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Monitoring monthly mortality
of maricultured Atlantic
salmon (Salmo salar L.) in
Scotland II. A hierarchical
dynamic linear model
Carolina Merca1*, Annette Simone Boerlage2,
Anders Ringgaard Kristensen1 and Dan Børge Jensen1

1Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of
Copenhagen, Frederiksberg, Denmark, 2Centre for Epidemiology and Planetary Health (CEPH), SRUC
School of Veterinary Medicine, Inverness, United Kingdom
The sustainability of the salmon farming industry is being challenged by increased

mortality rates. Scotland’s open-source salmon production data provides the

possibility of developing an industry-wide mortality monitoring model, valuable

for identifying and addressing unexpected increases in mortality without needing

data sharing agreements across different companies. This study aimed to utilize

these data to develop a hierarchical dynamic linear model (DLM) for monitoring

monthly mortality of maricultured Atlantic salmon in Scotland. We evaluated

whether considering the hierarchical structure present in the data (country,

region, and site) would improve mortality predictions when compared to the

production cycle level DLMs developed in a previous study. Our findings

demonstrated that the hierarchical DLM outperformed the production cycle

level DLMs, confirming the value of this more complex modelling approach.

Nevertheless, the hierarchical model, like the production cycle level DLMs,

exhibited some uncertainty in the mortality predictions. When mortality is

higher than expected, site level warnings are generated, which can encourage

producers and inspectors to further investigate the cause. Between 2015 and

2020, approximately 25% of the production cycles and 50% of the sites

encountered at least one warning, with most warnings happening in the

summer and autumn months. Additionally, the hierarchical model enabled

monitoring mortality at multiple levels. This information is useful for various

stakeholders as part of amonitoring system, offering insights intomortality trends

at national, regional, and sites levels that may benefit from strategic resource

management. Recommendations for model improvements include utilizing

shorter data aggregation periods, such as weekly, which are not currently

available as open-source data.
KEYWORDS

salmon, mortality, multi-level model, hierarchical model, dynamic linear models,
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1 Introduction

Farmed salmon are a significant contributor to the aquaculture

trade, playing an increasingly important role in providing food and

nourishment worldwide (FAO, 2022). Scotland stands as the third-

largest producer of farmed salmon globally (Iversen et al., 2020).

Within the UK, farmed salmon is one of the top food exports

(Department for Environment, Food & Rural Affairs, 2023). Despite

these achievements, the industry faces sustainability concerns

particularly with mortality rates exceeding 20% of the production

in the last years in Scotland (Munro, 2023), a trend also observed in

Norway (Sommerset et al., 2024). This mortality translates into

economic losses and suboptimal fish welfare and is one of the main

challenges to the industry’s sustainable growth (Noble et al., 2018).

Salmon aquaculture is a highly technologically advanced

industry (FAO, 2022), which collects an increasing amount of

data. In Scotland, the government systematically collects and

collates monthly mortality data from all producers, making it

publicly accessible in a standardized format across all sites. This

continuously updated resource holds the potential for the

development of an industry-wide mortality monitoring model,

eliminating the need for complex data sharing agreements.

In a previous study, these Scottish open-source mortality data were

used to create dynamic linear models (DLMs) at production cycle level

(Merca et al., 2024). A univariate production cycle level DLM was

created using exclusively mortality data. Additionally, several

multivariate production cycle level DLMs were developed using

mortality data with different combinations of environmental

variables. The best multivariate model was the one that incorporated

mortality and salinity related variables. Despite the presence of

uncertainty in mortality predictions, the Scottish open-source

mortality data enabled monitoring salmon mortality. Indeed, it was

possible to trigger warnings when mortality was higher than expected,

enabling further investigation of the cases if implemented in real-time.

Nevertheless, the authors hypothesized that a hierarchical framework,

wheremultiple units (in this case: sites, regions, and country) organized

in a stratified structure are monitored simultaneously, could potentially

improve the monitoring of salmon mortality. For instance, the

hierarchical model can take into account that the sites within the

same region are more closely correlated than sites in different regions

(Dohoo et al., 2014). Besides, hierarchical modelling would enable

monitoring mortality at multiple levels. Such information can be

valuable for different stakeholders, by providing insights about

mortality trends at regional and national levels, and by allowing

comparisons of mortality across different regions.

In animal production, hierarchical DLMs are proven effective in

capturing complex relationships and dynamics across multiple

organizational levels, facilitating informed decision-making. For

instance, in pig production, a hierarchical DLM was successfully

employed to analyze drinking patterns across pen, section, and herd

levels (Dominiak et al., 2019b, a). In another study in pig herds,

conducted by Bono et al. (2012), DLMs were employed for

monitoring litter sizes at both herd and sow levels. In dairy cows,

DLMs have been implemented to estimate the effects of interventions
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at herd level, while also considering the cow effect (Stygar et al., 2017;

Skjølstrup et al., 2022; Rustas et al., 2024). For aquatic animals, fewer

examples of hierarchical modelling exist. In trout, hierarchical

modelling has been used to study trout growth in locations such as

Lake Superior, North America (Stebbins et al., 2024), and in Neste

d’Oueil, Pyrénéss, France (Lecomte and Laplanche, 2012). For

salmon, examples include Hubley and Gibson (2011) who

developed a Bayesian hierarchical model to estimate the annual

mortality of wild Atlantic salmon in Nova Scotia, Canada. Another

example is Scheuerell et al. (2015), who used a hierarchical time-

series model to investigate the effects of large-scale hatchery

supplementation on the density of wild Pacific salmon adults.

The purpose of this study was to use the same open-source

mortality data as in Merca et al. (2024) to develop a hierarchical

DLM for monitoring monthly mortality of maricultured Atlantic

salmon in Scotland. We assessed whether this more complex

modelling approach that takes the hierarchical structure of the

data into account improved the predictions of mortality when

compared to the production cycle level DLMs previously

developed. Besides, the hierarchical model can generate estimates

for salmon mortality at site, region, and country levels, allowing

stakeholders to monitor mortality at different levels. Additionally,

the hierarchical DLM created was designed to trigger warnings

when the observed mortality exceeds the expected levels. These

warnings can inform producers, veterinarians, and inspectors,

alerting them to further investigate. More specifically, we had

four objectives: (1) to create a hierarchical DLM using mortality

data from salmon sites in Scotland; (2) to compare the production

cycle level DLMs with the hierarchical model and select the best

model for monitoring salmon mortality; (3) to monitor salmon

mortality at multiple levels (4) to create warnings at site level when

observed mortality exceeded the expected levels.
2 Materials and methods

The present study involved data cleaning, manipulation, and

modelling utilizing the statistical programming environment R

(R Core Team, 2022) and RStudio (Posit team, 2022). The time-

series analysis workflow is freely available (https://doi.org/10.5281/

zenodo.13881599).
2.1 Data source

The data used in this study consisted of the same production data

previously utilized in Merca et al. (2024), obtained from the

Scotland’s Aquaculture website (http://aquaculture.scotland.gov.uk/;

last accessed 9 February 2023). The data were extracted from a

dataset called “Fish FarmMonthly Biomass and Treatments”, which

consists of monthly data submitted by all active producers of all fish

species produced in Scotland. Specifically, this study focuses on

production data of seawater Atlantic salmon (Salmo salar L.),

covering the period from 2002 to 2020.
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2.2 Data cleaning and data manipulation

The data cleaning and manipulation procedures conducted in

this study followed the framework outlined in Merca et al. (2024), as

the same mortality data were utilized in both studies. For a more

extensive description of these procedures, refer to Merca et al. (2024).

All marine salmon sites operating in Scotland from 2002 to

2020 were included in the original dataset, totaling 402 sites (open

sea farms) and 2138 production cycles (period between stocking

and harvesting). Those sites were spread across the six regions of

Scotland: Highland, Argyll & Bute, Shetland Islands, Eilean Siar,

Orkney Islands, and North Ayrshire (see Merca et al., 2024,

Figure 1). Since North Ayrshire region only has one site, it was

grouped with the nearest region, i.e. Argyll & Bute. Only the

resulting five regions were considered.

The dataset used contained monthly mortality data reported as

kilograms of dead salmon, per month and per site. In order to

account for variations in production size, we converted mortality

into proportions by utilizing the biomass data also available:

Mortality =
Dead   salmon   (kg)

Biomass   (kg)
: (1)

Upon analyzing the mortality proportions, we identified some as

unrealistic, such as instances of negative mortality proportions. The

unrealistic values are potentially due to fish movements between sites

during the month, for which timing and quantities were unavailable.

The reported biomasses represent a snapshot of the biomasses at the

end of the month, while mortality accounts for cumulative mortalities

throughout the month. Therefore, when fish are moved from one

location to another within a given month, the site from where the fish

left will report biomasses at the end of the month that are lower

relative to the mortalities recorded within that same month. On the

other hand, when fish are introduced to a site during the month, the

reported biomasses are higher compared to the mortalities observed.

To mitigate this error, we tried to capture these movements by

defining biomasses considered lower than realistic as

Low   biomasst ≤  

Biomass   (kg)t−1 −Mortality   (kg)t−1 − 0:2� Biomass   (kg)t−1,

(2)

and biomasses higher than realistic as:

High   biomasst≥

1:2� Biomass   (kg)t−1 + Feed   intake   (kg)t � 0:77,

(3)

where t corresponds to the current month and t − 1 to the previous

month. For both cases we established limits of 20% deviation from

expected biomasses, and any biomasses falling below or above were

deemed abnormal (Equations 2 and 3). Additionally in Equation 3,

we relied on feed intake reports (available in the dataset) to foresee

how much the salmon where expected to grow in each month. We

used a reported feed conversion ratio (FCR) of 1.3 for salmon in the

United Kingdom (Torrissen et al., 2011), meaning that 77% of feed

intake is transformed into weight gain. Equations 2 and 3 were

applied to all reported biomasses in the dataset, and any considered
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lower or higher than realistic were replaced with missing values.

The remaining realistic biomasses were then used to calculate

mortality according to Equation 1.

Additionally as part of the data cleaning process, some sites and

production cycles were excluded from the study. This was done for

various reasons such as missing data and records that did not meet

the standard production cycle for commercial purposes, as detailed

in Merca et al. (2024).

After data cleaning and manipulation, our study population was

reduced to 293 seawater Scottish salmon sites, corresponding to

1610 production cycles distributed in five regions of Scotland.
2.2.1 Transformation and standardization
According to West and Harrison (1997), the residuals of a

DLM are expected to follow a normal distribution, as long as

the system does not deviate from the expected behavior. In

order to achieve this, mortality values underwent a logarithmic

transformation: log   (x + 0:00005). As some of these mortality

values were zero, we added a small constant before applying the

logarithmic transformation. The data were then standardized by

subtracting the sample mean from all observations and dividing

them by the sample standard deviation.
2.3 Learning and test sets

The available data (293 sites and 1610 production cycles) were

utilized to create the learning and test sets, employing the same

methodology as described in Merca et al. (2024). By using the same

learning and test sets in both studies, a direct and comprehensive

comparison of the results can be achieved. The learning set

consisted of 145 sites and 784 production cycles, which were

utilized to estimate the parameters for the DLM. The test set

comprised the same 145 sites and 353 additional production

cycles used to validate the models.
2.4 Hierarchical dynamic linear model

Dynamic linear models (DLMs) represent a specific type of time

series models. DLMs rely on a Bayesian framework to infer the

underlying parameter vector from observed data, while

incorporating any relevant prior information available before the

observations are made. Each time step involves forecasting values

accommodating measurement errors and allowing systematic

fluctuations (West and Harrison, 1997).

Hierarchical models (also referred to as multi-level models) are

convenient when dealing with data that have an inherent stratified

structure. In this case, a dataset comprising a country with different

regions, each containing various sites, is an example of a dataset that

might benefit from hierarchical modelling. This approach is likely

to be advantageous because different geographical locations likely

result in greater similarity within the same region, such as similar

water temperatures or currents. Hierarchical modelling captures
frontiersin.org
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those correlations between different units, thereby potentially

explaining more variation than would be explained without

taking the structure into account. Moreover, it enabled

simultaneous monitoring of mortality at multiple levels.

An extensive framework for constructing production cycle level

DLMs (non-hierarchical) using the same mortality data is described

in Merca et al. (2024). Hierarchical DLMs are defined within the

usual framework of a DLM with an observation equation and a

system equation. The hierarchical architecture of the model is only

reflected in the structure of the matrices present in those equations.

In this study, we created a hierarchical DLM using site level

monthly mortality data (logarithmically transformed). The model

created had all three levels (country, region, and site) directly

represented. Consider Yrit as the observed value (mortality) in

month t for site i within region   r. A straightforward approach of

modelling the hierarchy (country/region/site) is through the

following model:

Yrit = mt + art + brit + vrit ,       vrit   ∼  N(0,  s 2), (4)

where mt is a dynamic country level, art is a dynamic region level,

brit is a dynamic site level, and vrit is a random observation error.

Therefore, each component contributes to explaining a specific

aspect of the observed mortality. This framework allows for changes

over time across all levels – country, region, and site.
2.4.1 Harmonic waves and trend factors
After running the simplest type of a hierarchical DLM where no

time trends were assumed, we noticed a seasonal pattern in the

country level mortality estimates. Thus, we incorporated that

seasonality into our model by using the Fourier form

representation (West and Harrison, 1997), which involves a linear

combination of trigonometric functions (sine and cosine, also known

as harmonic waves). We tested four approaches: including solely one

harmonic wave, the sum of two harmonic waves, the sum of three

harmonic waves, and not including any harmonic wave. To compare

the performance of these four approaches, we calculated the Root

Mean Squared forecast Error (RMSE) for the forecast errors across all

sites. The forecast errors consist of the difference between the

observed mortality and the forecasted mortality values. Smaller

RMSE values indicate greater model precision. We found that the

sum of two harmonic waves provided the best fit for the data.

Each harmonic wave is represented by two parameters, in

addition to a mean level element. Using the sum of two harmonic

waves, 5 parameters were needed:   lt ,   h11t ,   h12t ,   h21t ,   h22t . Thus,
the country level was defined as follows:

mt = ½ 1 1 0 1 0 �  

lt
h11t

h12t

h21t

h22t

2
666666664

3
777777775
,

where  lt corresponds to the intercept, h11t and h12t represent the

parameters of the first harmonic wave and h21t and h22t represent

the parameters of the second harmonic wave.
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For the regional levels, we did not consider any time trend.

However, we assumed a trend for the site levels, as they may change

according to the stage of the production cycle (i.e. the age of the fish

at the site). To model this trend, we use a spline function created

using the smooth.spline function available in stats R package

(R Core Team, 2022). One spline function was developed for each

site, which provided the desired shape to reflect the mortality of the

corresponding site’s production cycles. The magnitude of the trend

was dynamically estimated as a trend factor (ϱ).

2.4.2 Observation equation
The observation equation (Equation 5) can be written in matrix

notation as

Yt =   Ft
0 qt +   vt ,                       vt   ∼  N   (0,  Vt), (5)

and describes how the values of an observation vector (Yt) depend on

underlying (unobservable) parameters (qt), through a transposed

design matrix (Ft
0 ). Observation errors are also considered (vt).

Here, Yt corresponds to a vector with the observed mortalities of all

sites in month t. The parameter vector was defined as

qt = (lt , h11t , h12t , h21t , h22t ,aAt ,aBt ,aCt ,aDt ,aEt ,

  bA1t , ϱA1t ,…, bB1t , ϱB1t ,…, bC1t , ϱC1t ,…, bD1t , ϱD1t ,…, bE1t , ϱE1t ,…,

bENt , ϱENt)
0,

where indexes A, B, C, D, and E represent the five regions, ϱrit
denotes the trend factor for site i in region r at month t and N

corresponds to the total number of sites in region E. The parameter

vector (qt) consisted of 300 elements.

The transposed design matrix is where the structure of the

model is represented, allowing the integration of information from

all three levels. The number of rows in Ft
0 is equal to the number of

sites and the number of columns corresponds to the size of   qt .
Thus, when no observations were missing in month t, it

corresponded to a 145� 300 matrix:

F
0
t =

1 1 0 1

⋮ ⋮ ⋮ ⋮

1 1 0 1

⋮ ⋮ ⋮ ⋮

0 1 0 0

⋮ ⋮ ⋮ ⋮

0 0 1 0

⋮ ⋮ ⋮ ⋮

0 0 1 0

⋮ ⋮ ⋮ ⋮

0 0 0 0

⋮ ⋮ ⋮ ⋮

⋯ 0 0 ⋯

⋱ ⋮ ⋮ ⋱

⋯ 1 0 ⋯

⋱ ⋮ ⋮ ⋱

0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 ⋯ 0 0

⋮ ⋱ ⋮ ⋮

0 ⋯ 0 0

⋮ ⋱ ⋮ ⋮

1 1 0 1

⋮ ⋮ ⋮ ⋮

1 1 0 1

⋮ ⋮ ⋮ ⋮

0 0 0 1

⋮ ⋮ ⋮ ⋮

0 0 0 0

⋮ ⋮ ⋮ ⋮

0 0 0 0

⋮ ⋮ ⋮ ⋮

1 0 0 0

⋮ ⋮ ⋮ ⋮

⋯ 0 0 ⋯

⋱ ⋮ ⋮ ⋱

⋯ 0 0 ⋯

⋱ ⋮ ⋮ ⋱

1 0 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1

⋮ ⋮ ⋱ ⋮

0 … 0 0

⋮ ⋱ ⋮ ⋮

0 ⋯ 0 0

⋮ ⋱ ⋮ ⋮

1 1 0 1 0 0 0 0 0 1 0 0 ⋯ 0 0 ⋯ 0 0 ⋯ 0  0 ⋯ 1 0

2
66666666666666666664

3
77777777777777777775

:

Each row corresponded to a site (here five sites are represented,

each belonging to a different region). The first five columns

corresponded to the country level, followed by other five columns

representing the regions levels. The remaining 290 columns

corresponded to the sites levels and trend factors. When there

was a missing observation for some site in month t, the row

corresponding to that site on the Ft
0 matrix was excluded.

This model already takes the hierarchy into account by seeing

each observation as a result of effects at all three levels. Furthermore,

it may be reasonable to assume that the error terms within each
frontiersin.org
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level (vrit) are correlated with each other. This can be accomplished

if the individual error term is seen as the sum of three underlying

independent errors at the country (c), region (r), and site (i) levels

vrit =   vct + vrt + vit ,      vct   ∼  N(0,  s 2
C),      vrt   ∼  N(0,  s 2

R),      vit   ∼  N(0,  s 2
I ) :

Thus, the variance-covariance matrix Vt of vt , when no

observations were missing in month t, corresponded to a 145�
145 matrix, represented as:

Vt =

s 2
C + s 2

R + s 2
I             s 2

C + s 2
R               ⋯                       s 2

C                              s 2
C

    s 2
C + s 2

R              s 2
C + s 2

R + s 2
I          ⋯                       s 2

C                              s 2
C

          ⋮                                ⋮                    ⋱                       ⋮                                ⋮

        s 2
C                              s 2

C                    ⋯            s 2
C + s 2

R + s 2
I               s 2

C + s 2
R

         s 2
C                              s 2

C                   ⋯                 s 2
C + s 2

R                s 2
C + s 2

R + s 2
I

2
666666664

3
777777775
;

considering that the sites represented in the first two columns (and

rows) are situated within the same region (region A), while the sites

represented in the last two columns (and rows) are both part of a

common region which is different from the initial one (region E).

2.4.3 System equation
The system equation (Equation 6) is represented as

qt =  Gt   qt−1 +  wt ,                      wt   ∼  N   (0,  Wt), (6)

where Gt is called the system matrix and serves to update the

parameter vector, and wt represents the system errors. The system

matrix is a quadratic matrix with the same size as qt :

Gt =

1           0                      0                    0               0                0     0     0     0     0     0         0     ⋯      0     0

0         cos (w)         sin (w)             0                0                0     0     0     0     0     0         0     ⋯      0     0

0      − sin (w)        cos (w)             0                0                0     0     0     0     0     0         0     ⋯      0     0    

0          0                     0                 cos (2w)     sin(2w)      0      0     0     0     0     0        0     ⋯      0     0

0          0                     0               − sin (2w)    cos(2w)      0     0     0     0     0     0         0     ⋯      0     0

0          0                     0                     0                0                1     0     0     0     0     0         0     ⋯      0     0

0          0                     0                     0                0                0     1     0     0     0     0         0     ⋯      0     0

0          0                     0                     0                0                0     0     1     0     0     0         0     ⋯      0     0

0          0                     0                     0                0                0     0     0     1     0     0         0     ⋯      0     0

0          0                     0                     0                0                0     0     0     0     1     0         0     ⋯      0     0

0          0                     0                     0                0                0     0     0     0     0     1         0     ⋯      0     0

0          0                     0                     0                0                0     0     0     0     0     0      dA1t   ⋯      0     0

⋮           ⋮                    ⋮                      ⋮                 ⋮                ⋮     ⋮      ⋮     ⋮     ⋮      ⋮        ⋮     ⋱     ⋮       ⋮

0          0                     0                     0                0                0     0     0     0     0     0         0     ⋯      1     dENt
0          0                     0                     0                0                0     0     0     0     0     0         0     ⋯      0     1

2
666666666666666666666666666666666666664

3
777777777777777777777777777777777777775

where w = 2�p
12 , drit = m̂ rit − m̂ ri,t−1 (being m̂  the expected log-

transformed mortality at times t and t − 1 for site i in region r,

given by the spline function), and N corresponds to the total

number of sites in region E. The two harmonic waves for the

country level are represented in the first five rows and columns. The

expected rate of change in log-transformed mortality (drit) are

shown in the corresponding rows and columns of each site, being

utilized to update the site levels.

The systematic variance-covariance matrix Wt of wt describes

how much each element of the system is likely to randomly change

from one time step to the next, and was calculated using a

component discounting approach described by West and

Harrison (1997). A discount factor is a numeric value that falls

within the range of 0 to 1. Discount factors that are closer to 0 reflect
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large system variance, while those closer to 1 indicate a small

variance. This approach is referred to as component discounting,

as it allows each level (component) to have its own discount factor.

Therefore, the model can change at a different rate for each level,

offering more modelling flexibility. In this case, three discount

factors were included: one for country   (rC), one for region (rR),
and one for site (rI). The resulting variance-covariance matrixWt is

a block-diagonal matrix with a dimension of 300� 300.

2.4.4 Initialization
In order to fully describe a DLM, it is necessary to provide the

initial distribution (q0 ∣D0)   ∼  N   (m0,  C0) of the parameter

vector q0, before any observations are made (D0). We achieved

this my defining an initial mean m0 and the initial variance-

covariance matrix C0.

The initial mean m0 followed the same structure of qt , first
having the country elements, then the regions, followed by the sites.

For the season-dependent country level two harmonic waves were

introduced, representing 5 elements. We created a linear regression

to determine the relationship between the observations of mortality

(on the learning set) and a trigonometric function representing a

sum of two harmonic waves, for a period of 12 months. The

resulting coefficients estimates were used in m0. The coefficient

estimates corresponded to the intercept and one sine and cosine

wave for each harmonic wave used, resulting in 5 elements. For the

regions’ levels, we calculated the average of mortality for each region

using the learning set. We then subtracted the five elements

calculated for the country level, and added the results to m0.

Finally, for the sites’ elements, each site had a level and a trend

factor. For all sites, the level and the trend factor were set to 0 and 1,

respectively. A trend factor of 1 indicates that, prior to any

observations, we expected the system to evolve according to the

estimated spline function.

The initial variance-covariance matrix C0 corresponded to a

quadratic matrix with the same size as qt , also having the country,

regions, and sites elements. For the country part, we applied the vcov

function available on stats R package (R Core Team, 2022) to the linear

regression previously created for m0. This function returned a 5� 5

variance-covariance matrix of the main parameters of the regression

model. For the regions’ elements, we used the learning set to calculate

the average of mortality in each region, for the first 7 months of the

production cycles. Therefore, for each region we had 7 values, one for

each of the 7 months. From each of those values, we subtracted the five

elements calculated for the country level inm0. Then, we computed the

covariance of those subsequent 7 elements, resulting in one value per

region. For the sites, we also calculated the average of mortality in each

site, for the first 7 months of the production cycles. To each of those 7

elements, we subtracted the corresponding region mean and the five

elements calculated for the country level inm0. Then, on the 7 resulting

values, we calculated the differences between each two consecutive

elements. Finally, we computed the covariance between the differences

and the 7 mortality averages already discounting the country and

region parts. The final variance-covariance matrix C0 was

accomplished by diagonally combining the country individual
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variance-covariance matrix, the regions variances and the sites

variance-covariance matrices.

It is worth mentioning that the initial values of m0 and C0 were

of minor importance. As soon as the DLMwas applied to the data, it

automatically adapted over time.
2.4.4.1 When a new production cycle starts

Every time a new production cycle started, the site needed to be

reinitialized to ensure it did not incorporate information from

previous production cycles when predicting the new one.

The system equation (Equation 6) updates the parameter

vector from qt−1 to qt . Whenever a new production cycle

started, we wanted to reset the corresponding site to its initial

state. Therefore, we changed the level and the trend factor for the

specific site in qt−1 to 0 and 1, respectively (as inm0). Moreover, in

Gt , we inserted zeros in the rows and columns of the site that had a

new production cycle starting in order to “break the connection”

between cycles. Finally, we added some additional variance (C0)  

to the elements of Wt for the specific site that was initiating a new

production cycle. Hence, we increased the adaptability of

the model.
2.4.5 Optimizing DLM variance components
For a full specification of the variance components of this

hierarchical model, six parameters were needed: three observational

variances s 2
C ,s 2

R ,s 2
I (used in Vt) and three discount factors rC , rR,

rI   (used in Wt).

These six parameters were estimated from the learning set, through

numerical optimization. The values selected were the ones that

minimized the Root Mean Squared forecast Error (RMSE). This

estimation was performed using the optim function in R (R Core

Team, 2022), with the Nelder-Mead optimization algorithm. The

resulting observational variances were s 2
C = 0:02883, s 2

R = 0:01053 

and s 2
I = 0:45801, and the discount factors were rC = 0:77978, rR =

0:97855 and rI = 0:78199.
2.4.6 Filtering and smoothing
The DLM incorporated the Kalman filter technique, which

produces estimates updated according to new observations

(West and Harrison, 1997). Given the information available at

time t (Dt), the conditional probability of the parameter vector (qt)
is denoted as (qt ∣Dt)   ∼  N   (mt ,  Ct), where mt is the filtered

mean and Ct the variance-covariance matrix. The Kalman filter

allowed us to obtain monthly expected values (filtered mean and

variance) and forecasts for mortality at site level. Additionally, it

gave us expected mortality values for the country as a whole and for

each of the five regions.

The parameter vectors qt are autocorrelated. The Kalman filter

estimates the qt based on previous information only. However, due

to this autocorrelation, the future observations also contain valuable

information for estimating qt . Therefore, a retrospective analysis

called smoothing can be employed (West and Harrison, 1997). This

method takes into account all the available observations, including

past and future ones, providing the best possible estimates.
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2.5 Monitoring at country and region levels

As stated in Equation 4, the observed mortalities at a site

consisted of the sum of the dynamic country, region, and site

levels. However, obtaining mortality estimates at the country and

regional levels required additional calculations.

To obtain the mortality estimates at regional level, we defined a

vector that could extract the regional estimates from the estimated

means (filtered and smoothed). For each region and at each time

step, a different vector was created. For example, the vector for

region A at time t was defined as

zAt =

�
1, 1,0, 1,0, 1,0,0,0,0,

1
MAt

,0,…,
1

MAt
,0,…,0,0,…,0,0,…,

0,0,…,0,0

�
,

whereMAt corresponds to the number of sites belonging to region A

with observations at time t. This vector had the same structure as  qt ,
where the first five elements correspond to the country level, the

following five values represent the different regions (with the number

1 in the position of regionA), and the remaining elements correspond

to the sites levels and trends. In the positions of the sites levels

belonging to region A with observations at time t, we assigned 1
MAt

to

equally capture each site’s influence on the region. The same logic was

employed to create the vectors for all five regions. Then, to extract the

mortality estimates at regional level, we multiplied the previously

described vector by the filtered mean (mt). To extract the mortality

estimates at regional level estimated by the retrospective

smoothening, the same methodology was used: the same previously

explained vector was multiplied by the smoothed mean.

For the country level, we also created a vector to extract the

mortality estimates:

zct = (1, 1, 0, 1, 0,
1
5
,
1
5
,
1
5
,
1
5
,
1
5
,

 
1

5�MAt
,0,…,

1
5�MAt

,0,…,
1

5�MBt
,0,…,0, 0,…,

1
5�MCt

,0,…,
1

5�MDt
,0,…,

1
5�MEt

,0),  

where theMAt ,MBt ,MCt ,MDt , andMEt correspond to the number of

sites belonging to regions A, B, C, D, and E, respectively, with

observations at time t. The logic behind the structure of this vector

was the same as that used in creating the vectors for the regions: the

first five elements represent the country level, the next five values

correspond to the regions, and the following represent the sites levels

and trends. In all region positions, we assigned 1
5, where 5 represents

the number of regions, to equally reflect the impact for each of the five

regions on the country. The same rationale was employed for the site

levels, where we divided 1 by the product of 5 (number of regions) and

the number of sites with observations at time t within each region.

Positions corresponding to sites where no observations existed at time t

were set as 0. Subsequently, to extract themortality estimates at country

level, both filtered and smoothed, we multiplied the country vector by

the filtered mean (mt) and by the smoothed counterpart, respectively.
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Finally, we also needed to extract the variance of the smoothed

and filtered levels for region (Crt) and for country (Cct). The same

previously defined vectors were again used. At regional level the

variance was extract as

Crt = zrt  �  Ct  �   zrt
0,  

where r ∈ A,B,C,D, Ef g,  and at country level

Cct = zct  �  Ct  �   zct
0,  

where the Ct corresponds to the variances of the filtered or

smoothed levels, depending on which variance we are extracting,

at time t.
2.6 Generating warnings

Warnings were generated at site level. A warning was defined

as any observation of mortality falling above the 95% credible

intervals (CI). The 95% CI were determined using the forecasted

values ft (and their respective variance Qt) produced by the Kalman

filter, as:

95%  CI = ft ± 1:96� st , (7)

where st =  
ffiffiffiffiffi
Qt

p
. The warnings were generated using the same

methodology as in the previous study (Merca et al., 2024).
3 Results

The results presented were achieved by applying the

hierarchical DLM to the test set using initial specifications

derived from the learning set.
3.1 Comparison of hierarchical and
production cycle level DLMs

After developing the hierarchical DLM (objective 1), the second

objective was to compare the performances of the univariate

production cycle level DLM (which used only mortality data) and

the best multivariate production cycle level DLM (which

incorporated both mortality and salinity related variables) created

in a previous study (Merca et al., 2024), with the newly developed

hierarchical DLM. These comparisons involved assessing the

discrepancies between the mortality observations and the models

predictions, represented as forecast errors. The RMSEs were

calculated for the collective set of mortality forecast errors across

all production cycles for the production cycle level DLMs and across

all sites for the hierarchical DLM.

The RMSEs of the three models are shown in Table 1. The smaller

RMSE for the hierarchical DLM suggest better precision. To determine

the statistical significance of these differences, a paired t-test was

performed on the squared forecast errors of the models being

compared. T-tests are recognized for their utility in studies

characterized by large sample sizes and are noted for their
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robustness, even when dealing with skewed data (Fagerland, 2012).

Since we aimed to compare variances, squaring the forecast errors was

appropriate. The p-value computed between the univariate production

cycle level DLM and the hierarchical DLM was 6:14� 10−5, and 2:44

�10−4 between the multivariate production cycle level DLM and the

hierarchical DLM. Thus, we can conclude that the hierarchical DLM

performed significantly better than both production cycle level DLMs.
3.2 Monitoring mortality at multiple levels

The hierarchical DLM provided estimates of mortality at country,

region, and site levels (objective 3). At country level (Figure 1), we can

see the filtered mean estimated by the prospective Kalman filter (in

green) and the smoothed mean (in blue) estimated by the

retrospective smoothening. Both estimates are accompanied by their

corresponding 95% credible intervals (CI), derived from their

respective variance components. The filtered mean (in green)

provides the most accurate estimates of the true underlying

mortality level at each time step, incorporating all prior information.

Meanwhile, the smoothed mean (in blue) offers the best possible

estimates of mortality at country level by considering all available

information both before and after each time step. At country level,

mortality exhibits a consistent pattern with clear seasonal variations,

showing higher mortality in the summer months (Figure 1).

At region level (Figure 2), the filtered mean (in green) and the

smoothed mean (in blue) are illustrated for each of the five regions

included in this study. At the region levels it is also possible to see

the seasonality in the estimates, with increased mortality during the

summer. Each region displayed distinct mortality trends that can be

analyzed individually. The region Highland experienced an upward

trajectory in mortality from 2016 to 2018, while being stable in

subsequent years. Argyll & Bute showed a notable decrease in

mortality in 2018 compared to the other years. The Shetland

Islands exhibited a decrease in mortality in the last months of

2020. In the Orkney Islands it is possible to see a declining trend in

mortality over the years. Eilean Siar showed an increase in mortality

in the last six months of 2020.

Here, we explain the site level using two sites as examples: Site X

(Figures 3A, B) and Site Y (Figures 4A, B). Starting with Site X, the

DLM provided estimates (filtered and smoothed means - Figure 3A)

but also the forecasted values produced at each time step in the

Kalman filter (Figure 3B). The two darker grey shaded areas

represent the two production cycles present in Site X during the

analyzed timeframe, interrupted by a fallow period in which no fish

were present in the site. Figure 3A illustrates that the means (filtered

and smoothed) demonstrated a consistent alignment with the

observations. It is worth noticing that the DLM continued to

provide estimates even in the absence of observations, based on

information from other sites (for instance in the last months of 2017

and beginning of 2018). Additionally, it is evident that during the

periods without observations (between the production cycles), the

95% confidence intervals widened, reflecting increased uncertainty

about the true mortality values due to the lack of mortality data. In

Figure 3B, the forecasts are depicted along with the corresponding

95% CI. The 95% CI are wide, implying a degree of uncertainty in
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the forecasts. In Site X the mortality is considered to be as expected,

since the observations do not exceed the 95% CI.

Figure 4 illustrates the filtered and smoothed means (Figure 4A)

and the forecasted values (Figure 4B), for Site Y. The observations

exceeded the forecasts 95% CI in May and August 2016, March

2017 and October 2020, therefore these observations gave rise to

warnings (Figure 4B).

At all levels - country, region and site - the estimates at the

initial time steps should be interpreted with caution, given that the

DLM was still adapting to the data, and the accuracy of these

estimates may be limited during this initial phase.
3.3 Warnings

The fourth and last objective of this study was to generate

warnings at site level when the observed mortality exceeded the

expected levels. To ensure comparability with the warnings

generated using the non-hierarchical models created in Merca

et al. (2024), the warnings here were also assessed per production

cycle. However, it is important to clarify that in this study the

warnings were generated at site level. We could then identify the

corresponding production cycle for each warning generated.

Between 2015 and 2020, 84 of the 353 production cycles

experienced at least one warning. Of these 84 cycles, 70% had

only one warning, 21% encountered two warnings, and 9%

experienced three.
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Of the 145 sites, 71 exhibited warnings, spanning all five

regions. The region of Argyll and Bute had the highest

occurrence, with 19 of 59 production cycles (32%) experiencing at

least one warning, with a total of 28 warnings (Table 2). This was

followed by the Highland region with 29% and Eilean Siar with

27%. The Orkney Islands region had the lowest number of

warnings, with 5 production cycles each recording one warning

out of 55 production cycles (9%), resulting in 5 total warnings, as

shown in Table 2.

Regarding the months of the year (Table 2), there was an

increase in March with 9 warnings out of 462 production cycle-

months (1.9%). Similarly, April had a 2.0% occurrence rate. The

months with the highest warning occurrences were July (3.5%),

August (4.4%), September (2.9%), and October (4.5%).

Concerning the years (Table 2), 2016 had the highest rate with

42 warnings over 903 production cycle-months (4.7%). This was

followed by 2017 with a 2.7% warning rate, 2015 with 2.1%, and

2018 with 1.6%. However, in 2015 only three months of data were

available, making direct comparisons inapplicable.
4 Discussion

A hierarchical DLM was developed to monitor salmon mortality

using open-source Scottish salmon data. The main goal was to

evaluate whether this more complex modelling approach, which

leverages the hierarchical data structure, offers better model

precision compared to the simpler production cycle level DLMs

(non-hierarchical) described in a previous study (Merca et al., 2024).

Indeed, the hierarchical model outperformed the production cycle

level DLMs, demonstrating that the additional modelling effort of

accounting for the structure of the data confers a significant

advantage. Similarly to the production cycle level models, the

hierarchical DLM also exhibited a degree of uncertainty in the

mortality predictions. Nevertheless, it was possible to trigger

warnings at site level when the observed mortality exceeded the

expected levels. An additional benefit of the hierarchical model was
TABLE 1 Root mean squared errors (RMSEs) for the univariate and best
multivariate production cycle level DLMs (Merca et al., 2024), and the
hierarchical DLM.

DLMs RMSEs

Univariate production cycle level 0.86028

(Best) multivariate production cycle level 0.85860

Hierarchical 0.82840
FIGURE 1

Outcomes from the hierarchical DLM at country level. In green: Filtered mean for the country level (mt) and the respective 95% credible interval (CI);
In blue: Smoothed mean for the country level (mts) and the respective 95% credible interval (CI).
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its ability to monitor mortality at country, region, and site levels. This

information provided by the hierarchical model can be particularly

valuable for various stakeholders as part of a monitoring system,

offering insights into mortality trends at multiple levels, while also

providing warnings at site level when mortality is higher

than expected.

Using open-source data offers numerous advantages, particularly

in the context of hierarchical modelling. Monitoring production at

higher levels, such as a country or region, typically involves

aggregating information from various companies operating in

different locations. Openly available datasets simplify the creation

of comprehensive models by facilitating data integration across these

entities. Open-source datasets eliminate the need for complicated and

time-consuming data sharing agreements between companies,
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thereby reducing administrative complexities and fostering a more

efficient process. This accessibility not only accelerates innovation but

also ensures transparency and reproducibility of the methods.

The idea behind creating a hierarchical DLM aimed to reflect

the inherent hierarchical structure present in the data. It is

typically anticipated that a relationship among the responses of

observations within a group exists, as the shared feature tends to

make the outcomes more similar than they would be otherwise

(Dohoo et al., 2014). In a previous study, we developed production

cycle level DLMs (Merca et al., 2024), which modelled each

production cycle individually, without considering correlations

between production cycles within the same site or region. In the

current study, we incorporated the data hierarchy, encompassing

a country level, grouped into five different regions, with each
FIGURE 2

Outcomes from the hierarchical DLM at region level, for each of the five regions. In green: Filtered means for the regional levels (mt) and the
respective 95% credible intervals (CI); In blue: Smoothed means for the regional levels (mts) and the respective 95% credible intervals (CI).
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region containing several sites. Accounting for this hierarchy has

proven beneficial in monitoring salmon mortality, justifying the

development of this more complex modelling approach.

The hierarchical DLM provided valuable outcomes: (1) it enabled

the monitoring of mortality at various levels, and (2) it triggered site

level warnings when mortality exceeded the expected levels.

Regarding the first outcome, we were able to calculate estimates for

country, region, and site levels over time (using data collected at site

level) offering critical insights into mortality trends. This information

can be valuable for various stakeholders, including health authorities,

in understanding trends that may benefit from strategic resource

management practices at regional or national levels. Two types of

estimates were generated at country, regional, and site levels: filtered

and smoothed values. It should be noted that the smoothed values,

obtained through retrospective analysis, are not suitable for real-time

monitoring and are therefore only relevant for retrospective

assessments. In turn, filtered values are best suited for real-time

analysis, and could be implemented as an industry-wide mortality

monitoring model. Concerning the second outcome, triggering

warnings when observed mortality significantly exceeds the

expected levels is an important feature of monitoring systems.
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These warnings can alert stakeholders, such as salmon producers

or authorities, to investigate the causes of excessive mortality. The

models are based on monthly mortality that is collated by a

government body. Therefore, the outputs are at least one or two

months behind real-time observations, and thus results of our model

are too late to be of use for immediate mitigative actions. However,

increasing warnings, or unexplained warnings, can point at a need for

health management issues or emerging diseases that may have been

otherwise left unnoticed for longer. This could save the industry time,

money and resources, and improve its sustainability.

Warnings were generated at site level when the observed

mortalities exceeded the 95% CI of the forecasts, calculated as

shown in Equation 7. A warning indicates that mortality on that

site was significantly higher than expected for that particular time step.

The application of the hierarchical model revealed that approximately

25% of the production cycles and 50% of the sites encountered at least

one warning between 2015 and 2020. When compared to the

production cycle level DLMs (Merca et al., 2024), the hierarchical

DLM produced fewer warnings overall but the warnings were

coherent across models. This can be beneficial because stakeholders

in the agricultural sector emphasize the necessity for reliability and
FIGURE 3

Outcomes from the hierarchical DLM at site level, for Site X. Observations (obs) in black and the production cycles are represented by the grey
shaded areas. (A) In green: Filtered mean (mt) and the respective 95% credible interval (CI); In blue: Smoothed mean (mts) and the respective 95%
credible interval (CI). (B) In red: Forecasts (ft) and the respective 95% credible interval (CI).
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robustness to justify the utilization of the models and mitigate distrust

in technology (Kaler and Ruston, 2019; Kopler et al., 2023).

Geographically, the region of Argyll and Bute experienced the

highest warning rate (32%), followed by Highland (29%), Eilean

Siar (27%), Shetland Islands (19%) and Orkney Islands (9%). In
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both univariate and multivariate production cycle level DLMs

developed in the previous study, the region of Orkney Islands

also had the lowest warning rate (11% on both cases), but Eilean

Siar had the highest (44% and 40%, respectively). This difference

might be due to the consideration of the region each site belongs to,
FIGURE 4

Outcomes from the hierarchical DLM at site level, for Site Y. Observations (obs) in black and the production cycles are represented by the grey
shaded areas. (A) In green: Filtered mean (mt) and the respective 95% credible interval (CI); In blue: Smoothed mean (mts) and the respective 95%
credible interval (CI). (B) In red: Forecasts (ft) and the respective 95% credible interval (CI); Circles: warnings.
TABLE 2 Warnings identified in the hierarchical DLM between 2015 and 2020: per region, month of the year and year.

Hierarchical DLM

Warnings per region

Highland Argyll and B. Shetland Isl. Orkney Isl. Eilean Siar

29/101 (29%) 19/59 (32%) 14/75 (19%) 5/55 (9%) 17/63 (27%)

42 28 17 5 24

Warnings per month of the year (%)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1.0 0.9 1.9 2.0 1.2 0.8 3.5 4.4 2.9 4.5 1.1 0.9

Warnings per year (%)
2015 2016 2017 2018 2019 2020

2.1 4.7 2.7 1.6 0.9 0.9
frontier
For the “Warnings per region”, the first row corresponds to the number of production cycles that triggered at least one warning out of the total number of production cycles in that region; the
second row shows the total number of warnings triggered in each region. For the “Warnings per month of the year (%)” and “Warnings per year (%)”, the percentages correspond to the division
between the total number of warnings generated on that month or year and the corresponding number of production cycle-months, multiplied by 100.
Isl., Islands; B., Bute; Jan, January; Feb, February; Mar, March; Apr, April; Jun, June; Jul, July; Aug, August; Sep, September; Oct, October; Nov, November; Dec, December.
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which influenced the expected mortality, and therefore the

warnings generated. By accounting for the region associated with

each site, the hierarchical DLM can better estimate the expected

mortalities, reflecting the regional variations.

In terms of seasonality, most warnings triggered by the

hierarchical DLM occurred during the summer and autumn

months. This is in accordance with what was found in the

production cycle level DLMs. During summer, rising water

temperatures increase salmon metabolic rates, escalating oxygen

demand. Simultaneously, warmer water temperatures lead to

diminishing dissolved oxygen levels in water (Noble et al., 2018).

Additionally, warm water fosters the proliferation of most of the

currently relevant infectious agents and parasites such as amoebic

gill disease and sea lice (Oldham et al., 2016; Brooker et al., 2018;

Murray et al., 2022), and non-infectious harmful agents such as

micro jellyfish and phytoplankton (Boerlage et al., 2020). No open-

source data about the cause(s) of excessive mortalities were available

during the full study period, limiting our ability to incorporate these

factors into the models. During the summer, the model already

expects higher mortalities due to the incorporation of a seasonal

pattern at country level within the hierarchical framework, which

prevents the generation of warnings for these already expected

increases. However, the model indicates that the instances of

higher-than-expected mortalities, which do trigger warnings, are

also more frequent during this period.

The distribution of warnings from 2015 to 2020 was also similar

between the hierarchical DLM and the production cycle level models.

For all models (since the same mortality data were used) the year 2015

only had three months of data available, making direct comparisons

not applicable. The year 2016 continued as the one with the highest

warning rate, followed by a declining trend until 2020. The reasons for

the declining trend are unclear; however, it is plausible that theymay be

attributed to potentially less precise mortality estimates during the

initial time steps of the modelling process, leading to overestimations of

warnings in 2016. Such an effect would not occur in later years when

the model has been running for longer.

In all three models here compared (hierarchical, univariate

production cycle level, and multivariate production cycle level

DLMs), the warnings were defined as any observation exceeding

the 95% credible interval. The method chosen was applied to all three

types of DLMs to ensure comparability of warnings across different

models. Alternative methods for generating warnings from DLM

outputs could have been used, as discussed in Merca et al. (2024).

The residuals of a DLM should follow a normal distribution, as

long as the system remains as expected (West and Harrison, 1997).

The original mortality data resulted in non-normally distributed

residuals. Thus, we applied a logarithmic transformation to meet

normality assumptions. The results can still be interpreted on the

original data scale. The decision of using DLMs was previously

discussed in Merca et al. (2024). To ensure methodological

consistency, all models compared utilized the same logarithmically

transformed mortality data.

Similarly to the production cycle level DLMs developed in the

previous study (Merca et al., 2024), the mortality forecasts derived

from the hierarchical model also exhibited wide 95% credible

intervals. This may be attributed to the absence of health,
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management, and fish movement data. Ideally, models should be

trained with data representing “normal” mortality to establish

baseline patterns, as conducted by Jensen et al. (2016). However,

the absence of health and management related information in the

mortality dataset made it impossible to distinguish normal from

abnormal mortality. Salmon producers collect these data internally,

but they only report it to government and to the salmon producers’

organization (Salmon Scotland) when mortality reaches a specific

threshold. These data have only become openly available recently,

and therefore could not be incorporated in the entire timeframe of

our study. Additionally, the movement of fish among sites, a

common practice among producers, may have not been entirely

captured in our analysis, despite our attempts detailed in section

2.2. For a more detailed exploration of potential sources of

uncertainty, refer to Merca et al. (2024).

To address these uncertainties, future models could incorporate

data on the reasons for mortality and salmon movements. However,

salmon movements’ data are not openly available. Additionally,

including mortality data over shorter time periods, such as weekly

intervals, would likely improve the monitoring process.
5 Conclusion

Accounting for the hierarchical structure of the data (country,

region, and site) is beneficial in monitoring salmon mortality,

outperforming the production cycle level DLMs developed in a

previous study. This hierarchical approach enabled us to monitor

mortality at country, region, and site levels, providing additional

valuable insights into the mortality trends. Moreover, we could

provide warnings at site level when the observed mortality exceeded

the expected levels, which can contribute to the detection of

management issues or emerging diseases. However, some

uncertainty was found in the mortality predictions. Our exclusive

reliance on open-source data has enabled the development of an

industry-wide mortality monitoring model, providing additional

value to already existing data, and eliminating the need for complex

data sharing agreements.
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