
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Jianchuan Yin,
Guangdong Ocean University, China

REVIEWED BY

Mbaye Tine,
Gaston Berger University, Senegal
Lara Veylit,
SINTEF Ocean, Norway

*CORRESPONDENCE

Gert Everaert

gert.everaert@vliz.be

RECEIVED 23 August 2024
ACCEPTED 22 October 2024

PUBLISHED 14 November 2024

CITATION

Standaert W, Musimwa R, Stevens M,
Guerra JA, Muñiz C, Debusschere E, Pint S
and Everaert G (2024) Modeling Atlantic
herring distribution in the Northeast Atlantic
for informed decision-making towards
sustainable fisheries.
Front. Mar. Sci. 11:1485161.
doi: 10.3389/fmars.2024.1485161

COPYRIGHT

© 2024 Standaert, Musimwa, Stevens, Guerra,
Muñiz, Debusschere, Pint and Everaert. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 14 November 2024

DOI 10.3389/fmars.2024.1485161
Modeling Atlantic herring
distribution in the Northeast
Atlantic for informed decision-
making towards
sustainable fisheries
Ward Standaert1, Rutendo Musimwa1, Martha Stevens1,
Jesus Alonso Guerra1, Carlota Muñiz1, Elisabeth Debusschere1,
Steven Pint1,2 and Gert Everaert1*

1Research Department, Flanders Marine Institute, Ostend, Belgium, 2Marine Biology Research Group,
Ghent University, Ghent, Belgium
The withdrawal of the United Kingdom from the European Union will likely result

in reduced fishing grounds for the Belgian fishing fleet. This fleet now targets

demersal fish, but there used to be a tradition of catching Atlantic herring (Clupea

harengus). After the stock collapse of Atlantic herring in the 1970s, fishing on

herring by the Belgian fleet did not recover and herring quotas are now

exchanged with the Netherlands and Germany. To assess the feasibility of

reintroducing herring fisheries for the Belgian fishing fleet, our study created

spatiotemporal species distribution models for Atlantic herring in the Northeast

Atlantic Ocean, focusing results on the Belgian Part of the North Sea. In total

30078 occurrence records were derived and processed to fit species-

environmental relationships with temperature, salinity, seabed characteristics

and plankton concentration using Maximum entropy (Maxent) models. The Area

Under the Curve of the Receiver Operating Characteristic plot (AUC) and the

True Skill Statistic (TSS) were used to assess model fit. Models performed well

(AUC > 0.7 and TSS > 0.6). While a broad spatiotemporal distribution of Atlantic

herring in the Northeast Atlantic Ocean was inferred, regional differences show

that herring habitat is most suitable during winter months in the Belgian Part of

the North Sea for both adult and larval herring (habitat suitability index > 75%).

This regional trend in the Belgian Part of the North Sea was negatively correlated

(R = -0.8) with the North Atlantic Oscillation (NAO). We anticipate that these

findings will provide valuable insights for policymakers to implement sustainable

fisheries management practices.
KEYWORDS
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1 Introduction

Since the start of the Common fisheries policy in 1970,

European Union (EU) members have been allowed equal access

to fish in their shared waters, including those of the United

Kingdom (UK). With the withdrawal of the UK from the EU on

the 1st of January 2021, it was decided that this will change

(Regulation 1380/2013, 2013). As a transition period, EU vessels

are allowed to access UK waters until 30 June 2026 and afterwards,

access will require annual negotiation. Furthermore, fishing quotas

with a value of 25% of the EU landings in UK waters will be

gradually transferred from the EU to the UK from 2021 to 2025

(Popescu and Scholaert, 2022).

For the Belgian fishing fleet, the loss by transfer offishing quota to

the UK is estimated at 3.7 million euros in 2023 (Popescu and

Scholaert, 2022) and estimated to increase up to 6.8 million euros

in 2026 (Coudyser, 2021). Recently, the Belgian fishing fleet has

experienced a steady decline in catches in the southern North Sea and

a decrease in the number of vessels (data up to 2021, Maertens, 2022).

The Belgian fleet targets demersal fish, mainly sole (Solea solea) and

plaice (Pleuronectes platessa) using beam trawlers (Regulation No

1380/2013). Historically, pelagic fish species, particularly Atlantic

herring (Clupea harengus), were also targeted with annual yields

reaching up to 58 000 tons in 1943 (Lescrauwaet et al., 2010). One of

the initiatives to overcome the loss of fishing grounds and quota

following Brexit is to provide information about alternative fishing

grounds and niche fisheries (European Commission, 2020). One of

those alternatives for the Belgian fishing fleet could be the restoration

of pelagic fisheries in Belgian waters. Because the current Belgian

fishing fleet mainly targets bottom-dwelling fish (Regulation No 1380/

2013, n.d), the whereabouts of pelagic fish are often unknown,

anecdotical, or expert-based.

Atlantic herring is a valuable pelagic fish species in the North

Sea in terms of both economy but also in terms of ecology. It plays a

key role in the ecosystem as a regulator for seabird abundance

(through bottom-up control; Fauchald et al., 2011) and

zooplankton (through top-down control; Fauchald et al., 2011).

During early larval stages, Atlantic herring feeds on phytoplankton

and unicellular organisms (Marshall et al., 1937; Joly et al., 2021),

subsequently larval diet shifts towards zooplankton (Van

Ginderdeuren et al., 2014). For adults, the main prey is copepods,

but feeding on other zooplankton and fish larvae is also common

(Van Ginderdeuren et al., 2014). Atlantic herring can tolerate a wide

range of temperatures (1 – 19°C; de Groot, 1980; Whitehead, 1985)

and salinities (2 – 35 PSU; Brevé et al., 2007; de Groot, 1980), which

allows them to migrate between feeding, spawning, and nursing

grounds. Typical for this species is their natal homing behavior or

the return to the same area where they hatched for spawning

(Geffen, 2009).

In the Northeast Atlantic, Atlantic herring populations are

divided into several distinct stocks, based primarily on their

spawning grounds and migration behaviors. These stocks include

the North Sea autumn spawners, the West of Scotland stock, the

Irish and Celtic Sea stocks, and the Downs stock. Each stock shows
Frontiers in Marine Science 02
unique migration and spawning behaviors. Based on the spawning

period, Atlantic herring populations are divided into two groups in

the Northeast Atlantic: spring and autumn spawners (Heath, 1993).

Herring in the Belgian Part of the North Sea (BPNS) belong to the

Downs stock which are autumn spawners.

Currently, the stock of autumn-spawning Atlantic herring is

stable in the North Sea (ICES, 2023a). For the Irish and Celtic Sea,

the International Council for the Exploration of the Sea (ICES)

advises zero catches of herring to sustain maximum sustainable

yield (ICES, 2023b, ICES, 2023c, ICES, 2023d). Atlantic herring

stocks are prone to collapse due to natural fluctuations in

abundance, aggravated by poorly managed fishing pressure with

slow recovery rates (Stephenson et al., 2001). In addition to

maintaining the overall stock biomass, effective management also

requires the preservation of their spatial and temporal spawning

distribution (Frost and Diele, 2022; Stephenson et al., 2001). During

spawning, herring lay their eggs on the seabed or aquatic vegetation

creating dense egg carpets that are vulnerable to bottom trawling

(Morrison et al., 1991; Watling and Norse, 1998). Since visual

observations of spawning grounds in situ are scarce, spawning areas

have been allocated using the position of young larvae (Frost and

Diele, 2022). Following a stock collapse of the Down’s stock of

Atlantic herring in 1955, which saw recovery only after a fishing ban

was implemented from 1977 to 1980, commercial pelagic fisheries

disappeared completely in the Belgian fishing fleet (Cushing, 1992;

Lescrauwaet et al., 2010). Currently, Belgium exchanges its Atlantic

herring fishing quota with the Netherlands and Germany in return

for quotas on sole and Atlantic cod (Gadus morhua) (Departement

Landbouw en Visserij, 2021).

Species distribution models use species field observations and

environmental information to create species-environment

relationships and infer the spatial distribution and ecological niche of

a species. Outcomes quantify the habitat suitability for the species at

each location, given the local environmental conditions. Previous

studies by Turner et al. (2016) and Wang et al. (2018) modeled the

distribution of adult Atlantic herring, while Aires et al. (2014) and

Maravelias et al. (2000) modeled their spawning distribution. Of these

studies, they either looked at different areas (Shetland Islands,

Maravelias et al., 2000; Northeast US continental shelf, Turner et al.,

2016 and Northwest Atlantic Shelf, Wang et al., 2018) or did not

consider the monthly variation of their distribution (Aires et al., 2014;

Maravelias et al., 2000). In addition to studying the monthly

distributional variation (Turner et al., 2016), the current abundance

of available data enables analysis of distributional variation across

different years (Wang et al., 2018). Notably, comparable models for

both adults and larvae are lacking. Generating two models with

identical settings for these two life stages of herring facilitates the

comparison of their seasonal distribution and their ecological tolerance

to various environmental gradients within the research area.

The objective of this study is to model the spatiotemporal

distribution of Atlantic herring in the Northeast Atlantic towards

informing sustainable fisheries. Due to our focus on the Belgian

fishing fleet, outcomes for the BPNS will be highlighted throughout

the study. Furthermore, since Atlantic herring is prone to stock
frontiersin.org
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collapse, we aim to model their spawning distribution as well and

compare the ecological needs of two life stages: adults and larvae. It

is expected that this study will contribute to sustainable fisheries

management by providing the time and location of Atlantic herring

occurrences and by giving insight into the ecological needs of

Atlantic herring. In the Northeast Atlantic, we hypothesize that

both adults and larvae will have recurring annual distributional

patterns due to their natal homing behavior (Geffen, 2009).

Furthermore, we expect that larvae and adults will occur in the

BPNS during November – January since they are known to spawn

in the English Channel during this period (Limborg et al., 2012).
2 Materials and methods

2.1 Occurrence data

A total of 22176 occurrences of adult Atlantic herring were

retrieved from the Database of Trawl Surveys (DATRAS) for the

Northeast Atlantic (http://marineregions.org/mrgid/5664), restricted

to 48°N – 62°N and 12°W – 10°E for all months for the years 2000

to 2020 (Figure 1, Supplementary Table 1; ICES, 2023e). This region

spans about 1 367 600 km² of ocean and includes the English

Channel, the North Sea, the Scottish Sea, the Irish Sea, the Celtic Sea

and part of the North Atlantic Ocean. Following a general overview

of the Northeast Atlantic, we specifically looked at the model

outcomes for the BPNS, situated between 51°N – 52°N and 2°E –
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4°E and spanning 3454 km² or 0.25% of the total area of the study

area (https://marineregions.org/gazetteer.php?p=details&id=3293,

Figure 1). Herring observations with a length below 20 cm, the

approximate length when Atlantic herring become mature (Brevé

et al., 2007), were discarded from the adult set. This way, in total

13112 occurrences of adult herring were available for the Northeast

Atlantic in all months excluding April, May and June and this for a

time frame of 21 years (i.e. years 2000 – 2020; Figure 1). Larval

occurrence data of Atlantic herring was retrieved from the

International Herring Larvae Surveys (IHLS) within the same

spatiotemporal frame as adult occurrences (ICES, 2023f). In total

7902 larval observations were available for the North Sea and the

English Channel in September, October, December, and January

from 2000 to 2020 inclusive (Figure 1) with larval size ranging from

5 – 24 mm in length. Since these are the months when spawning

occurs in the North Sea and the English Channel (Geffen, 2009),

larval model outcomes were restricted to these months.

Four steps were taken to transform the raw occurrence data into

the final pre-processed occurrence dataset ready for analysis, being

1) conducting outlier analysis, 2) eliminating duplicated

occurrences, 3) applying geographical filtering to address spatial

bias and 4) applying environmental filtering to address spatial

autocorrelation (SAC).

Outliers were defined as being farther away from other

observations than 1.5 times the interquartile range of

geographical distances (Yang et al., 2019) and were flagged using

the cc_outl function from R-package CoordinateCleaner (Zizka
FIGURE 1

Study area with occurrences in green and background points in red of adult (A; ICES, 2023e) and larval herring (B; ICES, 2023f). Occurrences were
compiled from the period 2000 – 2020 inclusive. In this period, larvae were present in September, October, December and January only, while
adults were present in all months excluding April, May and June. Background points were restricted to the International Council for the Exploration
of the Sea (ICES) statistical areas where occurrences are present. The location of geographic features that are used throughout the text are indicated
in panel (C). Here, names of water bodies are denoted in blue and names of terrestrial areas in black or white. Projection: EPSG 4326/WGS 84.
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et al., 2019). For the response variable, no outliers were identified,

and all observations were kept. Next, duplicated occurrences per

location (grid cell, 10 x 10 NM, see section 2.2) and time steps

(months) were removed (Phillips, 2021).

To account for sampling bias in the compiled datasets of

DATRAS and IHLS (Loiselle et al., 2008; Merow et al., 2013), we

applied a filtering technique in geographical space as per Vollering

et al. (2019). Occurrences were removed randomly until a dataset

was retained where each pair of occurrences had a minimum

distance of 10 nautical miles (NM, or 18.5 km), which is the

recommended distance between valid hauls in the DATRAS trawl

surveys (ICES, 2020). This filtering was done on the projected

datum ETRS89-extended/LCC Europe (EPSG 3034), which covers

the entire study area, using the R-package spThin (Aiello-Lammens

et al., 2015).

Spatial autocorrelation (SAC), where locations close to each

other are more similar than locations further apart, is common in

spatial data. Spatial autocorrelation in model residuals violates the

assumption that model residuals are independent and identically

distributed (Legendre, 1993). Since initial results revealed SAC in

the model residuals (tested using Moran’s I statistic from the ape

package; Paradis and Schliep, 2019), SAC was reduced by an

additional filtering technique in environmental space (de Oliveira

et al., 2014). First, the environmental Mahalanobis distance was

calculated between all observations using eight environmental

variables (see section 2.2). Based on these environmental

distances, the two most distant observations were selected and

added to a new dataset. Subsequently, we iteratively added the

observation that is most distant to this new dataset until we retained

a new dataset of 400 occurrences. The objectively selected 400

occurrences minimized SAC while keeping enough observations to

construct robust models. We applied this procedure to both adult

and larval datasets, resulting in a total of 800 occurrences for

calibrating and validating the two species distribution models

(Figure 1, section 0).
2.2 Environmental variables

Relevant environmental variables were selected through a

literature review on the ecology of Atlantic herring and include

bathymetry, sea surface temperature (SST) (Turner et al., 2016;

Wang et al., 2018), sea surface salinity (SSS) (Aires et al., 2014),

seabed substrate and energy (Brevé et al., 2007; Maravelias et al.,

2000), sea surface phytoplankton concentration (Marshall et al.,

1937), zooplankton concentration in the epipelagic layer

(Maravelias et al., 2000; Van Ginderdeuren et al., 2014), and

windfarm presence to include a measure of artificial coarse

substrate (Frost and Diele, 2022). Substrate energy is a measure of

the average hydrodynamics of the seabed by European Marine

Observation and Data Network (EMODnet Seabed Habitats

product). It has been found that a highly energetic seabed is

important for Atlantic herring egg development (Haegele and

Schweigert, 1985). Of all eight variables, bathymetry, seabed

substrate and energy were considered static variables over time

for each location, while the remaining variables were dynamic and
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derived monthly for 2000 – 2020. All environmental variables used

were obtained from the European Marine Observation and Data

Network (EMODnet) and the Copernicus Marine Service

(CMEMS, Table 1). Zooplankton concentration was derived from

CMEMS, with the units g C/m², representing the average biomass

(expressed in carbon content) over the depth of the epipelagic layer

(see also Global ocean low and mid trophic levels biomass content

hindcast | Copernicus Marine Service).

Preprocessing of the environmental variables involved

aggregation by averaging to match the coarser spatiotemporal

resolution of the occurrence data (10 NM x 10 NM, monthly for

2000 – 2020 inclusive) (Sillero and Barbosa, 2021). Additionally, we

calculated a measure of windfarm presence using a buffer of 200 m

around active windfarms to indicate nearby windfarm presence

since Atlantic herring are known to spawn on coarse substrate

(Frost and Diele, 2022). To avoid adding highly correlated variables

in the models, the Variance Inflation Factor (VIF) was calculated

for each combination of variable pairs and a VIF larger than 10 was

considered as a threshold for collinearity (Zuur et al., 2010). No

correlated variable pairs were found and hence all variables

were kept.
2.3 Model settings

Since Atlantic herring is a mobile and migratory species, the

absence of the fish at a location during a sampling event does not

necessarily indicate that environmental conditions are not suitable

at this location and time (Lobo et al., 2010). For this reason, we

based our models on presence-background data instead of

presence-absence data (Fernandez et al., 2022). Background

points are defined as a general sample of the environmental

conditions of the entire study area or a sample of all sites that are

available for the species to occupy (Phillips et al., 2009). We

developed Maximum entropy (Maxent) presence-background

models, a machine learning model that is commonly used in

species distribution modeling because it is flexible, simple to use

and performs well (using R-package dismo; Hijmans et al., 2023)

(Barber et al., 2022; Phillips et al., 2006; Valavi et al., 2023).

Background points were sampled randomly in the study area,

restricted to the ICES areas of the occurrences (Figure 1). The

number of background points was set at 10 times the number of

presences (Hysen et al., 2022). Maxent can be tailored by employing

combinations of feature classes and regularization multipliers

(Phillips et al., 2006). Feature classes are transformations that can

be applied to each predictor variable by the model, for example,

linear and quadratic transformations, while the regularization

multiplier is a penalty to avoid overfitting (Merow et al., 2013).

Fifteen combinations were tested using the corrected Akaike’s

Information Criterion (AICc) as a selection criterion (R-package

ENMeval; Kass et al., 2021) (Table 2A; Zeng et al., 2016). Following

the recommendations of Merow et al. (2013), we included all

combinations of the feature classes L, LQ and LQH (with L

linear, Q quadratic and H hinge) and the regularization

multipliers 1, 2, 4, 8 and 32. Finally, one model was retained for

adult herring and one model for larvae. Next, habitat suitability
frontiersin.org

https://doi.org/10.3389/fmars.2024.1485161
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Standaert et al. 10.3389/fmars.2024.1485161
maps were calculated per month and year in 2000 - 2020, by

applying the models to each monthly map of the environmental

variables in 2000 - 2020. Average and standard deviation maps were

calculated per month. Model outcomes are shown in terms of

habitat suitability indices (HSI). To enhance clarity, habitat

suitability indices above 50% will be addressed as suitable and

indices below 50% as unsuitable (Manel et al., 1999).

The importance of each environmental variable in the model

was evaluated using a bootstrapping method adopted by Thuiller

et al. (2009). Hereby, the correlation was calculated between the

original model prediction and a model prediction where one

variable was randomly permuted. Following the approach of

Thuiller et al. (2009), this calculation was repeated 50 times for

each variable. The variable importance score was calculated as the

mean correlation coefficient for each variable, normalized across all

variables to collectively contribute to a total variable importance of

100%. Response plots were created that depict the modeled

relationship between each environmental variable and the HSI.

For each plot, HSI was simulated across 100 values over the range of

the environmental variable, with other variables constant at their

mean value (response.plot function from R-package Maxnet,

Phillips, 2021).

Model performance was evaluated using the Area Under the

Curve of the Receiver Operating Characteristic plot (AUC) and the

True Skill Statistic (TSS) metrics (Báez et al., 2020; Liu et al., 2013).

The AUC ranges from 0 to 1, whereby an AUC of 0.5 or lower
Frontiers in Marine Science 05
indicates that the model is no better than random and 1 indicates

perfect model performance; the TSS ranges from -1 to 1, whereby a

random model would have a TSS of 0 or less, and a perfect model a

TSS of 1. To have a full view of the various aspects of the model

performance (Grimmett et al., 2020), the model sensitivity (ability

to accurately predict presences) and specificity (ability to accurately

predict background points) were also included as performance

metrics. All four metrics (AUC, TSS, sensitivity and specificity)

were calculated using k-fold cross-validation as follows: (1) the

complete dataset was divided randomly into a training and a test set

(training-test ratio of 80-20%), (2) a model was built on the training

set and (3) the model performance was tested based on its ability to

predict the test set. This process was repeated ten times.
2.4 North Atlantic Oscillation

The North Atlantic Oscillation (NAO) is an important climate

process in the North Atlantic and affects ocean dynamics (Hurrell

and Deser, 2010). Variations in the NAO index can have direct

effects on the biology in the ocean (e.g., Alheit et al., 2005). For

example, Corten (1999) found a link between the NAO and the

occurrence of Atlantic herring in the Norwegian trench and Gröger

et al. (2010) between the NAO and the number of Atlantic herring

recruits in the North Sea. We correlated the seasonal and inter-

annual variability of our models’ spatiotemporal HSI with NAO
TABLE 1 Selected environmental variables for modeling with the corresponding source, value range, data type, uni, original resolution, and DOI/URL.

Variable Source name Value range
in
study area

Value
range
in BPNS

Data
type/
unit

Original resolution DOI/URL

Spatial Temporal

Bathymetry EMODnet Digital Bathymetry
(DTM)- 2022

5 - 4866 12 - 37 m 0.063’
x 0.063’

/ https://
emodnet.ec.europa.eu/
en/bathymetry

Seabed substrate EUSeaMap 2023 Broad-Scale
Predictive Habitat Map
for Europe

/ / Categorical Polygon / https://
emodnet.ec.europa.eu/
en/seabed-habitats

Seabed energy EUSeaMap 2023 Broad-Scale
Predictive Habitat Map
for Europe

/ / Categorical Polygon / https://
emodnet.ec.europa.eu/
en/seabed-habitats

Windfarm presence EMODnet Human Activities / / Binary
data

Polygon / https://
emodnet.ec.europa.eu/
en/human-activities

Sea surface temperature Global Ocean Physics Reanalysis 0 - 22 5 – 21 °C 0.083°
x 0.083°

Monthly https://doi.org/
10.48670/moi-00021

Sea surface salinity Global Ocean Physics Reanalysis 24 – 36 30 – 35 PSU 0.083°
x0.083°

Monthly https://doi.org/
10.48670/moi-00021

Sea surface
phytoplankton
concentration

Atlantic- European North West
Shelf- Ocean
Biogeochemistry Reanalysis

0 – 47 0 – 24 mmol C
m-3

0.111°
×0.067°

Monthly https://doi.org/
10.48670/moi-00058

Zooplankton
concentration in the
epipelagic layer

Global ocean low and mid
trophic levels biomass
content hindcast

0 - 81 1 – 25 g C m-2 0.083°
×0.083°

Daily https://doi.org/
10.48670/moi-00020
Before modeling, all variables were resampled from their original resolution towards a resolution of 10 NM x 10 NM and monthly. C, Carbon; EMODnet, European Marine Observation and
Data Network.
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indices. The impact of the NAO varies across regions of the

Northeast Atlantic (van der Molen and Pätsch, 2022). Therefore,

a regional assessment was made, particularly for the focus area of

this study: the BPNS.

To analyze the effect of the NAO on the HSI in the BPNS, the

following method was adapted from the one used by Corten (1999):

Monthly NAO indices from 2000 – 2020 were retrieved from the

National Oceanic and Atmospheric Administration (NOAA,

https://www.ncei.noaa.gov/access/monitoring/nao/) and seasonal

averages were calculated. For each season, a separate time series

was created. For example, for the winter, NAO indices of January,

February and March were averaged for each year from 2000 until

2020. Next, based on our model outcomes, an average HSI was

calculated for adults and larvae in the BPNS for each year in 2000 –

2020, using the months during which habitat was calculated to be

most suitable in the BPNS (winter, specifically January –March and

December – January for adults and larvae respectively, see section

3.4). As per Corten (1999), these NAO and HSI time series were

smoothed using a running average. We used three smoothing

windows: (1) non-smoothed indices, (2) a three-year average

window and (3) a five-year average window. Finally, the

autocorrelation was calculated by crossing NAO and HSI time

series using the base R function ccf (R Core Team, 2023). This

autocorrelation was calculated for each of the three smoothing

windows and for each of the four seasonal NAO time series. Besides

calculating autocorrelation, the ccf function was also used to detect

if there is a lag between two correlated time series. The significance

of the correlation coefficients was tested by calculating 99%

confidence intervals using Fisher’s Z transformation for

correlation coefficients (CorCI function from R-package

DescTools; Signorell, 2024) (Zou, 2007).
3 Results

3.1 Data exploration

After filtering, 400 adult and 400 larval Atlantic herring

occurrences were retained for modeling. Of these, two adult

occurrences and four larval occurrences were located in the

BPNS. After filtering in geographical and environmental space,

adult occurrences were present at a broad range of bathymetry (8 –

700 m), sea surface temperature (3 – 20°C) and sea surface salinity

(29 – 35 PSU) and at zooplankton concentrations in the epipelagic

layer of 0 – 12 g C m-2, sea surface phytoplankton concentrations of

0 – 11 mmol C m-3, all seabed energy classes (low, moderate and

high) and above multiple seabed substrate classes (including both

coarse and muddy classes and several categories in between). Larval

occurrences for modeling were present at a narrower range of

bathymetry (12 – 134 m), sea surface temperature (5 – 17°C), sea

surface salinity (31 – 35 PSU), zooplankton concentrations in the

epipelagic layer (1 – 10 g C m-2) and sea surface phytoplankton

concentrations (0 – 8 mmol C m-3). Additionally, these occurrences

were situated above all seabed energy levels and sandy and coarse

substrate types.
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3.2 Model performance

The larval model performed best with an AUC of 0.9 and a TSS

of 0.7 (Table 2). The adult model had lower performance metrics

with an AUC of 0.7 and a TSS of 0.6. The adult model scored better

at accurately predicting presences (model sensitivity) than

background points (model specificity). Optimal Maxent model

settings (minimal AICc) were obtained using feature classes

linear, quadratic and hinge and a regularization multiplier of one

for both adult and larval models. Filtering in environmental space

was successful in reducing spatial autocorrelation but did not

remove it completely (from I = 0.18 to I = 0.09 and from I = 0.16

to I = 0.14 for the adult and larval models, respectively). However,

bootstrapping methods for variable importance ensured that

selected variables were not selected due to type I errors derived

from SAC in the residuals of the models.
3.3 Variable importance and
response curves

Bathymetry was the most influential variables for both adults

(63%) and larvae (37%) (Table 3). The dynamic variables SST, SSS,

phyto- and zooplankton concentrations were important in both

models but have a higher summed importance in the larval model

(46%) compared to the adult model (35% in total). Seabed

characteristics were important (18% in total) in the larval model

only, while windfarm presence did not influence any model.

Response curves displayed distinct patterns for the adult and

larval life stages (Figure 2). In general, adult Atlantic herring were

inferred to have a capacity to withstand a broader range of

environmental conditions than their larvae. For both larvae and

adults, the habitat was most suitable at shallow depths with a

decreasing HSI towards deeper depths. Adults were able to tolerate

a wider bathymetrical range compared to larvae (HSI drops to 25% at

660 and 81 m respectively). Sea surface temperature was optimal at 5

and 7°C for adults and larvae respectively, situated at the lower end of

the temperature range observed in the study area (Northeast Atlantic

2000 – 2020, 3 – 20°C). Adult herring tolerate a wide temperature

range (3 – 15°C, HSI > 50%), while larvae favor a narrower

temperature range (5 – 8°C). The response of suitability to salinity

is low in the study area. The highest HSI (38%) were reached for

adults at high salinity values around 35 PSU and at both ends of the

salinity range for larvae (HSI > 50% at 29 – 35 PSU). Adult herring
TABLE 2 Model evaluation using the area under the curve (AUC), true
skill statistic (TSS), sensitivity and specificity.

Adult Larva

AUC 0.73 ± 0.02 0.89 ± 0.02

TSS 0.61 ± 0.03 0.71 ± 0.05

Sensitivity 0.78 ± 0.14 0.71 ± 0.01

Specificity 0.68 ± 0.01 0.72 ± 0.01
Numbers depict averages and standard deviations after ten cross-validation repetitions.
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was more likely to be found in low concentrations of zooplankton in

the pelagic layer (< 2.5 g C m-²), although other concentrations in the

study area were not restrictive (HSI around 50%). For larvae, optimal

zooplankton concentrations were quantified at 4.5 – 6.5 g C m-². On

top of these environmental variables that were important in both

adult and larval models, larval models were also influenced by seabed

substrate and sea surface phytoplankton concentration (Table 3).
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Models suggested that larvae are more likely to be found above coarse

substrate, sandy mud, and sand (HSI > 45%) than the unclassified

group ‘seabed’ (unclassified in EMODnet Predictive Habitat Map for

Europe), fine mud, and rock or other hard substrata (HSI < 20%).

Finally, larvae were simulated to be found in the highest

concentrations of phytoplankton in the study area (8 mmol C m-³).
3.4 Spatiotemporal distribution maps

On average, adult Atlantic herring was projected to have a wide

spatial distribution across the Northeast Atlantic throughout the

entire year (Figure 3, left; see Supplementary Figure 1 for

distribution maps for all months). Early in the year, habitat was

suitable in the North Sea and around the Faroe Islands (HSI > 50%,

Figure 3). No observations were present around the Faroe Islands,

so this is an extrapolation of the model and should be interpreted

with caution (Elith et al., 2010). In July, waters surrounding Ireland

become suitable and in October, the English Channel was included

as suitable waters for adult herring (HSI > 50%). Year-to-year

variability of the habitat suitability was highest in the Celtic Sea in

July and October (Figure 3, right). For example, the standard

deviation peaked at 18% in October in the Celtic Sea.
FIGURE 2

Response curves relating the modeled habitat suitability index for Atlantic herring to the environmental variables for adult and larval life stages. Only
environmental variables with a variable importance larger than 5% are shown. The range of the environmental values shown was restricted to the
range of values of the variable where occurrences were present.
TABLE 3 Variable importance (%) of the environmental variables in the
adult and larval models.

Adult Larvae

Bathymetry 62.6 36.7

Sea surface temperature 12.8 14.7

Sea surface salinity 11.1 5.3

Zooplankton concentration 6.2 12.6

Phytoplankton concentration 4.9 13.3

Seabed substrate 2.4 13.6

Seabed energy 0.0 3.8

Windfarm presence 0.0 0.0
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Zooming in on the BPNS specifically, habitat was calculated to

be suitable for adult Atlantic herring throughout the entire year

with increasing values through autumn and peaking in winter

(January, February, and March, Figure 4). More specifically,

monthly averages never dropped below 25% HSI and the highest

average HSI was 75% in February. The variability of the HSI was

highest in March and April with HSI varying between 21 and 85%

and 12 and 64%, respectively.

For larvae of Atlantic herring, a gradual southward movement

of suitable areas (HSI > 50%) can be seen in the distribution maps

from September to January in the Northeast Atlantic (Figure 5). In

September and October, high habitat suitability was calculated

surrounding Ireland and the United Kingdom. Later, in

December and January, areas with high habitat suitability

occurred in the Celtic Sea and the English Channel (including the

BPNS, HSI up to 85%, Figure 5). Year-to-year variability was higher

in larval HSI than adult HSI (Figure 3 right vs. Figure 5 right) and

reached up to a standard deviation of 30% in all months (Figure 5,
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right). In the BPNS, this variation showed an oscillating pattern, as

visualized using boxplots in Figure 6.
3.5 North Atlantic Oscillation

The presence of Atlantic herring did not only show seasonal

patterns (section 3.4) but also patterns across years. The HSI in the

BPNS was negatively correlated with the NAO. More specifically

and using a confidence interval of 99%, a significant correlation

coefficient was found between winter NAO and winter HSI of adults

(correlation of -0.57) at a moving average window of one year. At a

moving average window of three years, significant correlation

coefficients were found between autumn NAO and the winter

HSI (-0.83 and -0.63 for adults and larvae respectively) and

winter NAO and winter HSI (-0.83 and -0.76 for adults and

larvae respectively). At a moving average of five years, both the

autumn NAO and winter HSI (-0.86 and -0.63 for adults and larvae
FIGURE 3

Average HSI (left) and average year-to-year variability (given as standard deviation, right) of the habitat suitability for adult Atlantic herring for
January, April, July and October (representing the four seasons) in 2000 – 2020. High values are indicated in red, and low values in blue. Areas
where the model extrapolated, i.e., where no occurrences were present, are hatched. Projection: EPSG 4326/WGS 84. Distribution maps for all
months are shown in Supplementary Figure 1.
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FIGURE 5

Average HSI (left) and average year-to-year variability (given as standard deviation, right) of the habitat suitability for larvae of Atlantic herring for
September, October, December and January (months where data was available) in 2000 – 2020. High values are indicated in red, and low values in
blue. Areas where the model extrapolated, i.e., where no occurrences were present, are hatched. Projection: EPSG 4326/WGS 84.
FIGURE 4

Monthly variability of the habitat suitability index for adult Atlantic herring in the Belgian Part of the North Sea, averaged over 2000 – 2020. For each
month, the horizontal lines in the rectangular part of the boxplot represent, from low to high respectively, the 25th percentile, the 50th percentile
and the 75th percentile. Points that fall outside of these ranges are shown by whiskers (vertical lines) that extend up to 1.5 times the interquartile
range. Points falling outside of 1.5 times the interquartile range are shown as dots.
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respectively) and the winter NAO and winter HSI were significantly

correlated (-0.88 and -0.78 for adults and larvae respectively). For

all correlations, the time lag was either zero (winter NAO – winter

HSI) or one season (autumn NAO – winter HSI), but no

autocorrelations with a time lag of (over) a year were seen. For

example, the effect of the winter NAO on the winter HSI for adults

using a three-year averaging window is shown in Figure 7. In the

winter of 2010 in the BPNS, the HSI for adults was simulated high

(0.8) coinciding with low average NAO indices (-0.7). In contrast in

the winter of 2015, the HSI was simulated relatively low (0.6) during

high average NAO indices (0.8). The same pattern can be seen for

the other significant combinations from above between autumn/

winter NAO and modeled HSI for adults/larvae (Supplementary

Figures 5–7).
4 Discussion

This is one of the first studies making dynamic species

distribution models for both adults and larvae of Atlantic herring

in the Northeast Atlantic. Model outcomes suggest that suitable
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habitat for adult herring is widely spread over the Northeast

Atlantic throughout the entire year (Figure 3). Suitable habitat for

larvae occurs first in the North of the UK in September and moves

gradually southward towards the English Channel throughout the

spawning season (Figure 5). Focusing on the BPNS provided

valuable insights for the development of spatiotemporally specific

management strategies for fisheries on Atlantic herring by the

Belgian fishing fleet. In this area, both adults and larvae are most

likely to occur during winter months (adults: January – March;

larvae: December – January).
4.1 Modeling outcomes in an
ecological context

Bathymetry was the main explanatory variable in the adult

model, followed by sea surface temperature and salinity (variable

importance of 63, 13 and 11% respectively, Table 3). Response

curves showed that habitat was suitable at depths shallower than

200 m, aligning with the region of the European continental shelf of

which the edge is situated at approximately 200 m depth (Figure 2,
FIGURE 7

Effect of the North Atlantic Oscillation (NAO) on modeled habitat suitability indices (HSI) of adults in the Belgian Part of the North Sea during winter.
(A) time series of 3-year averaged winter HSI (left y-axis) and winter NAO (in red, right y-axis). (B) Correlation plot between three-year averaged
winter NAO and winter HSI.
FIGURE 6

Yearly variability of habitat suitability for larvae of Atlantic herring in January in the Belgian Part of the North Sea. For each month, the horizontal
lines in the rectangular part of the boxplot represent, from low to high respectively, the 25th percentile, the 50th percentile and the 75th percentile.
Points that fall outside of these ranges are shown by whiskers (vertical lines) that extend up to 1.5 times the interquartile range. Points falling outside
of 1.5 times the interquartile range are shown as dots.
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Ricker and Stanev, 2020). The importance of bathymetry is assumed

to be related to the Atlantic herring’s adaptability to a wide range of

temperatures and salinities (de Groot, 1980; Whitehead, 1985). This

was also reflected in the response curves for sea surface temperature

and salinity, being able to tolerate the entire range of values over 21

years in the study area (Figure 2).

To model the distribution of larvae, apart from bathymetry, sea

surface temperature and salinity, also seabed substrate, zooplankton

and phytoplankton concentration were important variables (37, 15,

5, 14, 13 and 13% variable importance respectively, Table 3). In

terms of abiotic factors, response curves matched well with known

characteristics of Atlantic herring spawning sites for the

bathymetric range (7 – 150 m, Figure 2; Brevé et al., 2007;

Dickey-Collas et al., 2004; Frost and Diele, 2022), substrate

(sandy and course; de Groot, 1980) and salinity (both marine and

brackish; Frost and Diele, 2022). Modeled temperature ranges

(optimum at 7°C) also agree well with historical catch data from

the North Sea (8°C; Hay et al., 2000). The inferred inclination of

Atlantic herring towards colder water temperatures suggests that

global warming may disrupt their current migration patterns,

potentially leading to a shift towards more northern spawning

grounds. However, the visual feeding behavior of herring,

dependent on light for hunting (Blaxter, 1968), may hinder a

northward shift during the short daylengths in northern winters,

as suggested by Hufnagl and Peck (2011). Spawning sites are often

classified as high-energy environments, by wave or tidal movement,

which is important for egg development (Haegele and Schweigert,

1985). Seabed energy was included for modeling, but no effect

was found.

A remarkable difference between the adult and the larval model

was that prey concentration was important to model the

distribution of larvae (26% variable importance in total including

both phyto- and zooplankton concentration) while being less

important to model the distribution of adults (11% variable

importance in total, Table 3). An explanation could be that the

adult model includes data on the complete cycle of their migration,

including feeding and spawning grounds (de Groot, 1980; Coull

et al., 1998). Therefore, the effect of feeding might be partly

obscured. Furthermore, even though adult herring may be drawn

to areas with high concentrations of zooplankton, their top-down

influence could lead to lower concentrations of phyto- and

zooplankton in those specific locations. Supporting both

scenarios, Atlantic herring has previously been reported directly

inside or at the edges of plankton patches (Maravelias, 2001).

For larvae, habitat suitability increased with increasing

phytoplankton concentration and was optimal at zooplankton

concentration in the epipelagic layer between 4.5 and 6.5 g C m-².

This aligns with the fundamental physiological need of early life

stages, as young herring prioritize somatic growth. Phytoplankton

serves as the base of the food web, and the availability of

zooplankton, which feeds on phytoplankton, becomes crucial for

larval development. A lack of sufficient prey during these early

stages can hinder growth and survival, as larvae rely on abundant

food sources to sustain their rapid growth during early life (Fletcher

et al., 2019). For example, for an epipelagic layer depth of 81 m (the

average epipelagic layer depth in the Northeast Atlantic at noon, 01/
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01/2020, https://doi.org/10.48670/moi-00020), this would

correspond to 55.6 – 80.2 mg C m-3. Spawning grounds of

Atlantic herring are chosen to promote larval retention (Sinclair

and Power, 2015) and longer retention times near spawning

grounds can lead to higher recruitment of Down’s herring

(Dickey-Collas et al., 2009). On top of this, Hufnagl and Peck

(2011) reported that the duration of the hatching period is

influenced by minimum prey concentration and prey size.

Integrating these findings with our modeling results suggests that

optimal spawning occurs in specific spawning grounds that

promote retention and where an ample supply of prey is

available. Our modeled outcomes suggest optimal prey

concentrations for larval herring in the Northeast Atlantic.

The inclusion of nearby wind farm presence as a predictive

variable to model the distribution of Atlantic herring is novel.

During the construction of offshore wind farms, no spatial

deterrence was found for free-ranging pelagic fish (Hubert et al.,

2024). Offshore wind farms with scour protection introduce

artificial hard substrates on the seabed and can attract demersal

benthopelagic fish species by providing shelter, food sources and

spawning sites (Degraer et al., 2018). To date, the spawning of

Atlantic herring on windfarm substrate has not been observed, nor

has our model detected any effect of nearby windfarm presence on

the occurrence of Atlantic herring. However, the potential for wind

farms to serve as artificial reefs could offer some benefits,

particularly for larvae and early life stages. Artificial reefs have

been shown to enhance local biodiversity by providing shelter,

feeding opportunities, and protection from predators (Higgins et al.,

2022). For herring larvae, the structural complexity of wind farms

could increase prey availability and offer protection from predation,

supporting their early development. However, the effect might be

obscured by (1) inadequate sampling near windfarms due to fishing

restrictions (Bonsu et al., 2024) or (2) the dispersal of larvae away

from spawning sites following hatching (Sinclair and Power, 2015).
4.2 North Atlantic Oscillation

Adding on to the specific spawning requirements, larval habitat

suitability indices had a larger year-to-year variability than adult

HSI (up to 30 and 18% standard deviation respectively). This

variability was found to be correlated with the NAO index. More

specifically, positive autumn and winter NAO indices had a

negative effect on adult and larval occurrence in the BPNS during

winter. The NAO index represents an atmospheric sea level

pressure difference between the Azores, Portugal and Iceland

(Rogers, 1984). These pressure differences result in temporal

variation of storms, precipitation, temperature, salinity, mixed-

layer depth and circulation patterns (Hurrell and Deser, 2010).

From the 1960s until the early 1990s a general positive trend of

winter NAO indices has been observed and afterwards, the trend

was less positive or even negative (Gulev et al., 2021). Climate

models forecast a slight increase in the winter NAO in the future,

with large natural variations (Lee et al., 2021).

Positive NAO indices and associated westerly winds lead to

increased inflow of Atlantic waters in the North Sea which can
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increase nutrient concentrations and temperatures (van der Molen

and Pätsch, 2022). Additionally, a stronger outflow of Baltic waters

under positive NAO indices leads to a reduced exchange between

the northern and southern North Sea (Salt et al., 2013). Considering

the modeled response curves for temperature for both life stages of

herring, the increase in temperature during positive NAO indices

might have a direct impact on their physiology. Furthermore, the

reduced exchange will affect the plankton distribution, which might

affect herring. Investigating a correlation between temperature and

Atlantic herring spawning stock biomass, Akimova et al. (2016)

employed comparable reasoning. They suggested that the

correlation was more likely attributed to fluctuations in the

zooplankton composition than a direct impact of water

temperature on larval growth rates. However, they were not able

to find a match between the time series of the spawning stock

biomass of Atlantic herring and zooplankton species in the North

Sea. Finally, the impact of large-scale climate processes, including

the NAO, on North Sea herring stock was modeled by Gröger et al.

(2010). Gröger et al. (2010) did not find any correlation between the

NAO and herring spawning stock biomass but did find a correlation

with the number of recruits at a time lag of 5 years. Here they

defined the number of recruits as the number of fish at 1 year of age

(about 10 cm in length, Brevé et al., 2007), which is a different age

group from the larvae used for modeling in our study (0.5 – 2.4 cm

length). The age difference can partly explain the time lag seen in

the study of Gröger et al. (2010), a phenomenon we did not observe

in our study. On top of this, Gröger et al. (2010) looked at a different

spatial scale than we did (North Sea vs. BPNS) and the effect of the

NAO differs regionally (van der Molen and Pätsch, 2022). Since

Atlantic herring is a key species in the North Sea food web

(Fauchald et al., 2011) and is impacted by both top-down and

bottom-up processes (Lynam et al., 2017), the net effect of NAO on

the larval occurrence of herring in the BPNS is probably a

combination of different effects. We recommend future ecological

modeling work to focus on integrated approaches that include

environmental variables, food web interactions, and climate

processes and consider both the effects of space and time.
4.3 Model validation & limitations

Models performed well in terms of AUC and TSS values.

Performance of the larval model was higher (AUC of 0.89 and

TSS of 0.71) compared to the adult model (AUC of 0.73 and TSS of

0.61). To get a comprehensive understanding of the model’s

strengths and weaknesses, Grimmett et al. (2020) emphasize the

importance of using multiple performance statistics alongside

commonly used metrics like AUC. Specifically, the sensitivity and

the specificity give information on the model’s capability of

predicting presences and background points, respectively. The

adult model showed a better performance in predicting suitable

habitat (sensitivity of 0.78), compared to unsuitable habitat

(specificity of 0.68). The lower specificity suggests that the actual

species range might be more confined than what the

models projected.
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The higher performance of the larval model compared to the

adult model indicates that larvae exhibit more characteristics of

habitat specialists than the generalist adults. Habitat specialists,

characterized by narrow environmental tolerances, are often more

straightforward to model compared to habitat generalists (Brotons

et al., 2004; Elith et al., 2006). In modeling terms, this can be

explained by the selection of background points, which are more

likely to be true absences for a species with a narrow spatial

distribution (habitat specialist) compared to a widely distributed

species (habitat generalist; Grimmett et al., 2020; Lobo et al., 2008).

Fernandez et al. (2022) suggest adopting the non-observation of

highly mobile species in dynamic environments (such as the ocean)

as part of the study area background, rather than treating it as an

absence. Building upon this recommendation, we opted for Maxent

models, which integrate non-observations as background points.

One of the limitations of this study is the reliance on occurrence

data rather than abundance data to model Atlantic herring

distribution. While occurrence-based models such as Maxent are

valuable for capturing species-environment relationships, they do

not account for the density or biomass of herring, which is essential

for effective fisheries management. Species that are found in high

numbers in specific locations can play a significant role in ecosystem

dynamics, and focusing solely on occurrence datamay miss capturing

these ecological interactions. On the other hand, incorporating

abundance data poses challenges of its own. Abundance data can be

influenced by biases stemming from differences in samplingmethods,

spatial and temporal coverage, and variable sampling efforts, leading to

difficulties in interpreting true species-environment relationships

(Bonar et al., 2011). Factors like fishing gear types and tactics can

strongly impact the perceived abundance of species in aparticular area,

introducing inaccuracies in data analysis (Mehdi et al., 2021; Moriarty

et al., 2020). Additionally, the migratory nature and aggregative

behavior of Atlantic herring makes it challenging to gather

consistent and comprehensive abundance data.

While abundancedatawas available for adultherring,weoptednot

touse it. The ICES surveys are compiled of different surveys of different

countries (Supplementary Table 1). On top of this, no abundance data

was available for larvae. Using the same form of input data

(occurrences data) for both life stages allowed for comparison of the

ecological needs for the two life stages. While this approach may not

fully capture the ecological dynamics of Atlantic herring, it provides a

reliable and expansive dataset for evaluating habitat suitability over

large spatial extents. Occurrence data is also noted to enhance the

performance of species distributionmodels, particularly formigratory

species or those with extensive ranges. Despite the advantages of using

occurrence data, it is essential to recognize the limitations of this

approach for fisheries management and consider integrating

abundance data where feasible to gain a more nuanced insight into

herring distribution and its implications for fisheries.

We acknowledge that the outcomes of our model may be partly

biased due to the use of demersal input data to model pelagic adult

herring (Brevé et al., 2007; ICES, 2023e). Demersal sampling is

likely to miss some occurrences of herring when they are swimming

in the upper water column. Since the Maxent model does not

consider non-observations as true absences, but rather as a part of
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the background, this model could be more robust against such

biases (Fernandez et al., 2022). Additionally, the DATRAS trawl

surveys, which are compiled from different surveys organized by

multiple countries, involve varying sampling depth ranges

(Supplementary Table 1). This variation can introduce bias into

the model output, leading to instances such as the unsuitability of

deeper waters in the Norwegian Trench (Figure 3). The absence of

occurrences at these depths is reflected in the model as being

unsuitable, despite evidence that spring-spawning Atlantic herring

are present in this region during winter (Corten, 2000). To address

these biases, we have highlighted areas where the model

extrapolates beyond the spatial range of observations in Figure 3

and Figure 5. Moreover, to the best of our knowledge, we have used

the most reliable dataset currently available for our study area.

Fisheries independent datasets, such as the DATRAS trawl surveys,

are often preferred over fishery dependent data because they follow

a recurring sampling scheme with sufficient spatiotemporal

coverage (Hilborn and Walters, 2013). Finally, other studies such

as Turner et al. (2016) and Wang et al. (2018) have also employed

demersal surveys to develop species distribution models for Atlantic

herring with good model prediction accuracies (AUC values > 0.75).
4.4 Spatiotemporal distribution maps

A visual comparison shows a good match of our spatiotemporal

habitat suitability maps of larval herring with the location and timing of

known spawning grounds (Figure 5 and Supplementary Figure 8).

Spawning time is used to distinguish different autumn-spawning

stocks (Heath et al., 1997). In the North Sea, spawning starts in

August around the Shetland Islands, Orkney Islands and west of

Scotland and ends in January in the southern North Sea (Figure 7;

Coull et al., 1998; Gröger et al., 2010). On the east of the UK, model

outcomes (Figure 5) correspond accurately with the Shetland stock in

September, theBuchan stock inSeptember–October, theBanks stock in

October – December and the Downs stocks in December – January

(Figure 7). No observationswere found to include in themodel from the

west side of the UK, however, the model was able to extrapolate larval

habitat preferences to these areas aswell. These extrapolations accurately

show the spawning grounds west of Scotland and Ireland during

September and October. Spawning grounds in the east of Ireland

(October – December – January) and in the English Channel

(December – January) were predicted wider than the findings from

Coull et al. (1998) (Figures 5 , 7). These authors stress that the location of

spawning grounds should be under continuous revision. The precise

locationmightbeblurred inourmodeldue to the lackofdirect spawning

groundobservations since larvae canshowsomedegreeofdispersal from

spawning grounds through local currents (Bauer et al., 2014; Funk et al.,

2001; Sinclair and Power, 2015).

The adult model forecasts a wide distribution of Atlantic herring

across the Northeast Atlantic throughout the entire year (Figure 3).

Over different seasons, some regional differences could be seen. The

most suitable areas were centered in the North Sea and around the

Faroe Islands in thefirst half of the year to an evenwider area including

the east of the UK during the second half of the year.
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4.5 Implications for fisheries, particularly
the Belgian fishing fleet

The Belgian fishing fleet has witnessed a steady decline in

number of catches and number of fishing vessels in the southern

North Sea (Maertens, 2022) and this decline might be aggravated

when the effects of Brexit come fully into force (Popescu and

Scholaert, 2022). This study aimed to provide information on the

location of Atlantic herring as a first assessment towards restoring

pelagic fishing for the Belgian fishing fleet. Note that our models

predict environmentally suitable areas where herring can be found

during different seasons, but they do not provide any information

on their biomass at those locations. The outcomes of the adult

model show that Atlantic herring is likely to occur in the Greater

North Sea throughout the entire year. For the Belgian fishing fleet,

fishing directly in the BPNS would incur the lowest cost for ship

operation. Here, areas of high habitat suitability for Atlantic

herring were simulated in December – January for larvae and

later, in January – February, for adults. The habitat in the BPNS

being suitable for larvae first, before adults, could indicate that

early spawning takes place outside of the BPNS in November –

December and that, following hatching, larvae could be

transported towards the BPNS through eastward local currents

(Turrell, 1992). Sinclair and Power (2015) found that Atlantic

herring choose their spawning sites to limit larval transport and

hence spawning might occur nearby, likely in the Downs and

Banks stocks. Later, in December – January adults arrive in the

BPNS and spawning might occur on the sandbanks and gravel

grounds of the BPNS itself.

Given these outcomes, pelagic fishing on adult Atlantic herring

in the BPNS would be most suitable during winter months.

However, due to the potential presence of spawning nearby and

herring’s susceptibility to collapse (Stephenson et al., 2001),

fisheries must be managed effectively. Bottom trawling can have a

direct negative impact on deposited eggs (Watling and Norse,

1998). Atlantic herring are caught using different types of gear

including purse seine, mid-water trawl, pair trawl and otter trawl

(ICES, 2005). Therefore, if fishing near spawning areas would be

permitted, fisheries should at least consider employing non-

bottom-stirring techniques.
5 Conclusion

Our study showed the widespread spatiotemporal distribution

of Atlantic herring in the Northeast Atlantic, using species

distribution models (AUC of 0.7). Models based on larval data

were effective in deriving the Atlantic herring spawning distribution

(AUC of 0.9). For the BPNS, outcomes show that Atlantic herring is

likely to be present during winter months, both as adults and larvae.

The year-to-year variability of habitat suitability during these

months in the BPNS was negatively correlated (up to - 0.88) with

the autumn and winter NAO indices. Positive NAO events might

negatively impact spawning success through increased temperature

and changes in prey composition.
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Pirani, C. Connors, S. Péan, Berger,, et al (Cambridge, UK: Cambridge University
Press), 553–672. doi: 10.1017/9781009157896.006
frontiersin.org

https://doi.org/10.1016/j.marpol.2023.105941
http://www.clupea.net
https://doi.org/10.1111/j.0906-7590.2004.03764.x
https://doi.org/10.1006/jmsc.1998.0429
https://doi.org/10.1006/jmsc.2000.0812
https://www.cathycoudyser.be/nieuws/eerste-gevolgen-van-brexit-voor-de-vlaamse-visserijsector-worden-duidelijk
https://www.cathycoudyser.be/nieuws/eerste-gevolgen-van-brexit-voor-de-vlaamse-visserijsector-worden-duidelijk
https://academic.oup.com/icesjms/article/49/4/437/653339
https://www.researchgate.net/publication/328095905
https://www.researchgate.net/publication/328095905
https://doi.org/10.1111/j.1095-8649.1980.tb03739.x
https://doi.org/10.1111/j.1095-8649.1980.tb03739.x
https://doi.org/10.1111/j.1600-0587.2013.00564.x
https://doi.org/10.3354/meps08172
https://doi.org/10.3354/meps08172
https://doi.org/10.1111/j.2006.0906-7590.04596.x
https://doi.org/10.1111/j.2041-210x.2010.00036.x
https://commission.europa.eu/publications/brexit-adjustment-reserve_enfiles
https://doi.org/10.1371/journal.pone.0022729
https://doi.org/10.1371/journal.pone.0022729
https://doi.org/10.1016/j.ecolmodel.2022.110040
https://doi.org/10.1111/FWB.13255
https://doi.org/10.1007/s11160-022-09703-0
https://doi.org/10.1007/s11160-022-09703-0
https://academic.oup.com/icesjms/article/66/8/1688/672963
https://academic.oup.com/icesjms/article/66/8/1688/672963
https://doi.org/10.1016/j.ecolmodel.2020.109194
https://academic.oup.com/icesjms/article/67/3/454/732742
https://doi.org/10.1017/9781009157896.004
http://www.nrcresearchpress.com
https://doi.org/10.1016/S1385-1101(97)00045-2
https://doi.org/10.1016/S1385-1101(97)00045-2
https://doi.org/10.1371/journal.pone.0261964
https://CRAN.R-project.org/package=dismo
https://CRAN.R-project.org/package=dismo
https://doi.org/10.1121/10.0024720
https://doi.org/10.1121/10.0024720
https://doi.org/10.1093/icesjms/fsr078
https://doi.org/10.1093/icesjms/fsr078
https://doi.org/10.1016/j.marsys.2008.11.026
https://doi.org/10.1016/j.ecoinf.2022.101914
https://www.ices.dk/about-ICES/projects/EU-RFP/EU%20Repository/ICES%20FIshMap/ICES%20FishMap%20species%20factsheet-herring.pdf
https://www.ices.dk/about-ICES/projects/EU-RFP/EU%20Repository/ICES%20FIshMap/ICES%20FishMap%20species%20factsheet-herring.pdf
https://doi.org/10.17895/ices.pub.7562
https://doi.org/10.17895/ices.advice.23608098
https://doi.org/10.17895/ices.advice.21907953
https://doi.org/10.17895/ices.advice.21907962
https://doi.org/10.17895/ices.advice.21907947
https://datras.ices.dk
https://datras.ices.dk
http://eggsandlarvae.ices.dk/
http://eggsandlarvae.ices.dk/
https://doi.org/10.1007/s00227-021-03894-z
https://doi.org/10.1111/2041-210X.13628
https://doi.org/10.1111/2041-210X.13628
https://doi.org/10.1017/9781009157896.006
https://doi.org/10.3389/fmars.2024.1485161
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Standaert et al. 10.3389/fmars.2024.1485161
Legendre, P. (1993). Spatial autocorrelation trouble or new paradigm? Ecology 74,
1659–1673. doi: 10.2307/1939924

Lescrauwaet, A. K., Debergh, H., Vincx, M., and Mees, J. (2010). Fishing in the past:
Historical data on sea fisheries landings in Belgium. Mar. Policy 34, 1279–1289.
doi: 10.1016/j.marpol.2010.05.006

Limborg, M. T., Helyar, S. J., De Bruyn, M., Taylor, M. I., Nielsen, E. E., Ogden, R.,
et al. (2012). Environmental selection on transcriptome-derived SNPs in a high gene
flow marine fish, the Atlantic herring (Clupea harengus). Mol. Ecol. 21, 3686–3703.
doi: 10.1111/j.1365-294X.2012.05639.x

Liu, C., White, M., and Newell, G. (2013). Selecting thresholds for the prediction of
species occurrence with presence-only data. J. Biogeogr 40, 778–789. doi: 10.1111/
jbi.12058
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