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Dietary supplementation with
sodium propionate and tributyrin
alleviated hepatic lipid deposition
and improved the antioxidant
capacity and hypoxic stress
resistance of spotted seabass
(Lateolabrax maculatus)
Kun Cui1,2, Hanle Zhang1, Biao Yun1, Jianxue Wang1,
Xueqiao Qian1* and Min Xue2*

1Key Laboratory of Microecological Resources and Utilization in Breeding Industry, Ministry of
Agriculture and Rural Affairs, Haid Central Research Institute, Guangdong Haid Group Co., Ltd.,
Guangzhou, Guangdong, China, 2National Aquafeed Safety Assessment Centre, Institute of Feed
Research, Chinese Academy of Agricultural Sciences, Beijing, China
We investigated the effects of dietary supplementation with sodium propionate

(SP) and tributyrin (TB) on hepatic lipid deposition and antioxidant capacity of

spotted seabass (Lateolabrax maculatus) via an 8-week feeding experiment and a

hypoxia stress experiment. The fish were fed five experimental diets: a control

diet (CON), a diet supplemented with 2 g/kg SP (SP-0.2%), 4 g/kg SP (SP-0.4%), 2

g/kg TB (TB-0.2%), or 4 g/kg TB (TB-0.4%). No significant difference in growth

performance was presented among the groups (P > 0.05). The SP-0.4% and TB-

0.2% groups presented significantly lower hepatosomatic and viscerasomatic

indexes compared with the CON group. Then, the SP-0.4% and TB-0.2% groups

presented stronger resistance to hypoxic stress than the other groups and were

analyzed further. The hepatic histology and triglyceride levels revealed that SP-

0.4% and TB-0.2% reduced hepatic lipid deposition. Similarly, the

downregulation of malondialdehyde and the upregulation of total antioxidant

capacity, superoxide dismutase, and catalase activities and the related gene

expression levels revealed that SP-0.4% and TB-0.2% improved the antioxidant

capacity. Additionally, the RNA sequencing demonstrated that SP-0.4% and TB-

0.2% regulated gene expression to a similar extent. Among the 117 differentially

expressed genes, 67 genes were enriched in the same pattern, and involved the

FoxO signaling, PI3K-Akt signaling, and insulin-related pathways. In conclusion,

supplementing SP-0.4% and TB-0.2% as feed additives effectively improved

hepatic lipid metabolism, antioxidant capacity, and hypoxic stress resistance of

spotted seabass.
KEYWORDS

sodium propionate, tributyrin, hepatic lipid deposition, antioxidant capacity,
hypoxic stress
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1 Introduction

With the rapid development of the global aquaculture industry,

the occurrence of fish diseases is increasing, which has become an

important factor affecting the sustainable and healthy development of

aquaculture (Abdelsalam et al., 2023). Antibiotic misuse has led to the

emergence of drug-resistant pathogens and drug residues, which

seriously affects sustainable aquaculture development (Okocha et al.,

2018; Shao et al., 2021). Therefore, efficient, green, and safe alternative

antibiotic additives are increasingly attracting research attention.

Nutritional modulation of the immune system is a potentially

powerful tool for improving fish health, and includes amino acids,

fatty acids, vitamins, and minerals (Oliva-Teles, 2012; Pohlenz and

Gatlin, 2014). Given their wide range of physiological functions and

high safety, short-chain fatty acids (SCFAs) have important

application potential for improving fish health, and have been

identified as a potential alternative to traditional antibiotic

treatments (Hoseinifar et al., 2017; Ng and Koh, 2017; Palma

et al., 2023). SCFAs generally refer to organic acids with a carbon

atomic number < 6, which are produced mainly by intestinal flora

fermentation of fiber in food, among which the main functional

products are acetic acid, propionic acid, and butyric acid (Tran

et al., 2020; Rauf et al., 2022). Sodium propionate (SP) and

tributyrin (TB) are stable and efficient forms of propionic acid

and butyric acid, respectively (Miyoshi et al., 2011; Silva et al.,

2016). Solid-form SCFAs are a practical addition to animal feed

formulations due to their better handling and storage properties

(Silva et al., 2016), and SP is a high-stability, high-safety chelated

form of propionic acid that affects lipid metabolism and regulates

the immune system. In a recent study, dietary supplementation with

SP improved growth performance, hepatic lipid deposition, and

health status in rainbow trout (Oncorhynchus mykiss) (Yousefi et al.,

2024). TB is a butyric acid derivative formed by the esterification of

three butyric acid molecules and one glycerol molecule (Gerunova

et al., 2024), which is a naturally stable compound compared with

butyrate and can effectively pass through the stomach and be

broken down in the intestine, releasing butyric acid to function

(Miyoshi et al., 2011; Hou et al., 2014). In addition, TB has fewer

palatability issues than butyrate (Palma et al., 2023). In aquatic

animals, TB also play a regulatory role in fish growth, metabolism

and health. The growth-promoting effects of TB have been

extensively reported, such as in snakehead fish (Channa argus)

(Hou et al., 2019), blunt snout bream (Megalobrama amblycephala)

(Liang et al., 2021), and common carp (Cyprinus carpio) (Xie et al.,

2021), and the improvement of digestive enzyme activities may be

an important reason. In addition, TB reduced triglycerides content

and cholesterol levels in large yellow croaker (Larimichthys crocea)

(Xu et al., 2021) and hybrid grouper (Epinephelus fuscoguttatus♀×
Epinephelus lanceolatus♂) (Yin et al., 2021), in which the hepatic

lipid metabolism was involved. Moreover, TB could also modulate

the antioxidant capacities of fish (Hou et al., 2019; Liang et al.,

2021). Therefore, in addition to promoting growth, SP and TB

modulated lipid metabolism and immune responses, presenting a

stable and safe option for inclusion in animal feed formulations

(Silva et al., 2016; Palma et al., 2023). However, few studies have

focused on both SP and TB.
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Spotted seabass (Lateolabrax maculatus) is a popular farmed fish

in China because of its delicious meat, rapid growth, and high

economic value, with a production of 246,918 tons in 2023 (Cai

et al., 2020; Xing et al., 2023). High stocking density, excess feed, and

exogenous pathogens endanger the health of spotted seabass (Dong

et al., 2022). Abnormal hepatic lipid deposition and hypoxic stress are

two major problems in fish farming, weakening immune function

and disease resistance and even leading to death, which seriously

damages economic interests (Hou et al., 2023). Therefore, the

objectives of the present study were to investigate the effects of SP

and TB on the hepatic lipid deposition and health status of spotted

seabass, which will provide references for aquatic feed and improve

our understanding of the functional mechanism of SCFAs in fish.
2 Materials and methods

2.1 Diet formulation

Five experimental diets were formulated: a control diet (CON), a

diet supplemented with 2 g/kg SP (SP-0.2%), 4 g/kg SP (SP-0.4%), 2 g/

kg TB (TB-0.2%), or 4 g/kg TB (TB-0.4%) (Table 1), the dosage of the

additives used was referred to the previous studies (Safari et al., 2016;

Safari et al., 2017; Cheng et al., 2021; Xu et al., 2021). The basis for the

formulation of the control diet was referred to those of commercial

feeds. White fish meal, poultry byproduct meal, soybean meal, corn

gluten meal, and cottonseed protein concentrate were used as the

source of protein. Fish oil and soybean oil were used as the source of

lipid. Wheat flour was used as the main source of carbohydrate. The

crude protein and crude lipid contents of the experimental diets were

~48% and ~16%, respectively. The SP (99.0%, #S100122) and TB (98%,

#G106350) were obtained from Shanghai Aladdin Biochemical

Technology Co., Ltd. (China), and the other ingredients were

obtained from Guangdong Haid Group Co., Ltd. (China). The

ingredients were crushed to a fine powder and mixed thoroughly to

create pellets. The experimental diets were prepared and stored

following previous study procedures (Li et al., 2019). According to a

previous study (Li et al., 2023), the proximate composition of

experimental diets was analyzed by the standard procedures of AOAC.
2.2 Experimental procedure and sampling

Spotted seabass of similar size (mean weight: ~58 g) were randomly

assigned to the five groups. Each group contained four replicates, and

each replicate contained 30 fish (in an indoor aquarium with a

diameter of 2 meters). The fish were reared for 8 weeks. The fish

were fed twice a day at 06:00 and 18:00. During the feeding experiment,

the water temperature was maintained at 28 ± 1°, the dissolved oxygen

was maintained at 7–7.5 mg/L, and the ammonia nitrogen was

maintained at < 0.2 mg/L. After the feeding experiment, the fish

were anesthetized using MS222 (1:10,000; Sigma−Aldrich, USA). All

fish in each aquarium were weighed, the physical indices were

measured, and the fish livers were dissected for analysis.

The feeding experiment was followed by a hypoxic stress

experiment. For each group, three fish from four aquariums were
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gathered in one aquarium. Finally, 12 fish were included in each

group. The experimental fish were acclimated to the new

environment for one day, and the dissolved oxygen concentration

was maintained consistently (the dissolved oxygen was maintained at

7–7.5 mg/L). After a day of acclimatization, the oxygen supply was

halted in all aquariums simultaneously. Subsequently, the number of

dead fish was counted every 10 min to evaluate the hypoxic stress.

The experimental procedures were performed in strict

accordance with the Management Rule of Laboratory Animals

(Chinese Order No. 676 of the State Council, revised 1

March 2017).
2.3 Oil red O staining and
triglyceride measurement

Oil red O staining was carried out as described previously (Li et al.,

2021). Briefly, the fish liver (5 mm × 5 mm pieces) was stored in 4%

paraformaldehyde before staining. The samples were sectioned into 6-

mm sections using a cryostat microtome, fixed in cold 10% buffered

formalin, and stained with oil red O. The TG content of the fish liver

was measured using a commercial kit (#A110, Nanjing Jiancheng

Bioengineering Institute, China) and the glycerol-3 phosphate oxidase

phenol-4-chlorophenol aminophenazone (GPO-PAP) method.
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2.4 Antioxidant capacity

Malondialdehyde (MDA, #BC0025), total antioxidant capacity

(T-AOC, #BC1310), superoxide dismutase (SOD, #BC0170), and

catalase (CAT, #BC1190) were measured using specific commercial

kits (Solarbio, China). The reagent preparation, liver tissue

homogenization, and operation were performed in strict

accordance with the manufacturer’s instructions.
2.5 Real-time quantitative PCR

RT-qPCR was carried out according to a previous study (Cui et al.,

2020). Briefly, total RNA was extracted from liver tissue using TRIzol

according to themanufacturer’s instructions (Takara, Japan). The RNA

was reverse-transcribed into complementary DNA (cDNA) using a

PrimeScript™ Reverse RT Reagent Kit (Takara). PCR amplification

was performed containing 1 ml cDNA, 1 ml each primer, 12.5 ml
PrimeSTAR® Max DNA Polymerase (Takara), and 9.5 ml RNase-free
water. The PCR cycling conditions were 10 s at 98°, 15 s at 58°, and 20 s

at 72° for 35 cycles. A single PCR product was confirmed by a melting

curve analysis. The RT-qPCR primers referenced that of a previous

study (Tan et al., 2017) (Table 2). The housekeeping gene was b-actin.
The gene expression levels were calculated using the comparative

threshold (CT) cycle (2-DDCT) method (Livak and Schmittgen, 2001).
TABLE 1 Formulation and chemical proximate analysis of the experimental diets (%).

Ingredient a CON SP-0.2% SP-0.4% TB-0.2% TB-0.4%

White fish meal 36 36 36 36 36

Poultry byproduct meal 10 10 10 10 10

Soybean meal 8 8 8 8 8

Corn gluten meal 10 10 10 10 10

Cottonseed
protein concentrate

6 6 6 6 6

Wheat flour 13 13 13 13 13

Fish oil 10 10 10 10 10

Soybean oil 2 2 2 2 2

Vitamin premix 2 2 2 2 2

Mineral premix 2 2 2 2 2

SP 0 0.2 0.4 0 0

TB 0 0 0 0.2 0.4

Microcrystalline cellulose 1 0.8 0.6 0.8 0.6

Proximate analysis

Dry matter 93.22 93.40 93.35 93.53 93.58

Protein 47.94 48.19 47.87 47.95 48.16

Lipid 15.92 16.21 16.16 16.04 15.93

Ash 8.23 8.32 8.28 8.31 8.26
Sodium propionate (SP) and tributyrin (TB) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (China), and the other ingredients were obtained from Guangdong Haid
Group Co., Ltd. (China).
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2.6 RNA sequencing

The RNA extraction, cDNA library construction, and sequencing

were conducted by Majorbio (China). The gene expression levels were

calculated using transcripts per million reads (TPM) in RSEM (http://

deweylab.biostat.wisc.edu/rsem/), and the threshold for significance

was a P-adjusted value of 0.05. The Kyoto Encyclopedia of Genes

and Genomes (KEGG) database (http://www.genome.jp/kegg) was

used for pathway enrichment, and the significance threshold in the

KEGG pathway enrichment was a P-adjusted value of 0.05. The

heatmap analysis was conducted using fastcluster, which used

log210 gene expression, and the subcluster was calculated

according to the relative gene distance. The raw data were

submitted to the National Center for Biotechnology Information

(NCBI) Sequence Read Archive (SRA) (PRJNA1150789).
2.7 Calculations and statistical analysis

Survival rate (SR, %) = (final fish number/initial fish number)

× 100;

Weight gain (WG, %) = (final body weight − initial body

weight) × 100/initial body weight;

Feed conversion ratio (FCR) = feed consumption/body

weight gain;

Condition factor (CF, g/cm3) = (final body weight/final body

length3) × 100;

Hepatosomatic index (HSI, %) = (liver weight/body weight) × 100;

Viscerosomatic index (VSI, %) = (viscera weight/body weight)

× 100.

All statistical analyses were conducted using SPSS 25.0 (IBM, USA).

All data are reported as the mean ± standard error of the mean (SEM).

All data were analyzed using one-way analysis of variance (ANOVA),

followed by Tukey’s multiple range test or independent sample t-test.

Differences were considered statistically significant when P < 0.05.
3 Results

3.1 SP and TB supplementation on survival
and growth

The survival rates of the five groups ranged from 97-99%, and there

were no significant differences among the groups (P > 0.05). Compared

with those of the CON group, the growth performance, including final

body weight, WG rate, and FCR, was not significantly different among
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the groups, although the SP-0.2% group presented a slightly higherWG

rate and slightly lower FCR (P > 0.05) (Table 3).
3.2 SP and TB supplementation on
physical indices

The CF was not significantly different among the groups. Notably,

the HSI and VSI were different among the groups, and the SP-0.4%

and TB-0.2% groups had a significantly lower HSI and VSI (P < 0.05)

(Table 4), revealing a potentially lower hepatic lipid deposition.
3.3 SP and TB supplementation on
hypoxic stress

Hypoxic stress causes severe losses in farmed spotted seabass,

thus the 8-week feeding experiment was followed by a hypoxic stress

experiment. The CON fish began to die after 6 h after the oxygen

supply was halted (the dissolved oxygen in each group reduced to

approximately 1 mg/L), and all CON fish died after 7 h after oxygen

was halted, demonstrating the weakest hypoxia resistance in all

groups (Figure 1). Notably, all the SP and TB fish began to die

later than that of the CON fish. The SP-0.4% and TB-0.2% fish began

to die last, and the total death time in the SP-0.4% and TB-0.2%

groups was also the longest, as it was ~2 h longer than that of the

CON group, indicating stronger hypoxia stress resistance.
3.4 SP and TB supplementation on oil red
O staining and TG levels

Considering that the SP-0.4% and TB-0.2% groups had lower

HSI and VSI than the CON group (Table 4), oil red O staining was

conducted to determine the fish hepatic TG levels (Figure 2). The

results revealed that the SP-0.4% and TB-0.2% groups had smaller

lipid droplets and significantly downregulated liver TG levels,

indicating that SP-0.4% and TB-0.2% dietary supplementation

reduced hepatic lipid deposition.
3.5 SP and TB supplementation on
antioxidant capacity

The results of antioxidant capacity revealed that the SP-0.4%

and TB-0.2% groups had significantly lower MDA contents (P <
TABLE 2 The RT-qPCR primers used in this study.

Gene Forward primer (5′-3′) Reverse primer (5′-3′) Product length

b-actin CAACTGGGATGACATGGAGAAG TTGGCTTTGGGGTTCAGG 114

nrf2 AGAAGGAGCGTCTGTTGAGTGA GGAAGATGCTGCCGTTAGTTGA 174

sod AGAATCATGCCGGTCCTAATG CGGTGATGTCTATCTTGGCTAC 96

cat TGTGGGACTTCTGGAGCCTGAG TGTGAGAGCCGTAGCCGTTCAT 111
nrf2, nuclear erythroid 2-related factor 2; sod, superoxide dismutase; cat, catalase.
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0.05) and significantly upregulated T-AOC, SOD, and CAT, and the

expression levels of the antioxidant capacity-related genes: nrf2

(nuclear erythroid 2-related factor 2), cat, and sod (P < 0.05)

(Figure 3). The results suggested that the SP-0.4% and TB-0.2%

groups had improved antioxidant capacity.
3.6 SP and TB supplementation on
RNA-seq

The SP-0.4% and TB-0.2% regulation of hepatic gene

expression were analyzed using RNA-seq (Figure 4). Compared

with the CON group, SP upregulated 57 genes and downregulated

28 genes, while TB upregulated 43 genes and downregulated 5

genes. Additionally, TB upregulated only 7 genes and

downregulated 9 genes compared with SP, revealing that SP and

TB had similar effects on gene expression levels (Figure 4A). The

Venn diagram and heatmap analyses supported these results

(Figures 4B, E). The subcluster analysis revealed that 67 genes

from 117 differentially expressed genes were enriched in the same

cluster (Figure 4F). KEGG enrichment analysis revealed that the

FoxO signaling, PI3K-Akt signaling, and insulin-related pathways

were key in SP and TB functions (Figures 4C, D, G).
4 Discussion

In the present study, the survival rate and growth performance

were not significantly different among the groups. Previous studies

reported that SCFAs had no significant growth-promoting effects

on Atlantic salmon (Salmo salar) (Bjerkeng et al., 1999), rainbow

trout (Oncorhynchus mykiss) (Gao et al., 2011), gilthead sea bream
Frontiers in Marine Science 05
(Sparus aurata) (Benedito-Palos et al., 2016), and red hybrid tilapia

(Oreochromis sp.) (Ebrahimi et al., 2017). However, SCFAs

promoted the growth performance of sea bream (S. aurata)

(Robles et al., 2013), grass carp (Ctenopharyngodon idellus) (Liu

et al., 2017), Nile tilapia (Oreochromis niloticus) (Hu et al., 2018),

turbot (Scophthalmus maximus) (Liu et al., 2019), golden pompano

(Trachinotus ovatus) (Zhou et al., 2019), Barramundi (Lates

calcarifer) (Aalamifar et al., 2020), and yellow drum (Nibea

albiflora) (Wu et al., 2020). There are hundreds of fish species

farmed around the world, and they have different feeding habits and

different living environments. Therefore, the different results might

primarily be due to the fish species and the experimental conditions.

Then, the differences in basal feed formula and supplementation

levels can also lead to different results.

The liver is key to maintaining normal fish growth and health,

and excessive hepatic lipid deposition can severely affect liver

function. In mammals, SCFAs play a role in energy homeostasis

and metabolism (den Besten et al., 2013; Sahuri-Arisoylu et al.,

2016), and SCFAs alleviate lipid deposition in the liver (Morrison

and Preston, 2016). In the present study, both SP-0.4% and TB-

0.2% downregulated the fish HSI, VSI, and TG, reducing hepatic

lipid deposition. The downregulation of HSI was consistent with

that reported in previous fish studies. In juvenile Pengze crucian

carp (Carassius auratus Pengze), the HSI and lipid were

significantly decreased in supplementing SB groups compared

with that of the control group, and the antioxidant capacity,

intestinal histomorphology, and immune response were all

improved (Fang et al., 2021). In juvenile largemouth bass

(Micropterus salmoides), dietary supplementation with 2.0 g/kg SB

had significantly lower HSI, and the antioxidant activities,

inflammatory response, and resistance to hypoxic stress were all

improved (Hou et al., 2023). Therefore, the improvement of
TABLE 3 Effects of dietary sodium propionate (SP) and tributyrin (TB) on spotted seabass survival and growth.

Parameter CON SP-0.2% SP-0.4% TB-0.2% TB-0.4%

SR/% 98.00 ± 1.15 99.00 ± 1.00 98.00 ± 2.00 97.00 ± 3.00 99.00 ± 1.00

IBW/g 58.36 ± 0.15 58.32 ± 0.09 58.12 ± 0.08 58.21 ± 0.08 58.38 ± 0.05

FBW/g 158.26 ± 1.46 160.16 ± 1.37 158.62 ± 0.47 157.73 ± 2.20 158.02 ± 1.23

WG/% 171.54 ± 1.91 174.75 ± 2.53 172.92 ± 0.93 170.97 ± 3.92 170.68 ± 2.23

FCR 1.02 ± 0.01 0.99 ± 0.01 1.03 ± 0.01 1.04 ± 0.02 1.04 ± 0.01
No significant differences were presented among survival and growth parameters (P > 0.05).
SR, survival rate; IBW, initial body weight; FBW, final body weight; WG, weight gain; FCR, feed conversion ratio.
TABLE 4 Effects of dietary sodium propionate (SP) and tributyrin (TB) on spotted seabass physical indices.

Parameter CON SP-0.2% SP-0.4% TB-0.2% TB-0.4%

CF/(g/cm3) 1.94 ± 0.01 1.95 ± 0.04 1.89 ± 0.03 1.91 ± 0.06 1.93 ± 0.04

HSI/% 0.85 ± 0.03a 0.82 ± 0.06ab 0.77 ± 0.05b 0.71 ± 0.02b 0.89 ± 0.04a

VSI/% 12.04 ± 0.24a 12.31 ± 0.44a 10.83 ± 0.36b 10.80 ± 0.62b 11.32 ± 0.42ab
Values (mean ± SEM, n = 4) in the same row with different superscript letters are significantly different (P < 0.05).
CF, condition factor; HSI, hepatosomatic index; VSI, viscerosomatic index.
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physical indices by SCFAs is often accompanied by the promotion

of health. The factors affecting lipid deposition include absorption,

lipogenesis, and lipid oxidation. Under certain conditions of

absorption, lipogenesis and lipid oxidation determine the level of

lipid deposition. In juvenile large yellow croaker (Larimichthys

crocea), replacement of fish oil with soybean oil in diets

significantly increased the lipid deposition in the liver, and SCFAs

alleviated the abnormal lipid deposition by decreasing the
Frontiers in Marine Science 06
expression of lipogenesis-related genes and increasing the

expression of lipid oxidation-related genes (Xu et al., 2021).

Therefore, SCFAs could be useful for reducing hepatic lipid

deposition in fish, which could regulate lipogenesis and lipid

oxidation at the same time.

Unlike terrestrial animals, fish basically obtain their oxygen

requirements from water, and hypoxic stress has received more

attention. Hypoxic stress is an important factor affecting the
FIGURE 1

Number of dead fish after the oxygen supply was halted. After the feeding experiment and sampling, the oxygen supply was halted simultaneously,
and the number of dead fish in each group was counted every 10 min.
FIGURE 2

Effects of SP and TB dietary supplementation on hepatic lipid deposition. (A) Liver histochemical characteristics (oil red O staining). Scale bars = 50
mm. (B) Liver TG levels. Mean values (mean ± SEM, n = 4) with different letters are significantly different (P < 0.05).
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survival rate of spotted bass in aquaculture. In the present study,

both SP-0.4% and TB-0.2% improved the antioxidant capacity and

hypoxic stress resistance of spotted seabass. In aquaculture, water

eutrophication and increased culture density can decrease dissolved

oxygen concentrations, increasing the risk of hypoxic stress (Hou

et al., 2023; Jia et al., 2023), especially for spotted seabass, which has

a relatively high oxygen demand. In fish, hypoxia stress leads to

excessive accumulation of reactive oxygen species, leading to

protein denaturation, lipid peroxidation, and even cell damage

(Martıńez-Álvarez et al., 2005; Peng et al., 2022), which can cause

many diseases and even death (Zhao et al., 2020). The antioxidant

system, which mainly consists of the antioxidant enzyme, can

prevent the production of reactive oxygen species and avoid cell

damage (Hughes, 1999). In previous studies, SCFAs improved the

antioxidant enzymes activities, including SOD, CAT, and T-AOC,

and reduced the MDA in zebrafish (Danio rerio) (Safari et al., 2016),

carp (Cyprinus carpio L.) (Safari et al., 2017), Nile tilapia (O.

niloticus) (Dawood et al., 2020), black sea bream (Acanthopagrus

schlegelii) (Volatiana et al., 2020), yellow catfish (Pelteobagrus

fulvidraco) (Zhao et al., 2021), and grass carp (C. idella) (Cheng
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et al., 2021), thereby improving the fish health. Furthermore, the

improvement of antioxidant capacity improved the stress resistance

in fish. SCFAs improved hypoxia stress resistance in largemouth

bass (M. salmoides) (Hou et al., 2023) and improved ammonia

stress resistance in yellow catfish (P. fulvidraco) (Zhao et al., 2021).

Therefore, SCFAs could be used to improve antioxidant capacity

and hypoxic stress resistance in aquaculture, thereby improving the

survival rate of fish in aquaculture.

RNA-seq was conducted to analyze the global regulation of gene

expression and explore the potential functional pathways of SP and

TB. The results revealed that SP-0.4% and TB-0.2% had similar

effects on the gene expression levels, and the FoxO signaling, PI3K-

Akt signaling, and insulin-related pathways might be key pathways

involved in their functions. The three signaling pathways all played

key roles in lipid metabolism and health (Sell et al., 2012; Martini

et al., 2014; Farhan et al., 2017), which improved the understanding

of the functional mechanism of SCFAs in fish. There are a few

studies on the mechanism of SCFA function in aquatic animals. In

grass carp (C. idella), sodium butyrate improved the intestinal

immune function associated with the NF-kB and p38-MAPK
FIGURE 3

Effects of SP and TB dietary supplementation on antioxidant capacity. (A) MDA, T-AOC, SOD, and CAT levels. (B) Relative gene expression levels of
nrf2, sod, and cat. Mean values (mean ± SEM, n = 4) with different letters are significantly different (P < 0.05).
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signaling pathways (Tian et al., 2017) and enhanced the physical

barrier function of the Nrf2, JNK, and MLCK signaling pathways

(Wu et al., 2018). Furthermore, SCFAs improved largemouth bass

(M. salmoides) immunity through the TLR22-MyD88-NF-kB
signaling pathway (Hou et al., 2023). In addition, mammalian

studies provide more references. For example, SP activated the

small intestinal gluconeogenesis pathway through the GPR41 gut-

brain axis, improving metabolism (De Vadder et al., 2014).

Moreover, SP improved the abnormal lipid deposition induced by

a high-fat diet through the PPARg-UCP2-AMPK pathway (den

Besten et al., 2015). Additionally, SCFAs inhibited glycogen

synthase kinase 3b and increased Nrf2 activity, increasing the

antioxidant capacity (Xing et al., 2016). Therefore, the in-depth

functional mechanism of SP, TB, and other SCFAs in fish has many

research gaps and should be studied in further studies.
Frontiers in Marine Science 08
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Dietary supplementation with 0.4% sodium propionate and

0.2% tributyrin were feasible strategies for improving the hepatic

lipid deposition, antioxidant capacity, and hypoxic stress resistance

of spotted seabass, which provides references for aquatic feed. The

sodium propionate and tributyrin-regulated genes presented similar

expression patterns and involved the FoxO signaling, PI3K-Akt

signaling, and insulin-related pathways, which could improve our

understanding of the functional mechanism of SCFAs in fish. The

in-depth functional mechanisms of certain SCFAs should be

studied. Subsequently, considering the similar functions and gene

regulation of sodium propionate and tributyrin, the synergistic

effects of sodium propionate, tributyrin, and other SCFAs should

also be examined.
FIGURE 4

RNA-seq of SP and TB dietary supplementation. (A) The number of differentially expressed genes. (B) Venn diagram of the differentially expressed
genes. (C) KEGG enrichment analysis of SP-regulated genes. (D) KEGG enrichment analysis of TB-regulated genes. (E) Heatmap analysis of
differentially expressed genes. (F) Subcluster of 67 genes. (G) KEGG enrichment analysis of 67 genes.
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