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Water discharge and sediment load are often controlled by a combination of

factors. However, the relationship between water and sediment load changes

and meteorological oscillations has rarely been explored for different river sizes.

Explanations for the various responses of water-sediment changes to

meteorological factors in different rivers is important for understanding global

hydrology. In this study, we analyzed data from 2002-2022 using cross-wavelet

and wavelet coherence in an attempt to characterize the effects of large-scale

climatic oscillations on 10 rivers in eastern China. Comparing the results shows

that water releases lag three months or more behind SST variations. It also

oscillates interannually (mostly every 8-16 months). Most rivers runoff lags

changes in PDO by three months or more. The impact of ENSO (El Niño-

Southern Oscillation) on each river basin gradually decreases from south to

north. The impacts on northern rivers such as the Yellow River, Huai Riverand

Liao River are weaker. At the same time, the water discharge changes in the Pearl

River and Minjiang River basins in southeastern China are extremely rapid and

sensitive to ENSO events. Meanwhile, the impacts of ENSO on large rivers lasted

throughout the study period, while the impacts of ENSO on smaller rivers had

intermittent periods, and the response rates of geographically similar mountain

and stream-type rivers were not the same. The effect of the PDO (Pacific Decadal

Oscillation) warm and cold phases was different for each region. Our research

contributes to understanding the relationship between rivers and climate

oscillations, advancing Water-Sediment Balance and Global Sustainability—key

goals of the United Nations 2030 Agenda for Sustainable Development.
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1 Introduction

Climate change is affecting the changing characteristics and

long-term trends of many rivers around the globe (Milly et al., 2005;

Cohen et al., 2014), and some scholars have pointed out that climate

change may exacerbate the extent of global flow decline in the

future, triggering a water crisis (Zhang et al., 2023). The massive

reduction of river sediment has caused a series of problems such as

shoreline erosion and sediment retention (Milliman and Syvitski,

1992; Chen et al., 2010; Li et al., 2020; Dethier et al., 2022).

Watersheds face great threats in ecological processes. Therefore, it

is important to analyze the changes in climate on river water

discharge and sediment load to better predict future river

hydrological change.

In studying the evolution of water discharge and sediment

transport, most studies have focused on individual watersheds that

show varying results (Lai et al., 2017). Based on studies of the

Mississippi River, it has been shown that basin seaward water

discharge has trended upward over the past 90 years, that increases

in river flow have been largely influenced by increases in precipitation

across the basin, and that seaward sediment loads have generally

trended downward (Blum and Roberts, 2009; Yin et al., 2023b). An

evaluation of longer-term historical trends in measured water

discharge from 395 climate-sensitive gauging stations in the United

States revealed an increasing trend formost riverwater discharge in the

United States (Lin et al., 2017). In contrast, during the last 30 to 50

years, the average annual water discharge of rivers in southernCanada

showed a significant decreasing trend, with a decrease in water

discharge in most months of the year, with the largest decreases in

August and September (Zhang et al., 2019). In the study of Dongting

Lake in the middle reaches of the Yangtze River, rainfall and water

discharge fluctuated less, but sediment loads decreased significantly

(Lai et al., 2021). River water discharge in the western region of Russia

showed an increased trend (Minjiangville et al., 2008).

Precipitation is an important driver of river flow variability and

interannual variability in most regions (Lu, 2004; Ionita et al., 2015).

Temperature is also amajor factor influencing the flux of seawater and

sediment into rivers (Labat, 2004). As major components of the

hydrologic cycle, watershed precipitation and temperature changes

are often subject to a complex sea-air combination (Wang andKumar,

2015; Nalley et al., 2019; Shi et al., 2020; Feng and Hao, 2021). The

oceans cover 71% of Earth’s surface, and they play a major role in

controlling surface and atmospheric heat exchange, which in turn

affects the planet’s climate. The strongest interannual signal of global

climate change is the ElNiño and SouthernOscillation (ENSO),which

are cyclical variations in sea surface temperature (SST) and overlying

atmospheric pressure (OAP) in the equatorial Pacific Ocean. These

variations are particularly significant drivers of global atmospheric

circulation in the tropical Pacific and Indian Oceans. This has led to a

great deal of research being done on the connection between weather

andvariations in theflowofwater and sediment throughwatersheds.A

single strong ENSO event can cause a 51% reduction in global annual

water discharge to the sea by affectingprecipitation (Wanget al., 2006).

A. Rossi’s study on the Mississippi River shows that ENSO has a

significant effect on the short-term interannual fluctuations of

precipitation and water discharge in the basin (Rossi et al., 2009).
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Sea-air variables like the Pacific Decadal Oscillation (PDO) and the

Arctic Oscillation (AO), in addition to ENSO, have variable effects

on the flows of entering water and sediment in basins all over the

world. ENSO causes changes in precipitation patterns by

influencing the East and Southeast Asian monsoon (Juneng and

Tangang, 2005; Zhou et al., 2024). PDO is closely related to the

climate of eastern China, and it is an important background for

interannual climate variability, which moderates the impact of

ENSO on climate (Feng et al., 2014; Wu and Jiang, 2024).

Therefore, climate variability in East Asia is significantly affected

by the anomalies of global sea-land-air interaction such as ENSO

and PDO.

The effect of climate conditions on global river sediment has

been the subject of numerous prior studies. Nevertheless, the

majority of research has concentrated on studying specific rivers,

and thorough comparative studies on the overall picture of long-

term changes in water and sediment with climate conditions in

various river basin sizes are still lacking. As a result, research on

how various river sizes react to climatic fluctuations will advance

our knowledge of world hydrology. Furthermore, there are still

some unanswered questions regarding the ways in which rivers of

the mountain stream type respond to variations in the local climate.

Therefore, more research is required to fully illustrate the parallels

and discrepancies in the response mechanisms of rivers in various

geographical areas. In addition, our study used updated data, which

is relevant for the assessment of hydrometeorological changes.

Although the term “small and medium-sized rivers” is not

currently widely used, rivers that have a protected area of less than

200 km2 are typically classified as such based on the river classification

concept. Taiwan’s rivers are all categorized as small to medium-sized

rivers (Kao and Milliman, 2008), and the Nanliu River is also

recognized as a small and medium-sized river. The purpose of this

study was to characterize the effects of large-scale climate oscillations

on thewaterdischarge andsediment loadof tendifferent rivers (Nanliu

River, Pearl River, Minjiang River, Tamsui River, Choshui River,

Gaoping River, Yangtze River, Yellow River, Huai River, and Liao

River) in eastern China from the south to the north. We did this by

using cross wavelet and wavelet coherence techniques to analyze the

data from 2002 to 2022. Cross wavelet and wavelet coherence

techniques are physical approaches used to determine the level of

correlation between two time series. Wavelet coherence displays the

consistency of periodic patterns across sequences, whereas cross

wavelet shows regions of high common power and the strength of

shared cycles between sequences (Yang and Xing, 2021; Hussain et al.,

2024). The objective is to demonstrate the disparities in responses to

climate change between large and small/medium sized rivers

(Figure 1, Table 1).
2 Data and methods

2.1 Data sources

Monthly river water discharge data, sediment transport data,

ENSO data, PDO data, and other information are the primary types

of data used in this study.
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The Water Resources Administration of Taiwan Province

(http://www.wra.gov.tw/) provided monthly water discharge and

sediment transport data for the Tamsui, Choshui, and Gaoping

rivers in Taiwan. A portion of the chosen stations were absent

during the study period. Therefore, they were updated or expanded

by interpolation, utilizing the multi-year average data prior to usage

as well as the correlation between the absent measured stations and

nearby stations. The monthly hydrological data (2002-2022) of

different rivers are from the Zhuki hydrographic station of the

Minjiang River, Datong station of the Yangtze River, Lijin station of

the Yellow River, Linqi station of the Huai River, and Liumafang

station of the Liao River, while the hydrological data of the Pearl

River inflow are selected from the data of the Gaoyao station of the

Xijiang River, Shijiao station of the Beijiang River, and Boluo station

of the Dongjiang River (http://www.mwr.gov.cn/). Nanliu River

hydrological data are from the China Hydrological Yearbook and

Guangxi River Sediment Bulletin. Monthly SST data, PDO data and

other information are from the National Centers for Environmental

Information (https://www.ncdc.noaa.gov/teleconnections/).
2.2 Methods

In this paper, the binary coherence between the hydrological

data and the meteorological factors is calculated using the Crossed

Wavelet Transform (XWT) and Wavelet Coherence (WTC).

Physical techniques for assessing the level of correlation

between two time series include the XWT and WTC. While WTC
Frontiers in Marine Science 03
indicates the consistency of periodic patterns across the sequences,

XWT shows regions of high common power and the strength of

shared cycles between the sequences. The degree of linear link

between hydrologic variables and remotely correlated index

sequences in the time and frequency domains is measured using

coherence of the Crossed Wavelet Transform, a correlation

coefficient localized in time and frequency space. The multiscale

association between hydrologic data and meteorological parameters

in the time-frequency domain was analyzed using XWT and WTC.

The cross-wavelet spectrum, a representation of the covariance

between two time series, can be defined as follows (Torrence and

Compo, 1998) given two time series X and Y and wavelet

transforms WX
n (s) and WY

n (s):

WXY
n (s) = WX

n (s)W
Y*
n (s)

where the complex conjugate is denoted by ∗. The complex

argument WXY
n (s)

�
�

�
�   can be understood as the local relative phase

between xn and yn in temporal frequency space, and WXY
n (s)

�
�

�
�   can

be characterized as cross-wavelet power.

Time series that exhibit correlation but do not necessarily have

high power are identified in time frequency space by WTC, which

also measures the correlation (Su et al., 2019). The wavelet

coherence of two time series can be described as (Torrence and

Compo, 1998):

R2
n(s) =

S(s−1WXY
n (s))

�
�

�
�2

S(s−1 WY
n (s)j j2)� S(s−1 WX

n (s)j j2)
FIGURE 1

Geographic location of the 10 rivers, where the red line represents the direction of flow of large rivers and the blue line represents the direction of
flow of small and medium-sized rivers.
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where the wavelet type being utilized defines the smoothing

operator S. R2 has a value in the range of 0 and 1: A correlation of 1

shows that two time series are perfectly associated, while a

correlation of 0 means that there is no association at all.

In this paper, the Monte Carlo statistical method is used to

compute the wavelet (Yoon et al., 2015). A cone of influence (COI)

with boundary effects is indicated by the thin black solid line in the

cross-wavelet spectrum; a substantial correlation that passes the red

noise test with 95% confidence is indicated by the thick black

contour line. Hydrologic variables and distant correlation are

correlated positively when indicated by right arrows; negatively

when indicated by left arrows; hydrologic variables changed before

remote correlation when indicated by down arrows; changes in

remote correlation lag when indicated by up arrows.

3 Result

3.1 Water discharge and SST

The findings demonstrate that the Niño 3.4 region SST and the

Nanliu River’s water discharge (Figure 2A) both exhibit significant

10–16 months main resonance cycles over the course of the study

period. Additionally, the phase relationship stays stable within this

time frame, with an average phase angle of 45°, suggesting that

changes in water discharge follow changes in SST by 1.5 months on

average. Over the study period, there are notable cycles of 10–14

months for both Pearl River water discharge and Niño 3.4 region

SST (Figure 2B). Also, the phase relationship is steady, with an

average phase angle of 30°, suggesting that changes in water

discharge occur one month after changes in SST.

Water discharge changes are positively correlated and well

synchronized with SST changes on an interannual scale, as indicated

by the Minjiang River water discharge and Niño 3.4 SST showing a

significant main resonance cycle of 10-14months throughout the study

time domain and a stable phase relationship with an average phase

angle of 0° (Figure 2C). Around 2010, a notable resonance cycle of 16–

32 months was seen in both the Niño 3.4 SST and the discharge from
Frontiers in Marine Science 04
the Minjiang River (Figure 2C). This suggests that changes in SST

changes were three months behind changes in water discharge.

The study revealed that the Tamsui River’s water discharge andNiño

3.4 regional SST exhibited significant 8-16 months principal resonance

cycles (Figure 2D). Additionally, the phase relationship remained stable

with an average phase angle of 180°, suggesting a negative correlation

between changes in SST and water discharge. Meanwhile, the study

founda largeprimary resonance cycle in theNiño3.4 regionSSTand the

Choshui River and Gaoping River’s water discharge, lasting 10–16

months (Figures 2E, F). Furthermore, the average phase angle of the

phase relationship stayedconstant at 45°, indicating that variations in the

water discharge lagged behind variations in the SSTby 1.5months.Over

the course of the study, thewater discharge from theYangtzeRiver basin

and the SST in theNiño 3.4 region shows significant 8–16monthsmain

resonance cycles (Figure 2G). The phase relationship also remained

stable,with an average phase angle of 45°, suggesting that changes in SST

are1.5monthsbehindchanges inbasinwaterdischarge.Throughout the

study period, there are noticeable but sporadic main resonance cycles

between the Niño 3.4 region SST and the Yellow River water discharge

(Figure 2H). The phase relationship is steady, with an average phase

angle of 90°, suggesting that changes in the water discharge occur three

months after changes in the SST.

TheHuai River water discharge andNiño 3.4 regional SST show a

significant but discontinuous 10-16 months main resonance cycle

throughout the study time domain, and the phase relationship is

relatively stable within the study time domain, with an average phase

angle of 90°, indicating that the basin water discharge changes lag

behind the SST changes by 3 months on the interannual scale

(Figure 2I). The phase relationship is less stable within the study

time domain, indicating that the water discharge changes in the basin

arenotwell correlatedwith the SST changes on an interannual scale. In

contrast, the water discharge of the Liao River basin, which has the

highest latitude and the SST of Niño 3.4 region, exhibits a significant

but intermittent main resonance cycle of 10–14 months throughout

the study time domain. Its resonance cycle was more pronounced in

2008–2014 (Figure 2J).

The consequences of WTC on flow are shown in Figure 3, where

the strong coherent zone is easily discernible. The coherence of SST
TABLE 1 Statistical data on length, watershed area, etc. of 10 rivers.

River Seaward province Length (km) Basin area (km2)

Nanliu River Guangxi 287 8635

Pearl River Guangdong 2320 453700

Minjiang River Fujiian 562 60992

Tamsui River Taiwan 158.7 2726

Choshui River Taiwan 186.4 3100

Gaoping River Taiwan 171 3257

Yangtze River Shanghai 6363 1800000

Yellow River Shandong 5464 752443

Huai River Jiangsu 1000 274657

Liao River Liaoning 1345 219000
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with in all rivers is characterized on an annual basis by significant

wavelet coherence. The yearly covariance of the ten rivers was

significant during the course of the study, with a noteworthy major

resonance period spanning eight to sixteen months. The water

discharge of the Nanliu River, Pearl River, Choshui River, Gaoping

River, Yangtze River, Yellow River, and Liao River exhibited an average

phase angle of around 45° with respect to their predictor, the SST
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(Figures 3A, B, E–H, J). This suggests that the water discharge was

approximately 1.5 months behind the SST. While the Minjiang River

displayed an in-phase (positive) association with its predictor

(Figure 3C), the Tamsui River shown a negative connection with

SST (Figure 3D). Over the course of the study period, the river flow

lagged behind the SST by approximately three months, as the SST lead

the Huai River by around 90°(Figure 3I).
FIGURE 2

XWT: Cross-wavelet power spectrums between monthly water discharge time series and Nino3.4 SST. A thick black contour line delineates a 5%
significance level against the red noise (yellow and blue represent stronger and weaker powers, respectively). The cone of influence (COI), which
potentially can distort the picture around the edges, is shown by lighter shades. The arrows represent the relative phase relationship between the
two time series. Right (left) pointing arrows show an in-phase (anti-phase) relationship, while vertically upward arrows show that ENSO
leadsstreamflow by 3 month.
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3.2 Sediment load and SST

The Nanliu River basin water discharge and Niño 3.4 region SST

showed a significant 10-14 months main resonance cycle throughout

the study time domain (Figure 4A). The phase relationship remained

stable within the study time domain, with an average phase angle of

30°, indicating that changes in SST changed onemonth after changes in

basin water discharge. This information was derived from a study of

the relationship between sediment load and SST. During the study

period, the Niño 3.4 area SST and Pearl River water discharge exhibit
Frontiers in Marine Science 06
significant 10-14 month main resonance cycles (Figure 4B). The phase

connection remains steady, with an average phase angle of 30°,

indicating that changes in water outflow occur one month following

changes in SST.

From 2008 to 2012, there was a significant 10-48 month

correlation between Minjiang River water discharge and Niño 3.4

region SST (Figure 4C). The phase relationship was stable

throughout the study period, with an average phase angle of 90°,

indicating that changes in water discharge lagged SST changes by

3 months.
FIGURE 3

WTC: Wavelet coherent spectrums between monthly water discharge and Nino3.4 SST.
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The interaction between Yangtze River basin’s water discharge

and Niño 3.4 region SST exhibits a significant main resonance cycle

of 10-14 months throughout the time domain of the study

(Figure 4D). The phase relationship remains stable within the time

domain, with an average phase angle of 45°, indicating that basin

water discharge changes lag SST changes by 1.5 months. In the Niño

3.4 zone, the Yellow River basin’s water discharge and SST have two

resonance cycles with an average phase angle of 45° during 2003-2014

(Figure 4E). This suggests that changes in basin water discharge lag
Frontiers in Marine Science 07
1.5 months after changes in SST. Whereas, the 2016-2018 and phase

relationship remained stable within the study time domain, with an

average phase angle of 90°, indicating that water discharge changes

lagged by 3 months compared to SST changes.

The Huai River’s water discharge and Niño 3.4 regional SST

(Figure 4F) show a significant but discontinuous 10-16 months

main resonance cycle throughout the study time domain, and the

phase relationship is relatively stable within the study time domain,

with an average phase angle of 45°, indicating that water discharge
FIGURE 4

XWT: Crossed wavelet power spectrum between the monthly sediment load time series and the Nino3.4 SST.
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changes lag behind SST changes by 1.5 months on the interannual

scale. On the other hand, the water discharge in the Liao River

(Figure 4G), which has the highest latitude, and the SST in the Niño

3.4 region show intermittent main resonance cycles of 10-14

months throughout the time domain of the study, and the phase

relationship is less stable within the time domain of the study, which

indicates that the changes in water discharge correlate poorly with

the changes in the SST on the interannual scale.

Figure 5 illustrates the WTC of sediment and SST analysis

results. Among these, the Nanliu River, Pearl River, and Yangtze

River have a robust association throughout the study period, with a

considerable primary resonance phase lasting 8-16 months.

However, the responses to SST varied, with the water discharge of

the Nanliu River correlating with its SST in the same phase, whereas

the water discharge of the Pearl River and Yangtze River trailed SST

by 1.5 months. The Minjiang River, Yellow River, Huai River, and

Liao River were identified as intermittent yearly oscillations with

complex phase interactions.
Frontiers in Marine Science 08
3.3 Water discharge, sediment load
and PDO

Figure 6 shows the flow of a single river with the XWT results

prior to PDO. During the study period, the interannual cycle

distributions of all rivers were scattered with complex phase

relationships. interannual periodicity between flow and PDO was

observed for the Pearl River, the Minjiang River, the Choshui River,

and the Yellow River from 2004-2016. The water releases of the

Nanliu River, Pearl River, Minjiang River, Choshui River, Gaoping

River, Yangtze River, Yellow River, Huai River, and Liao River lag

three months or more behind PDO variations. It also oscillates

interannually (mostly every 8-16 months). It can be seen that PDO

affects interannual scales to some extent in all rivers except Nanliu

River.PDO has significant effects on interannual and interdecadal

time scales from Figure 7. Coherence on annual scales was higher

than that on intra-annual scales for the Pearl River, Minjiang River,

Choshui River, Gaoping River, Yellow River, and Liao River. The
FIGURE 5

WTC: Wavelet coherent spectrums between the monthly sediment load time series and the Nino3.4 SST.
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continuous coherence between water discharge and PDO was not

significant at any time scale throughout the study period.

Figure 8 depicts potential link between sediment load and PDO

in different rivers. The PDO altered each river’s sediment load about

2006. Both, and altogether, the sediment load of each river lagged

behind the change in the PDO by approximately three months. There

is no consistent relationship between sediment load and PDO.

Figure 9 shows that PDO had a major impact on the Yangtze

River, Yellow River, Huai River, and Liao River on both intra- and

inter-annual time frames.
Frontiers in Marine Science 09
4 Discussion

4.1 Linkages between climate oscillations

ENSO (El Niño and Southern Oscillation) has a cold phase and a

warmphase,whicharemanifested in theoceanasElNiño (hotphase) and

LaNiña (coldphase) events. These twophases have significant impacts on

precipitation variability in eastern China (Shi and Wang, 2019). The

PDO’s spatial distribution is comparable to that of ENSO, and various

studies have demonstrated that the two are inexorably linked.
FIGURE 6

XWT: Cross-wavelet power spectrums between monthly water discharge time series and PDO.
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Wang et al. (2008) pointed out that PDO affects and adjusts

the background state of the tropical Pacific climate, which

influences the spatial and temporal aspects of ENSO and creates

inter-decadal variations, and in turn, ENSO controls the intensity

of PDO on a variable range of 2-7 years. Kravtsov (2012) also

discovered and shown that the inter-decadal fluctuation of ENSO

variability is related to the climatic change component on the

inter-decadal scale, which is incorporated into the PDO. Feng

et al. (2014) revealed that the PDO can influence ENSO variability,
Frontiers in Marine Science 10
as seen by the gradual decay of ENSO events in the positive phase

and the rapid decay of ENSO events in the negative phase.

Different phases of the PDO can regulate the occurrence

frequency and amplitude size of ENSO.

In summary, the PDO influences the climate background state in

the Pacific Ocean, modulating the amplitude, variability, and

frequency of ENSO events, and ENSO, in turn, modulates the

intensity of PDO events on a 2-7 years period. Because the phases of

ENSO and PDO are not synchronized, the in-phase/out-of-phase
FIGURE 7

WTC: Wavelet coherent spectrums between monthly water discharge and PDO.
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relationship between ENSO and PDO has highly diverse effects on

precipitation and water discharge in different areas.
4.2 Impacts of ENSO

Various PDO and ENSO events can influence the interannual

variability of main precipitation patterns in China via atmospheric

distant correlation (Sang et al., 2020; Chen et al., 2022). In turn,

precipitation variations may result in increased discharge changes and

associated sediment shifts, particularly for rivers with little glacial

meltwater recharge (Legesse et al., 2010; Shi et al., 2013;Yin et al., 2023a).

The basin’s shorter interannual-scale cycle variations of water

discharge and sediment load are significantly influenced by the

anomalous interannual fluctuations of ENSO episodes. Among

them, water discharge variations in the Pearl River and Minjiang

River basins responded particularly quickly and sensitively to ENSO

events, and they had the strongest link with SST changes, which were

practicallypositivelyassociated.This couldbebecause theENSOwarm

phase deflects low-level southwesterly winds from China’s southeast
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coast, which influences winter precipitation in southern China and

consequently has an impact on water discharge (Wang et al., 2008).

Furthermore, despite the fact that Taiwan’s threemountain streams

are physically close together, the phase connections between ENSO and

waterdischargediffer.Thismaybedue to the fact thatwhenSSTchanges

abnormally, the corresponding Walker Circulation, the position of the

monsoon trough, and the subtropical high pressure will also change,

which in turn will alter the large-scale circulation (Francisco et al., 2001;

Echezurıá et al., 2002). The location and path of tropical cyclone

formation will be significantly affected by changes in thermodynamic

factors, which include ocean surface temperature, mid-tropospheric

relative humidity, and other dynamical factors influenced by it, such as

low-level relative vorticity and vertical wind shear. Then the association

with ENSO becomes less stable when small mountain streams are

exposed to tropical cyclones, which can cause abrupt changes in

water discharge.

When big rivers and mountain streams are compared, it can also be

found that while the resonance period of water discharge and ENSO for

large rivers like the Yangtze and Pearl Rivers extends throughout the

entire study year, but it does not extend for the Tamsui, Choshui, and
FIGURE 8

XWT: Crossed wavelet power spectrum between the monthly sediment load time series and the Nino3.4 SST.
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Gaoping rivers. This is likely because the rivers are shorter in length and

produce relatively little water discharge annually, so a brief period during

which one or more extreme rainfall events occur can contribute

significantly to the annual water discharge and decouple the

correlation between water discharge and ENSO changes in some years.

The impact of ENSO shows a strong-weak trend from south to north,

which is also supported by Ouyang et al. (2014).
4.3 Impacts of PDO

All rivers’ water discharge, with the exception of the Huai River,

followsan interannual cycleof roughly tenyears,which is consistentwith

the PDO’s cycle scale. Such a cycle results in an abundance/depletion

changeover in the basin water discharge that coincides with the PDO’s

cold/warmphase transition, indicating that thePDOisprobablygoing to

have an impacton thebasin’shydrological climate change.The sediment

loads of the Nanliu River, Minjiang River, Yangtze River, Yellow River

and Liao River are also similar to the interannual cycle of their water

discharges. Analyzing the warm and cold phase phases of the PDO in
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combination with the water discharge and sediment load, It has been

discovered that river water discharge south of the Yangtze River varies

depending onwhether the PDO is in its warm or cool phase. This could

be because monsoon precipitation in southern China is heavily

influenced by the Northwest Pacific Subtropical High Pressure

(WNPSH). According to Zhu and Yang (2003), Precipitation in

Northeast China is typically higher during the warm PDO than

during the cold PDO due to the weakening of East Asian summer

winds and the southward shift of the subtropical high pressure in the

western Pacific Ocean, which increases summer precipitation in

Northeast China during the warm PDO phase. In contrast, the

reaction of yearly rainfall to warm and cold PDO phases in southern

Chinadiffers fromthat in thenorth,withprecipitationdecreasingduring

the warm PDO phase and increasing during the cold PDO phase.
5 Conclusions

The current study examined how climate change affected the

water discharge and sediment load of ten rivers in eastern China
FIGURE 9

WTC: Wavelet coherent spectrums between the monthly sediment load and PDO.
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between 2002 and 2022. The following conclusions have

been drawn:
Fron
1. ENSO and PDO have affected all rivers in eastern China,

albeit to varying degrees.

2. The effects of ENSO on river basins varied from south to

north, with weaker impacts on northern China’s Yellow

River, Huai River and Liao River. Conversely, water

discharge changes in the Pearl and Minjiang River basins

in southeastern China were highly sensitive to

ENSO events.

3. During the study period, ENSO had a consistent impact on

major rivers, while smaller rivers experienced occasional

impacts. The response rate of identical mountain and

stream-type rivers varied.

4. Water flows south of the Yangtze River increased during

the cold phase of the PDO, while discharges north of the

river increased during the warm phase of the PDO.
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