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Oceanic mesoscale eddies are prevalent throughout the global ocean, playing a

critical role in material and energy transport while significantly influencing

climate change. Accurate characterization of their three-dimensional

structures and movement is essential for a quantitative analysis of their

transport processes. Traditional eddy detection algorithms have lower

successful detection rate and with more limitations, so they fall short in the

complex and dynamic ocean environment. The rising trend of applying artificial

intelligence (AI) algorithms, due to their efficiency, precision, and automation,

addresses this challenge. This study employs the 3D-U-Res-Net algorithm to

identify the three-dimensional structures of mesoscale eddies in the Southern

Ocean using GLORYS12V1 data from 2011 to 2020. A vector geometry-based

eddy detection algorithm (VG) initially identified 1587292 eddy snapshots in the

Southern Ocean (2011–2019), which were used for training the 3D-U-Res-Net

algorithm. Data from 2020 served as the ground truth and validation set. The

successful detection rate of 3D-U-Res-Net algorithm is 100%, which means that

it identified all 135734 eddy snapshots from the VG dataset in 2020. For eddy

tracking, the VG algorithm counted 18168 eddy tracks, whereas the 3D-U-Res-

Net counted 18559, reflecting a 2.15% bias. To reduce uncertainty, eddies with

lifespans shorter than two weeks were excluded. The average lifespans and

traveling distances for eddies detected by the 3D-U-Res-Net (VG) algorithm

were 29.35 (29.61) days and 77.78 (37.60) km, respectively, with the 3D-U-Res-

Net identifying eddies with longer traveling distances. The mean radius of eddies

detected by the VG algorithm was 43.16 km, while the 3D-U-Res-Net detected

eddies with a mean radius of 43.74 km, a 0.58 km increase. We categorized

eddies into four three-dimensional structures: bowl-shaped, cone-shaped, lens-

shaped, and cylindrical. The VG algorithm identified these structures in

proportions of 32%, 31%, 25%, and 12%, respectively, whereas the 3D-U-Res-

Net algorithm found 19.48%, 19.58%, 0.04%, and 60.9%, respectively. The 3D-U-
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Res-Net identified more cylindrical eddies and was approximately ten times

faster than the VG algorithm. Overall, this algorithm has good performance and

higher efficiency. It is an attempt of using AI for oceanic research, and more

works can be carried out in the future.
KEYWORDS

mesoscale eddy, three-dimensional structures, eddy tracking 3D-U-Res-Net, the
Southern Ocean, deep learning
1 Introduction

As a complex phenomenon in the ocean, mesoscale eddies not

only play a vital role in the transport of heat and energy, but also

regulate the biogeochemical cycles (Chelton et al., 2007; Dong et al.,

2014). Moreover, they exert considerable influence on local near-

surface winds and precipitation (Frenger et al., 2013). Compared to

the background mean currents, mesoscale eddies have larger

velocities. Moreover, eddies can penetrate and influence deep

layers (Cao et al., 2022). It is typical for mesoscale eddies to be

accompanied by a range of anomalies in sea surface height and sea

surface temperature, which in turn have an influence on the global

climate. Figure 1 shows topography of the Southern Ocean, with the

black dotted line indicating the mean position of the Antarctic

Circumpolar Current ACC (He et al., 2023). The Southern Ocean,

as a vast marine region surrounding the Antarctic continent,

exhibits distinctive characteristics. The ACC exhibits a strong

eastward flow (Chapman et al., 2020), which effectively impedes

the exchange of seawater between the northern and southern sides

of the ACC and significantly affects global climate change (Rintoul

and Garabato, 2013). There are numerous mesoscale eddies in the

Southern Ocean, particularly in the area where the ACC interacts

with the surrounding topography. These eddies are pivotal in

maintaining the thermohaline balance of the Southern Ocean

(Morrow et al., 2010; Patel et al., 2019), and also transport

nutrients and chemicals in the vertical direction by inducing

Ekman pumping, thereby changing their horizontal local

distribution (Moreau et al., 2017). On the other hand,

temperature anomalies within eddies are intimately associated

with extreme temperature events. As temperature anomalies

within eddies intensify, eddies may be an important driver of

extreme temperatures on surface marine heatwaves (He et al.,

2023). According to Griffies et al. (2015), transient climate

change, which is typically defined by changes in global mean

surface temperature, is fundamentally linked to how the ocean

transports heat both vertically and laterally, with mesoscale eddies

playing a critical role in this process. On the other hand, as can be

seen in line 51, eddies also have some influence on global climate

change. Therefore, accurately identifying and tracking mesoscale

eddies in the Southern Ocean will facilitate the exploration of the

essential characteristics of the eddies, as well as deepen our
02
understanding of the air-sea interactions, and the response to

global climate change in the Southern Ocean.

Earlier than 1970s, eddies are observed by in situ observation, so

they heavily reliant on experts’ experience with high cost and

limited acquisition of observational data. In recent years, with the

increase in satellite remote sensing observations and the

development of ocean numerical models, the research on eddies

has become increasingly in-depth. Consequently, automated eddy

detection methods are required for the detection of larger sea areas

over longer time spans (Duo et al., 2019)). There are several eddy

detection algorithms, among them, the winding angle algorithm

(W-A), the Okubo-Weiss (OW) parameter method, and the vector

geometry-based eddy detection algorithm (VG) are commonly used

(Xing and Yang, 2021; Hammoud et al., 2023). The W-A algorithm

detects eddies by identifying the extreme values of sea level anomaly

(SLA) and then selects closed SLA streamlines by calculating the

winding angle (Sadarjoen and Post, 2000). The OW parameter

algorithm identifies eddies based on comparing relative importance

of vorticity to total deformation rate (Okubo, 1970; Weiss, 1991;

Chang and Oey, 2014). The formula isW = S2sh + S2st − x2, where Ssh
and Sst represent the shear and strain deformation, respectively,

and x is the vertical component of vorticity. Then set a negative

threshold W0 and compare with this threshold. The VG algorithm

is developed based on the vector geometry characteristics of the

eddies’ flow field (Nencioli et al., 2010). It defines the eddies’ centers

through four different constraints, then takes the maximum closed

stream function contour as each eddie’s boundary, and performs

eddies tracking. Previous assessments of these three most widely

used algorithms in the South China Sea have found that the O-W

algorithm has an average successful detection rate of only 51.9%,

making it unsuitable for tracking long-lived eddies in this region.

Additionally, the W-A algorithm can only detect eddies with radii

greater than 1° (Xing and Yang, 2021). In contrast, the VG

algorithm is capable of identifying smaller eddies and boasts the

lowest average suspicious tracking rate, at just 1.1%. Compared to

eddies in mid-latitude regions, those in the Southern Ocean have

smaller radii and shorter lifetimes, which makes the VG algorithm

the most suitable for comparison with AI algorithms in this area.

Using traditional algorithms to detect eddies need studies to adjust

thresholds in different region. For AI algorithm, it trained by eddies’

graphical features, available anywhere in the world ocean and no
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need to adjust different threshold. Accordingly, the development of

more versatile methods for the detection of oceanic mesoscale

eddies is required.

In recent years, as artificial intelligence has developed rapidly,

studies have come to recognize the feasibility of applying AI

algorithms to eddies studies (Lguensat et al., 2018b). Compared

with traditional eddy detection algorithms, deep learning can learn

the characteristics of eddies without excessive parameter settings, is

smarter in eddy detection and tracking (Liu et al., 2022). This

method can learn the characteristics of eddies without human

intervention, facilitating the identification and tracking of vortices

in marine environments. Huang et al. (2017) applied DeepEddy to

synthetic aperture radar (SAR) images, the results showed that

using the DeepEddy model achieved an accuracy of 96.88% in

identifying 136 eddies identified on ENVISAT and ERS-2 SAR

images. Xu et al. (2019) employed the Pyramid Scene Parsing

Network (PSPNet) to detect mesoscale eddies in the ocean. Their

findings revealed that the PSPNet is more effective than the VG

algorithm in detecting a greater number of eddies, particularly

smaller ones. Lguensat et al. (2018a) proposed an automatic eddy

recognition network, termed EddyNet. This algorithm was based on

the U-Net structure and was divided into two parts: encoder and

decoder. To prevent over-fitting, a dropout layer was added between
Frontiers in Marine Science 03
the pooling layer and the convolution layer. This allows for

regularization, enhancing the algorithm’s performance. Zhao et al.

(2023) proposed a novel eddy detection algorithm, which is also

based on the U-Net network, but integrated the pyramid

segmentation attention module (PSA) and the spatial pyramid

pooling (ASPP) module. The sea level anomaly data (SLA) and

sea surface temperature (SST) were employed as inputs into the

algorithm. The PSA module can take into account both spatial and

channel attention modules, and the addition of the ASPP module

facilitates the acquisition of multi-scale features through enhanced

learning. Furthermore, the research compared several popular eddy

identification algorithms, including UNet, EddyNet, Swin-UNet,

and DeepLabV3+. The findings of the study indicate that their

algorithm performs better than the other four algorithms.

Mesoscale eddies have the capacity to transport oxygen and

nutrients, regulate the reproduction of plankton, and thus exert an

influence on fisheries (Zhang et al., 2016; Marez et al., 2019).

Conversely, mesoscale eddies dominate the ocean kinetic energy,

especially in the upper flow field above the thermocline depth. In

this region, they play a key role in the transport of water mass, heat,

and other air-sea interaction fluxes (Zhang et al., 2024). However,

the satellite altimeter data currently widely used in mesoscale eddy

detection and identification has insufficient spatial resolution and
FIGURE 1

A bathymetric topographic map of the Southern Ocean. The black dotted line represents the mean position of the ACC as reported by He
et al. (2023).
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the inability to discern signals from depths below the surface.

Additionally, there is a dearth of deep learning algorithms for

three-dimensional eddies research (Huang et al., 2021; Chen et

al., 2021). This has resulted in a paucity of research on the three-

dimensional structure of eddies using artificial intelligence

algorithms. Huang et al. (2021) used a three-dimensional neural

network based on the residual network (ResNet) to classify and

enumerate the vertical structure of eddies. The results demonstrated

that this algorithm is effective in identifying three-dimensional

ocean eddies and exhibits robust classification performance. Used

3D eddies dataset detected by HYCOM as the training set, Feng

et al. (2023) proposed an algorithm based on 3D-EddyNet, for

the idenfication of three-dimensional eddies in the ocean. The

algorithm employed three-dimensional convolution to capture the

characteristics of the eddies, thereby obtaining their three-

dimensional structures. Based on previous studies, these

structures were classified into three different steep types, bowl-

shaped, lens-shaped and cone-shaped. Liu et al. (2024) likewise

introduced a novel deep learning model, 3D-EddyNet, for

reconstructing the 3D thermohaline structure of mesoscale eddies.

And the 3D-EddyNet model was optimized by adjusting the image

size, introducing a convolutional block attention module and

incorporating the physical parameters of the eddy. The results

show that the model is able to accurately represent the three-

dimensional thermohaline eddy structure in both vertical and

horizontal directions and is able to infer the three-dimensional

eddy structure in the absence of Argo profile data. Xu et al. (2024)

proposed 3D-U-Res-Net to identify three-dimensional eddies in the

northwest Pacific. The 3D-U-Res-Net combines the advantages of

3D-UNet and ResNet networks, enabling more effective

identification of three-dimensional ocean eddies.

The Southern Ocean plays a key role in the global climate

system, and the densely distributed mesoscale eddies are crucial in

the transport of heat and carbon in the Southern Ocean, which also

has a significant impact on improving climate models and climate

predictions. To gain a deeper understanding of the mesoscale eddies

in the Southern Ocean, it is crucial to accurately and efficiently

extract the three-dimensional characteristics of the eddies. We used

the 3D-U-Res-Net algorithm compared to other deep learning

algorithms. This model is based on the 3D-UNet and adds a

ResNet in order to avoid potential information loss during the

training process. The algorithm is capable of learning eddy features

more effectively and captures more effective information through

the use of residual connections than single 3D-UNet. With this

network, we managed to automatically detect and categorize three-

dimensional mesoscale eddies. For a detailed introduction to 3D-U-

Res-Net, please refer to the method introduction in the section 2.

The network was utilized to automatically detect and categorize

three-dimensional mesoscale eddies. For a comprehensive overview

of the 3D-U-Res-Net methodology, please refer to the method

introduction in Section 2.

The remainder of this paper is organized as follows: Section 2

presents the data and methods employed in the study. Section 3

analyzes the results, while Section 4 summarizes the main findings

of the study.
Frontiers in Marine Science 04
2 Data and methods

2.1 Data

The GLORYS12V1 data is a high-resolution global physical

ocean and sea ice reanalysis product, produced by Mercator Ocean

International in the context of the Copernicus Marine Environment

Monitoring Service (CMEMS, Global Ocean Physics Reanalysis |

Copernicus Marine Service). This dataset integrates a variety of data

types, including satellite observations and in-situ measurements,

and uses advanced data assimilation techniques to accurately

simulate ocean dynamic changes. The temporal resolution is 1

day, and the horizontal spatial resolution is 1/12°×1/12°, with a

regular rectangular projection in latitude and longitude (Lellouche

et al., 2018). The dataset is divided vertically into 50 unequal layers,

ranging from 0 to 5500 m. It provides global ocean temperature,

salinity, ocean currents, sea level height, mixed layer depth, and sea

ice parameters since 1993. The overall evaluation of GLORYS12V1

shows that the model has a good level of performance in

characterizing and simulating ocean physical processes and is

capable of accurately capturing the main interannual climate

variability signals of the ocean and sea ice (Jean-Michel et al.,

2021). GLORYS12V1 demonstrates notable advantages in

controlling water mass properties, sea ice coverage and its low-

frequency variability (Jean-Michel et al., 2021). This work employs

sea temperature, current field, and sea surface height data at a depth

of 0-700 m, spanning the period from 2011 to 2020, to study the

Southern Ocean (-180°W -180°E, 45°S -65°S). Furthermore, the

data were interpolated vertically, from a depth of 0.5 m to 700 m,

with an interval of 100 m per layer, resulting in eight layers: 0.5m,

100m, 200m, 300m, 400m, 500m, 600m, 700m.

Moreover, the AVISO (Archiving Validation and Interpretation

of Satellite Oceanographic data) geostrophic current anomaly data

is also used for comparison with GLORYS12V1. The data is

obtained from the CMEMS. The temporal resolution of AVISO is

1 day, and the horizontal spatial resolution is 1/4°×1/4°.

The “Mesoscale Eddy Trajectory Atlas” (META) product can be

accessed via the AVISO website (Global mesoscale eddy trajectory

product (altimetry.fr)). Eddies in this dataset are identified through

the spatially high-pass filtered daily SLA of AVISO, which is

regarded as the most comprehensive eddy dataset and is provided

by Chelton et al. (2011). The dataset provides a comprehensive set

of global eddy characteristics, including eddy track, location, radius,

amplitude, rotation speed, and polarity. For further details

regarding this eddy dataset, please consult Chelton et al. (2011)

and Pegliasco et al. (2022).
2.2 Methods

2.2.1 The vector geometry-based (VG) eddy
detection algorithm

The VG algorithm was initially developed by Nencioli et al.

(2010). The versatility and precision of the VG algorithm make it a

versatile tool for eddy detection in a wide range of applications. This
frontiersin.org
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algorithm has been applied globally to regions such as Lanai Island

in Hawaii (Dong et al., 2009), the subtropical North Pacific Ocean

(Liu et al., 2012), the South China Sea (Lin et al., 2015), and the

Northwest Pacific (Wang et al., 2020). The VG algorithm, based on

the characteristics of the velocity field, firstly accurately defines the

eddy center through four constraints. The first constraint is that

the velocity components in the east-west direction on either side of

the eddy center must be opposite, and their magnitudes must

increase with distance from the center. The second constraint is

that the velocity components in the north-south direction must also

be opposite on either side of the eddy center, and their magnitudes

must increase with distance from the center. The third constraint is

that the point of minimum velocity is taken as the eddy center. The

fourth constraint is that the velocity vector directions around the

eddy center must be consistent. Once the centers of the eddies have

been identified, the boundary of each eddy is calculated using the

outermost closed stream-function contour. Additionally, eddies

with the same polarity are tracked on the subsequent day. For a

comprehensive overview of this methodology, please refer to

Nencioli et al. (2010). In this study, the velocity data from the

GLORYS12V1 dataset are employed as the input and the VG

algorithm is utilized to detect eddies at 8 layers ranging from 0.5

to 700 m. Subsequently, a Southern Ocean eddy dataset is

generated, containing information on the radius, position,

trajectory, polarity and lifetime of the eddies at various depths.

The eddy tracking method is to track the identified transient

eddy throughout its lifetime. The tracking process is initiated on the

first day, with the eddy center being determined via consecutive

time steps in order to trace the eddy tracks. At the eddy center

established at time t, a search for the same type of eddy in the search

area at time t + 1 should be conducted. Once the center at the next

day is determined, the search proceeds until the same type of eddy

cannot be identified at a certain day. In this paper, we set the radius

of the search area to be 60 km. In the event that multiple eddies of
Frontiers in Marine Science 05
the same type are identified within a given area, the eddy situated

closest to the center is selected as the subsequent eddy position. For

more details on the tracking algorithm, please refer to the paper by

Nencioli et al. (2010).

The 8-layer eddy dataset is employed to construct a three-

dimensional eddy dataset. It is assumed that the tilt of each eddy’s

center does not exceed one-quarter of its radius in the subsequent

layer. We commence our investigation at the surface layer and

proceed to identify any eddies exhibiting the same polarity in the

subsequent layers, extending down to a depth of 700 meters. If an

eddy with the same polarity (cyclone/anticyclone) and on the same

day is found in the next deeper layer, it is considered the same eddy

at different depths. This process continues until a layer is reached

where no eddy with the same characteristics is found. At this point,

the previous layer to represent the deepest extent of the eddy.

Further details regarding the 3D eddy detection algorithm can be

found in Dong et al. (2012) and Lin et al. (2015). The

aforementioned method allows for the acquisition of a three-

dimensional dataset of eddies.

2.2.2 The 3D-U-Res-Net
The traditional eddy detection algorithms are computationally

intensive and time-consuming. To address this issue, this study

adopts a new network architecture based on deep learning, namely

3D-U-Res-Net (Xu et al., 2024). This network combines the

advantages of the 3D-UNet (Çiçek et al., 2016) and the ResNet

(He et al., 2016), thereby enabling more efficient integration of

cross-channel and spatial correlations. The specific structure of the

3D-U-Res-Net is shown in Figure 2. The network is composed of 7

modules. The initial module consists of a convolutional layer, a

dropout layer with a rate of 0.5, and the activation function (ReLU).

The final module consists of a convolutional layer and the Softmax

activation function. The Softmax function is employed to compare

the network output with the annotated data, thereby reducing the
FIGURE 2

Basic structure diagram of the 3D-U-Res-Net. According to the order of the squares appearing in the diagram are: convolution, ReLU layer, dropout
layer, max pooling layer, transpose convolution layer, upsampling module, softmax module. The gray quiver represents a residual connection.
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weight of frequently appearing unnecessary background, and weight

the features of the annotated data. This facilitates more effective

learning of the requisite features and reduces errors. Apart from

these two modules, the remaining modules utilize residual

connections. This connection effectively addresses the issues of

gradient disappearance and gradient explosion, enhancing our

ability to learn image features, increasing the feature extraction

ability of the 3D-UNet, and improving accuracy. Additionally,

residual connections facilitate smoother information transmission,

reduce information loss during the transmission process, accelerate

the training process, and improve the performance and learning

ability of the network (Xiao et al., 2020).

ADDITIThe network is comprised of two primary components:

the encoder and the decoder, with a convolution kernel size of

3×3×3 and a pooling step of 2×2×2. The left side of Figure 2 shows

the encoder, which is composed of three modules. With the

exception of the initial module, each module performs two

consecutive rounds of convolution, followed by a 0.5 rate dropout

layer and the ReLU activation function, with a max pooling layer at

the end of each module to extract key information. Concurrently,

the number of convolutional filters is doubled, and information

from different layers is concatenated through residual connections.

Subsequently, the extracted information is conveyed to the decoder

section, which is situated on the right side of the network and is

comprised of four modules. With the exception of the final module,

the remaining three modules are similar to those in the encoder.

These include two consecutive rounds of ReLU activation functions,

transposed convolution, and a dropout layer. Finally, a sampling

module is employed to aggregate the obtained information. In the

residual connections, information from different layers is merged

using transposed convolution and upsampling. This approach
Frontiers in Marine Science 06
allows the final convolutional and activating function module to

generate a feature map of the same size as the input image.
2.3 Data and method evaluation

2.3.1 Evaluation of GLORYS12 dataset
In order to assess the dependability of the GLORYS12V1

dataset, the eddy kinetic energy (EKE) of 2020 in both

GLORYS12V1 and AVISO datasets are compared. The time-

mean EKE is then computed as:

EKE =
1
2
(u02 + v02)

where ‘u0’ represents east-west velocity anomaly and ‘v0’
represents north-south velocity anomaly. The EKE is obtained by

subtracting the mean value from 2020. The spatial distribution

pattern of EKE obtained from GLORYS12V1 is consistent with the

altimeter data (Figure 3), indicating that a high value of EKE is

generally between the Subantarctic Front and the Polar Front

(Belkin and Gordon, 1996; Zhang et al., 2021). Because the

presence of heightened frontal and eddy instabilities, thus the

value of EKE is greater near the front. But there are still some

inconsistencies between Figures 3A, B, such as the EKE calculated

by GLORYS12V1 being significantly larger than AVISO’s around

60-70 ° S, showing higher EKE zonal stripes distribution.

Quantitatively, the mean EKE of GLORYS12V1 is 219.48 cm2=s2,

while that calculated by AVISO is 160.39 cm2=s2, resulting in a

higher EKE intensity of 59.09 cm2=s2. Because the GLORYS12V1

dataset has higher spatial resolution (triple times) compared to the

geostrophic current flow field of AVISO, and EKE calculated
FIGURE 3

Distribution of the 2020 mean EKE in the Southern Ocean for both GLORYS12V1 and AVISO data. (A) EKE distribution from GLORYS12V1. (B) EKE
distribution from AVISO. The black and pink solid lines represent the Subantarctic Front and the Polar Front, respectively.
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through geostrophic velocity of AVISO, which may lead to miss

some non-geostrophic effects, result in higher EKE values and

capture of smaller scale ocean eddies, fronts and filaments in

GLORYS12V1. This difference indicates that the GLORYS12V1

dataset is more effective in capturing mesoscale ocean dynamic and

can more accurately reflect the energy distribution and flow

characteristics within the ocean (Lin et al., 2023). Therefore, it is

reasonable to utilize the flow field data from GLORYS12V1 for the

detection of three-dimensional eddies.

2.3.2 Evaluation of VG algorithm
To validate the efficacy of VG algorithm and eddy tracking

method, we conducted a comparative analysis with the “Mesoscale

Eddy Trajectory Atlas” (META, Chelton et al., 2011; Pegliasco et al.,

2021). The surface eddy lifetimes of the Southern Ocean during

2020 are selected for comparison. To refine the eddy tracking

process and mitigate external disturbances, we imposed some

constraint conditions. Given the spatial resolution of 1/12°

provided by the GLORYS12V1 dataset, we implemented an initial

filtering step, discarding all eddies with an average radius less than

20 km. This measure aims to eliminate potential instabilities or

misidentifications of small-scale eddies that could arise due to

resolution limitations. Furthermore, to ensure the robustness of

the eddy tracking outcomes and the continuity of their dynamical

evolution, we further refined the dataset, retaining only eddies with

lifespans exceeding two weeks for subsequent statistical analysis. As

shown in Figure 4, the META dataset contains 10066 such eddies,

while the VG algorithm identified 14022. Specifically, the VG

algorithm detected the highest number of eddies with a lifespan

of less than 60 days, accounting for 77.21% of the total, whereas the

META dataset showed a corresponding proportion of 71.37%. Both

datasets exhibit a similar distribution pattern, with a sharp decline

in the number of eddies with lifespans exceeding 180 days, the VG

algorithm identified 106 such eddies, compared to 284 in the META

dataset. In summary, the VG algorithm demonstrates a reasonable

consistency with the META dataset in terms of the number and

lifespan distribution of detected eddies, particularly excelling in the
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identification of short-lived eddies. Conversely, the META tends to

capture a greater number of long-lived eddies. Overall, the VG

algorithm effectively tracks eddy trajectories, making it well-suited

for application in this study.
3 Results

3.1 Eddy numbers, lifespans
and propagation

Since the spatial resolution of the GLORYS12V1 data is 1/12°,

eddies smaller than 20 km are excluded from the analysis.

Additionally, compared to mid-latitude regions, Southern Ocean

eddies are observed to be smaller and deeper (Frenger et al., 2015).

To obtain more accurate three-dimensional characteristics of

eddies, we also excluded those of shallower and weaker eddies,

retaining only those that reach a depth of 700 m. After applying the

thresholds of > 20 km and eddies’ depth equal to 700 m, a total of

1587292 eddies were detected from 2011–2019. These eddies were

used as the training set. Each 3D eddy was individually divided into

a grid of 32×32×8 for longitude, latitude and depth, respectively.

The velocities are normalized to a range between -1 and 1 for each

layer, with cyclones and anticyclones labeled. The data from 2020

serves as the validation set. The extensive sample training data helps

us better extract eddy features and improve the performance of the

3D-U-Res-Net. Compared to the 3D eddies’ snapshots in the

northwest Pacific (Xu et al., 2024), we also tracked the eddies to

determine their lifetimes and their positions throughout the entirety

of their lifespans.

The application of the 3D-U-Res-Net algorithm resulted in the

detection of 135734 eddies in 2020, the same number identified by

the VG algorithm. The eddies detected by the VG algorithm are

used as the ground truth. Figure 5 shows a snapshot of the eddies in

the Southern Ocean on September 29, 2020. The dots of different

sizes represent different radius scales, including 20-40 km, 40-60

km, 60-80 km, and larger than 80 km. The results show that the 3D-
FIGURE 4

A comparison of eddy lifetime distribution based on the META (the blue bars) and VG algorithms (the orange bars).
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U-Res-Net algorithm identified all eddies on that day, most of the

eddies are located near the Subantarctic Front and the Polar Front,

which is consistent with previous studies (Frenger et al., 2015).

Further observation revealed that although the 3D-U-Res-Net

algorithm correctly identified all eddies, the radius differed

between the two algorithms. The VG algorithm identified 62

eddies larger than 80 km, whereas the 3D-U-Res-Net algorithm

identified only 30 large eddies. This may be because the 3D-U-Res-

Net algorithm smooths the edges of the eddies. However, it is worth

noting that, using the same computer, it took 10 days to identify

2020 eddies using the VG algorithm, whereas the 3D-U-Res-Net

algorithm accomplished the task in only one day, thus saving 10

times the time and greatly improving the efficiency of eddy

current detection.

In the year 2020, the VG algorithm is employed to track a total

of 18168 eddies, including 8917 anticyclonic eddies and 9251

cyclonic eddies. The 3D-U-Res-Net algorithm identified 18559

eddies, comprising 9092 anticyclonic eddies and 9467 cyclonic

eddies. The 3D-U-Res-Net algorithm identified 391 more eddies

than the VG algorithm. There are the greatest number of eddies

with lifetimes less than 20 days, the 3D-U-Res-Net algorithm

amounting to 16973, while the VG algorithm identified 16566

with the same lifespans. Among the eddies with lifetimes

exceeding 20 days, the 3D-U-Res-Net algorithm detected slightly

fewer, amounting to 1466, compared to 1485 for the VG algorithm.

Furthermore, the majority of eddies have a life cycle of less than 20

days. The VG algorithm accounts for 91.18% of the eddies with

lifetimes fewer than 20 days, while the 3D-U-Res-Net algorithm

accounts for 91.45% of the eddies. Figures 6A, B shows the

distribution of the number of eddies in the Southern Ocean for

both algorithms. The screening of eddies with a lifetime greater than

two weeks resulted in 2400 eddies identified by the VG algorithm

and 2387 by the 3D-U-Res-Net algorithm, with a slight

predominance of eddies identified by the VG algorithm. The

spatial distributions of eddies detected by the two algorithms is

consistent. To further analyze the quantitative differences between
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the two methods, we counted the lifetimes and moving distances of

the eddies, as illustrated in Figures 6C, D. Comparing the

distribution of lifespans, the eddy lifespans obtained by both

methods are fairly consistent, with no significant difference in the

number of anticyclonic and cyclonic eddies. Furthermore, the

majority of these lifespans are under 30 days. As the lifespans

increase, the number of eddies shows a consistent decreasing trend.

With regard to the moving distances shown in Figure 6D, the VG

algorithm tracked a greater number of eddy trajectories

concentrated within 40 km than the 3D-U-Res-Net algorithm. In

addition, with regard to trajectories exceeding 80 km, the 3D-U-

Res-Net algorithm identified a greater number of eddies. The

average traveling distances of the 3D algorithm is 77.78 km, while

the average traveling distances of the VG algorithm is 37.60 km.

These findings demonstrate the good recognition capability of the

3D-U-Res-Net algorithm.
3.2 Eddy radius and 3D shapes

In order to ascertain the distinctions between the 3D-U-Res-

Net and the VG algorithm in capturing the three-dimensional

structure of eddies, a random selection was made of two eddy

examples, one cyclonic and one anticyclonic. The cyclonic eddy

example was generated on August 13. As shown in Figures 7A, B,

both algorithms are capable of discerning the three-dimensional

structure of the cyclone. Compared to the VG algorithm, the eddy

radius obtained by the 3D-U-Res-Net is larger and the shapes are

more closely aligned with the characteristics of temperature

anomaly. The quantitative comparison of cyclone by the two

methods shows that the average radius of the cyclone obtained by

the VG algorithm from the surface to 700 m is 24.40 km, with a

maximum radius of 25.92 km located at a depth of 700 m.

Meanwhile, the average radius of the eddy obtained by the 3D-U-

Res-Net is 29.66 km, with a maximum radius of 31.83 km located at

a depth of 100 m. Notably, the anticyclonic eddy obtained by both
FIGURE 5

The eddy snapshots for September 29, 2020 in the Southern Ocean. (A) Distribution of 3D-U-Res-Net eddy snapshots. (B) Distribution of eddy
snapshots for the VG algorithm. The blue solid dots indicate cyclonic eddies and red solid dots represent anticyclonic eddies. The solid points are
categorized into four different radius scales: 20-40km, 40-60km, 60-80km, and greater than 80km. The black and red lines represent the two major
fronts in the Southern Ocean: the Subantarctic Front and the Polar Front.
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algorithms on August 30 exhibited a greater degree of similarity in

their 3D structures, as shown in Figures 7C, D. The average radius

of the anticyclonic eddy obtained by the VG algorithm is 45.86 km,

with a maximum radius of 49.11 km, located at the surface. In

comparison, the 3D-U-Res-Net algorithm obtained the anticyclone

with an average radius of 43.34 km and a maximum radius of 43.69

km at a depth of 700 m. Thus, 3D-U-Res-Net is accurate for the

identification of three-dimensional structures.

Additionally, to verify the differences and advantages of the 3D-

U-Res-Net algorithm compared to the VG algorithm through a

more comprehensive and systematic quantitative analysis, the eddy

radius distributions obtained by the two algorithms are examined

and contrasted, as shown in Figure 8. The analysis revealed some

discrepancies in the resulting data. Most of the eddies identified by

the 3D-U-Res-Net algorithm are within the range of 30-60 km.

Specifically, 90.4% of anticyclonic eddies and 87.8% of cyclonic

eddies are situated within this interval. In the VG algorithm, 83.2%

and 84.2% of anticyclonic and cyclonic eddies are between 30 and
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60 km. The eddies identified by the 3D-U-Res-Net algorithm were

observed to be of a smaller magnitude. For eddies with radii greater

than 70 km, the 3D-U-Res-Net algorithm identified anticyclones

and cyclones at a rate of 3.3% and 4.6%, respectively, compared to

anticyclone and cyclone percentages of 8.3% and 7.6% with the

VG algorithm.

A comparison of the radius distribution in the vertical direction,

as shown in Figures 8B–D, reveals that the average vertical radius of

both anticyclone and cyclone eddies demonstrates a declining trend

with increasing depth, as observed using the VG algorithm. The

average radius of anticyclonic eddies obtained from the VG

algorithm is 44.11 km, while the average radius from the 3D

algorithm is 42.62 km. As shown in Figure 8B, the 3D algorithm

exhibits the smallest eddy radius at the surface; however, this radius

increases with depth. Within the depth range of 100 m to 600 m, the

eddy radius remains relatively stable, but it begins to increase again

at 700 m, exceeding that of the VG algorithm at the deepest point.

In contrast, the radius of anticyclonic eddies from the VG algorithm
FIGURE 6

The spatial distribution, the mean lifetime and moving distances of eddies in the Southern Ocean during the year of 2020. A threshold of more than
14 days is used for eddies here. (A) Distribution of eddy trajectories from the 3D-U-Res-Net algorithm. (B) Distribution of eddy trajectories from the
VG algorithm. The red points represent anticyclonic eddies and the blue points represent cyclonic eddies. The origin indicates the generated
position of the eddy and the asterisk indicates the terminated position of the eddy. (C) A comparison of eddy lifetime distributions based on the 3D-
U-Res-Net (the blue bars) and VG algorithms (the orange bars). (D) The same as (C), but for eddy traveling distances. The distribution of the number
of anticyclonic eddies is displayed on the left side of the figure, while the distribution of the number of cyclonic eddies is displayed on the right. .
frontiersin.org

https://doi.org/10.3389/fmars.2024.1482804
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1482804
shows a trend of first increasing and then decreasing with depth. At

700 m, its radius is slightly smaller than that of the 3D algorithm,

but the difference between the two is minimal. The average radius of

cyclonic eddies obtained from the VG algorithm is 43.39 km, while

that from the 3D algorithm is 43.67 km. As illustrated in Figure 8C,

the radii of the two methods are very close, with noticeable

differences only at the 100 m and 700 m depths. Figure 8D

illustrates further discrepancies between the 3D-U-Res-Net

algorithm results and the VG algorithm. At depths above 600 m,
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the 3D-U-Res-Net algorithm eddy radius is smaller than the radius

of the VG algorithm. However, this trend reverses below 600 m. At

a depth of 700 m, the 3D-U-Res-Net algorithm eddy radius is

slightly larger than that of the VG algorithm, with the overall mean

radius differing by a mere 0.58 km. The discrepancy may be

attributed to the upper eddy features exhibiting relatively

unstable, which the 3D-U-Res-Net algorithm smoothing the eddy

boundary features, thereby resulting in a slightly smaller eddy

radius. As depth increases, eddies tend to stabilize gradually,
FIGURE 7

Three-dimensional eddy structures are identified through the VG algorithm and 3D-U-Res-Net. (A) Cyclonic eddy detected by the 3D-U-Res-Net on
August 13, 2020. (B) same as (A), but detected using the VG algorithm. (C) Anticyclonic eddy is detected by the 3D-U-Res-Net on August 30, 2020.
(D) same as (C), but detected using the VG algorithm. The background colors represent the temperature anomaly, the surface black solid lines
indicated the eddies’ surface boundaries, the gray and transparent shapes represented the three-dimensional structures of the eddies, and the gray
arrows indicated the velocity flow field.
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potentially resulting in an increase in eddy radius over depth. As the

depth increases, the flow field becomes weaker. The VG algorithm

identifies eddies by using the flow field, while the 3D algorithm

learns labels to recognize them. This may result in the radius

identified by the 3D algorithm being larger than that identified by

the VG algorithm at greater depths.

According to previous research, the three-dimensional structure of

ocean eddies can be categorized into three different kinds of 3D shapes

based on the distribution of their eddy radii at different depths. These

categories are bowl-shaped, cone-shaped, and lens-shaped (Lin et al.,

2015). The bowl-shaped eddy has the largest radius at the surface, the

cone-shaped eddy exhibits the largest radius at the bottom, and the

lens-shaped eddy has the largest radius in the middle. Figures 9A–C

shows typical cases of three eddy types identified and classified using

3D-U-Res-Net algorithm. As illustrated in the figure, the center of

cyclones and anticyclones is characterized by an evident low-

temperature (or high-temperature) core area. During the

identification process, a fourth type of 3D eddy structure is defined,

namely the cylindrical eddy. For this type of eddy, the difference

between the maximum and minimum radii are less than one-tenth of
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the average radius (Figure 9D). This indicates that this type of eddy has

a relatively stable radius distribution throughout all depth layers, and

resemble a complete cylindrical shape.

In order to ascertain the similarities and differences between the

two algorithms used to identify the three-dimensional eddies, a

statistical analysis is conducted on the number of four different

types of eddies (Figure 10). The distribution of anticyclonic and

cyclonic eddies is relatively similar in both algorithms. The results

of the 3D-U-Res-Net algorithm indicate the number of cylindrical

eddies is the most prevalent, while the number of bowl-shaped

eddies and cone-shaped eddies is relatively similar, and the number

of lens-eddy is minimal. In contrast, the results of the VG algorithm

show that the number of cylindrical eddies is relatively low, while

the number of the other three eddies is relatively balanced. They

account for 32%, 31%, 25%, and 12%, respectively, in the VG

algorithm. The percentages of the various types in the 3D-U-Res-

Net algorithm were 19.48%, 19.58%, 0.04%, and 60.9%, respectively.

In the VG algorithm, the bowl-shaped eddies have the largest

proportion of cyclonic eddy, reaching 31.4%, while the cylindrical

eddy accounts for 11.98% of anticyclone eddy. In contrast, the 3D-
FIGURE 8

(A) Radius distributions from the VG and 3D-U-Res-Net algorithms. Blue represents the VG algorithm and red represents the 3D algorithm. The
radius distribution of the anticyclone is shown on the left and that of the cyclone on the right. (B) Vertical distribution of the radius of the
anticyclonic eddy, red for the 3D algorithm and blue for the VG algorithm. (C) Vertical distribution of cyclonic eddy radii, red for the 3D algorithm
and blue for the VG algorithm. (D) Comparison of the vertical radius of eddies from the two algorithms: the red solid line represents the 3D-U-Res-
Net algorithm, and the blue solid line represents the VG algorithm.
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U-Res-Net algorithm results show that bowl-shaped eddies account

for 20.86% of the cyclones, while cylinder -shaped eddies have a

significant proportion of 64.26%. In the 3D algorithm, the

proportion of anticyclones and cyclones of a lens-shaped eddies is

only 0.05% and 0.02%, much lower than the VG algorithm of

25.47% and 24.32%. These findings suggest that the 3D-U-Res-Net

algorithm is more effective at identifying cylinder -shaped eddies,

thereby confirming that the 3D-U-Res-Net algorithm is capable of

consistently generating three-dimensional eddy structures during

the recognition process. Figure 8B illustrates that the eddy radius is

markedly large at depths of 100 m and 700 m, while the radius at

intermediate depths is relatively small. This is a contributing factor

to the relatively low percentage of lens-shaped eddies compared to

the other three types of eddies. However, the method does not

correctly identifies lens-shaped, which is one of its shortcomings.
4 Conclusions

This study utilizes an innovative 3D eddy intelligent recognition

algorithm, namely the 3D-U-Res-Net algorithm. The integration of
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the 3D-UNet and the ResNet enables the extraction and

identification of three-dimensional eddy characteristics in

complex ocean environment with greater intelligence and efficacy.

The GLORYS12V1 dataset spanning the period from 2011 to 2020

is employed in this study. Based on the VG algorithm, a total of

1587292 eddies are identified and used as training sets. These data

are then input into the 3D-U-Res-Net for training. Additionally,

135734 eddies identified by the VG algorithm in 2020 are utilized as

a validation set. For eddy number, the 3D-U-Res-Net algorithm is

able to successfully identify all eddies, meanwhile simultaneously

demonstrating the potential to reduce the time required for eddy

identification by a factor of 10. The eddies are tracked, and it is

determined that a total of 18168 eddies are tracked using the VG

algorithm and 18559 eddies are tracked using the 3D-U-Res-Net

algorithm. The VG algorithm identify 8917 anticyclonic eddies and

9251 cyclonic eddies. The 3D-U-Res-Net algorithm identify 9092

anticyclonic and 9467 cyclonic eddies, respectively. The 3D-U-Res-

Net algorithm tracks a little bit greater number of eddies than the

VG algorithm. For eddy lifespan, the majority of eddies obtained by

the two algorithms have lifetimes of less than 20 days, with 91.18%

for the VG algorithm and 91.45% for the 3D-U-Res-Net algorithm.
FIGURE 9

Four distinct types of three-dimensional eddies. (A) Bowl-shaped cyclonic eddies observed on May 7, 2020. (B) A representative example of a cone-
shaped anticyclonic eddy observed on May 8, 2020. (C) An individual example of a lens-shaped anticyclonic eddy observed on February 19, 2020.
(D) An individual example of a cylindrical cyclonic eddy observed on January 24, 2020. The background field is the temperature anomaly field, the
black solid lines indicate the eddy surface contour lines, the gray shapes indicate the eddy boundary, and the gray arrows indicate the velocity
flow field.
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Eddies with a lifespan exceeding two weeks are selected for

statistical analysis. The average lifespan of eddies for the 3D-U-

Res-Net and VG algorithms are 29.35 and 29.61 days, respectively.

The distribution of eddy lifetimes exhibits a similar pattern for both

algorithms, with only a slight discrepancy in the number of eddies

observed. The mean traveling distances for the 3D-U-Res-Net and

VG algorithms are 77.78 and 37.60 km, respectively. With regard to

the trajectories and distances traveled by eddies, those detected by

the 3D-U-Res-Net algorithm are observed to have greater ranges.

The trajectories of the VG algorithm exhibit a higher number of

eddies up to 40 km, while the 3D-U-Res-Net algorithm has a lower

number of eddies. The eddies identified by the 3D-U-Res-Net

algorithm can be tracked to eddies with a longer trajectory.

A comparison of the eddy radii across different layers reveals

that the eddy radii identified by the 3D-U-Res-Net algorithm are

larger in the surface and bottom layers. In the depth range from the

sea surface to 600 m, the mean eddy radius identified by the 3D-U-

Res-Net is smaller compared to that identified by the VG algorithm.

Below 600 m, the mean eddy radius identified by the 3D-U-Res-Net

is larger. The average eddy radius detected by the 3D-U-Res-Net

algorithm is 0.58 km smaller than that detected by the VG

algorithm. Eddies are classified into four distinct types based on

their radii distribution: bowl-shaped, cone-shaped, lens-shaped,

and cylindrical. The identified three-dimensional eddies exhibited

greater structural similarity, including the discovery of a new type

termed ‘cylindrical eddy,’ which constituted 60.9% of all detected
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eddies. This proportion is five times higher than that observed with

the VG algorithm. The number of lens-shaped eddies is small,

representing only 0.04% of the total. The number of bowl-shaped

eddies is comparable to that of cone-shaped eddies, with respective

counts of 26441 and 26577, respectively. In contrast, the VG

algorithm identified the highest numbers of bowl-shaped and

cone-shaped eddies, with counts of 43435 and 42078, respectively.

The number of lens-shaped eddies is 33933, while the number of

cylindrical eddies is the lowest, comprising 12% of the total with a

count of 16288.

Overall, the 3D-U-Res-Net algorithm effectively identifies

three-dimensional eddies in the ocean and significantly reduces

processing time compared to the VG algorithm, thereby saving

considerable time and effort. Additionally, in eddy tracking, the 3D-

U-Res-Net algorithm captures eddies with longer trajectories and

tends to identify more stable eddy structures in three dimensions.

However, this comes with a drawback: smoothing out eddy

structures may lead to fewer detections of other types of eddies,

such as lens-shaped eddies. The 3D-U-Res-Net algorithm identified

more cylindrical eddies, resulting in some differences from the VG

algorithm, which reflects a limitation of the 3D-U-Res-Net

algorithm. The 3D-U-Res-Net algorithm determines eddy

boundaries by learning annotations at grid points, and since

calibration values at these points may be slightly lower than the

actual eddy boundaries, this could lead to radius discrepancies.

Furthermore, due to the stability of eddies in the Southern Ocean,
FIGURE 10

(A) Histogram distribution of the number of four 3D types of eddies. (B) The pie chart illustrates the percentage of the four 3D types of eddies, from
left to right, for the VG algorithm anticyclone, VG algorithm cyclone, 3D-U-Res-Net algorithm anticyclone, and 3D-U-Res-Net algorithm cyclone,
respectively. The green and gray represents bowl-shaped eddies and lens-shaped eddies, respectively, while the purple and orange represents
cone-shaped eddies and cylinder -shaped eddies, respectively.
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the structural differences in three-dimensional eddies may

inherently be smaller. Currently, our understanding of this model

remains limited, and how to optimize its performance is not yet

clear. We hope to continuously conduct experimental training to

uncover underlying reasons and improve model performance. The

present study focused exclusively on eddies with a depth of 700 m in

the Southern Ocean region. It is expected that in the subsequent

research activities, this method will be applied to investigate eddies

of different depths and extended to different sea areas. This will

undoubtedly facilitate our comprehension of the three-dimensional

structure of eddies, promote the research process of eddy dynamics

mechanisms, and is of extremely critical significance for in-depth

exploration of ocean eddies.
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