSWAP simulated data. Prediction length of 180 seconds with 20 seconds
prediction horizon.
TABLE 2 RMSE (unit: meters) for different AR models was calculated with OLS and ESN for multi-step ahead prediction for 20 seconds and 10
updates, total prediction length of 200 seconds on Bidford Bay buoy data at 01/25/2024: Ts = 11.2s, Hs = 2.2m.

AR(8) AR(16) AR(32) AR(64) ESN

RMSEReconstruction 0.58 0.49 0.40 0.49 0.46

RMSEPrediction 0.62 0.51 0.39 0.47 0.52
TABLE 3 RMSE (unit: meters) for different AR models was calculated with OLS and ESN for multi-step ahead prediction for 20 seconds and 10
updates, total prediction length of 200 seconds on Bidefor Bay buoy data.

AR(8) AR(16) AR(32) AR(64) ESN

01/26/2024

Ts = 9.3s, Hs = 1.9m 0.55 0.46 0.49 0.46 0.55

01/27/2024

Ts = 12.4s, Hs = 1.5m 0.33 0.25 0.25 0.23 0.36

01/28/2024

Ts = 11.0s, Hs = 1.1m 0.36 0.32 0.29 0.29 0.28

01/29/2024

Ts = 8.6s, Hs = 0.8m 0.23 0.19 0.19 0.19 0.21
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important to note that the phase is still accurately predicted, and the

main cause of the increased error is due to the amplitude. The fact that

wave height varies more for sea states with higher waves than for sea

states with much shorter waves explains the spread of the reported

RMSE for the different models and data. It seems like the wave

conditions for BOSZ 5 meters, Ts = 16.6s, Hs = 2.2m, is to dramatic

and non-linear for bothmodels for both ARmodels and ESN to predict

with sufficiently high performance. E. g. AR(8) and AR(16) did not

capture the wave phase at all. Although predicting the phase of waves at

5 meters of water depth is done with high performance in calmer seas.
5 Real-time control of wave
energy converters

In this report, we have seen several models for wave prediction

in different water depths, predicting accurately enough to catch the

trend in the data. However, are these models robust enough for
Frontiers in Marine Science 08
real-time implementation in WEC applications? The real-time

implementation of a phase control system for optimising WECs

represents a significant advancement in renewable energy.

The AR model has the potential for real-time implementation

for short-time wave prediction in deepwater and intermediate

water. In shallow water, as Fusco and Ringwood (2010) proposes,

it requires the realisation of a low-pass filter. However, low-pass

filtering of historical data does not improve the forecasting results

here. As the sea state does not change in the simulated data, it is not

surprising that the error estimate does not significantly change for

each update interval of 20 seconds over a prediction length of 2

hours. A static AR model for BOSZ 5 meters maintains high

accuracy over 2 hours, which is the length of the simulation. As

BOSZ is a low-frequency model, we implement a low-pass filter for

actual data with high nonlinear components to increase the

accuracy of the surface elevation prediction. However, the fact is

that implementing a low-pass filter causes a delay, which

significantly affects the performance of wave prediction.
FIGURE 5

(A) ESN prediction for JONSWAP simulated deep-water data in blue and the data in dashed grey. Prediction length of 180 seconds with 20 seconds
prediction horizon. (B) RMSE (unit: meters) as a function of time for ESN prediction JONSWAP data.
FIGURE 6

AR(64)-OLS model in red and Bideford Bay buoy data from 01/25/2024 in dashed grey. Sea state: Ts = 11.2s, Hs = 2.2m. The left panel shows 80
seconds of reconstruction stage and the right panel shows 160 seconds of prediction stage with 20-second prediction horizon.
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Run a real-time implementation of an AR-OLS model of order

32 for 4 hours with a prediction horizon of 20 seconds, in total 720

input updates of the AR model on the Bideford Bay time series.

Figure 8 shows RMSE for each prediction window where the red

line is the running mean with a filter window of size 3. The mean

RMSE (unit meters) over the update windows lies between 0.25 and

0.5 RMSE for 4 hours. The RMSE increases slightly with time as

expected, but still after predicting almost four hours the models

captures the frequency of the main surface elevation; see Figure 9.
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In a real-time implementation of ESN, we used the same setup

as the AR-OLS model for 4 hours with a 20-second prediction

horizon, and the results were acceptable. We also did a real-time

implementation with a longer prediction horizon, so the output

weight was trained more rarely. A 40-second prediction horizon

over 4 hours of forecasting gives a mean RMSE (unit meters) over

each 40-second prediction window varying between 0.3 and 0.8. As

the prediction horizon is twice as long as for the real-time

implementation of the AR models, the RMSE is exacted to be
FIGURE 7

ESN prediction in blue and Bideford Bay buoy data from 01/25/2024 in dashed grey. Sea state: Ts = 11.2s, Hs = 2.2m. The left panel shows 80
seconds of reconstruction stage and the right panel shows 160 seconds of prediction stagewith 20 seconds prediction horizon.
TABLE 4 RMSE (unit: meters) of different AR-OLS models and ESN for multi-step ahead prediction for 20 seconds and 10 updates, total prediction
length of 200 seconds on different BOSZ models in 30 meters water depth.

BOSZ 30m
Ts = 7.7s, Hs = 0.5m

BOSZ 30m
Ts = 7.9s, Hs = 2.5m

BOSZ 30m
Ts = 11.1s, Hs = 3.7m

AR(8) OLS 0.09 0.42 0.73

AR(16) OLS 0.09 0.40 0.71

AR(32) OLS 0.06 0.43 0.73

AR(64) OLS 0.08 0.53 0.75

ESN 0.10 0.66 0.90
TABLE 5 RMSE (unit: meters) of different AR-OLS models and ESN for multi-step ahead prediction for 20 seconds and 10 updates, total prediction
length of 200 seconds on different BOSZ models in 30 meters water depth.

BOSZ 5m
Ts = 7.6s, Hs = 0.5m

BOSZ 5m
Ts = 8.8s, Hs = 1.8m

BOSZ 5m
Ts = 16.6s, Hs = 2.2m

AR(8) OLS 0.10 0.45 –

AR(16) OLS 0.10 0.46 –

AR(32) OLS 0.11 0.46 0.62

AR(64) OLS 0.24 0.54 0.65

ESN 0.15 0.49 0.57
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higher. However, the RMSE is still and a real-time implementation

of ESN is possible as long as the network is trained on enough data,

see Figures 10 and 11. The length of the prediction horizon for the

considered short-time prediction models depends on the

availability of data and the sea conditions as calmer seas are

predicted more accurately than more dramatic and non-linear seas.
Frontiers in Marine Science 10
6 Conclusion

In the present contribution, the potential of echo state networks

(ESN) and autoregression (AR) for dynamic time series forecasting

of ocean waves has been under investigation. The choice of these

two methods were partially motivated by the findings of Fusco and
FIGURE 9

Real-time implementation of AR-OLS model of order 32 for Bideford Bay buoy data. The predicted time series is in red after 3 hours, 50 minutes,
and 180 seconds further, with a 20-second prediction horizon.
FIGURE 8

RMSE (unit: meters) of each update-interval in a real-time implementation of AR- OLS model of order 64 for Bideford Bay buoy data in gray and a
moving average with a filtering window of 3 points. Prediction length of 4 hours with 20 seconds prediction horizon.
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Ringwood (2010) which indicated AR as the best overall method

among those tested in their work. In particular, it was found that the

neural-network approach did not give better results than the AR

method. Since the wave signals used in Fusco and Ringwood (2010)

were given in deep to intermediate depth, one could ask the

question what would happen if waves in shallower water were to

be forecast. For wave forecasting in shallow water, an echo state

network seems to be a good choice since the architecture is designed

to deal with more nonlinear signals (Jaeger and Haas, 2004).
Frontiers in Marine Science 11
In addition to the single output neuron and lean structure that

enable fast learning of the network.

According to our investigation, it is possible to accurately predict

low-frequency waves for over 4 hours with a 20-second prediction

horizon using a model with well-calculated AR coefficients calculated

by OLS method. This can be achieved without calibrating the AR

coefficients. An Echo State Network can also deliver acceptable results

with a similar error as the AR model, but the ESN requires ample data

for training. The main advantage of the AR model is its relative
FIGURE 10

RMSE (unit: meters) of each update-interval in a real-time implementation of the ESN model for Bideford Bay buoy data in grey and a moving
average with a filtering window of 3 points in blue. Prediction length of 4 hours with 40 seconds prediction horizon.
FIGURE 11

Real-time implementation of ESN for Bideford Bay buoy data. The predicted time series in blue after 3 hours, 56 minutes and 40 seconds, and 160
seconds further, with 40 seconds prediction horizon.
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simplicity, and it can work effectively with limited access to data for

tuning. Thus, we agree with Fusco and Ringwood (2010) that AR

models for real-time ocean wave prediction for WECs are a promising

approach. They are the most efficient and accurate method for

optimising WECs in water depths down to about 10 meters on a

prediction horizon of 20 seconds. On the other hand, the ESN model

requires significantly more data than the time series we aim to predict.

However, the advantage of the ESN model is that if access to a large

amount of data is available for training hyperparameters, then the

model can make predictions over a longer prediction horizon without

recalculating the output weight of the network.

While the ESN mode is inherently a nonlinear model and should

have an advantage in shallower depth where the waves are more

nonlinear, no clear distinction between the two approaches was

observed with regard to performance in the shallowest depth of 5

meters considered here. We also ran some tests with wave data in

very shallow water, i.e. in the surf zone using signals also used in

Holand et al. (2023). However neither the AR nor the ESN approach

were able to give acceptable results for forecasting such signals.

Probably the presence of wave breaking makes such predictions too

challenging for these relatively simple methods. Of course, from the

viewpoint of wave energy extraction, this is not a serious impediment

since WECs would most likely not be placed in an area where ample

wave breaking is expected due to the large forces on the devices from

the breaking waves. If better results are required either with respect to

time horizon or shallower depth, one may try to use the ideas of

Matysiak et al. (2024), who suggested that the ESN structure may be

optimised using ideas from neuroscience, and in particular using the

structure of the auditory cortex to build the ESN reservoir.
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