Skip to main content

ORIGINAL RESEARCH article

Front. Mar. Sci.
Sec. Coral Reef Research
Volume 11 - 2024 | doi: 10.3389/fmars.2024.1481299

Holocene fringing reef along southern Andaman and Swaraj Dweep shoreline

Provisionally accepted
  • 1 Indian Institute of Technology Gandhinagar, Gandhinagar, India
  • 2 National Geophysical Research Institute (CSIR), Hyderabad, Andhra Pradesh, India

The final, formatted version of the article will be published soon.

    The Andaman and Nicobar Islands are rimmed by discontinuous fringing reef that is in general wider on western margin vs the eastern margin. This study characterizes the facies updip from the modern fringing reefs to the present shoreline of south Andaman and Swaraj Dweep, and describes in detail the coral terraces/carpets within and above the inter-tidal zone representing the Holocene Fringing reef. Field studies, satellite, and drone datasets have been utilized to map different facies, that include: coralgal boundstone, biodetrital-grainstone, beachrock, and coralgal rudstone. Multiple exposed microatolls as well as coral terraces (coral carpets) of Acropora and Porites (dated 8.7-8.4 ka BP) have been identified within the intertidal zone (Radhanagar Beach, Swaraj Dweep) indicating that Holocene fringing reef have down-stepped offshore to the current location of modern fringing reefs owing to either tectonics or eustasy. The eustatic sea-level fluctuations are relatively well established for the Holocene and we compute the tectonic uplift rates utilizing the stream-power-incision and linear-inversion model. A tectonic uplift rate of ~ 0.05 mm/yr (for Swaraj Dweep) during the past 100 ka is estimated, while taking into account a wide range of erodibility indexes and response time intervals. It is identified that the computed uplift rate is an amalgamation of the coseismic deformation along with the interseismic and aseismic surface deformation. Thus, not all exposed coral terraces/microatolls are exposed due to coseismic deformation (for example uplift in parts of Andaman due to earthquake in 2004). The average long-term uplift rates are a magnitude lower than the eustatic sea-level fall rates during Holocene, thus, we suggest that most of the Holocene fringing reefs are exposed due to eustatic sea-level fall and down-stepped to the current location of the modern fringing reefs. This would entail that the eustatic sea-level change rates would play a significant role in determining future of the modern fringing reef (catch-up vs keep up vs give up), and the coastal morphology of south Andaman and Swaraj Dweep, with implications for coastal inundation and stability in the scenario of climate change.

    Keywords: coral reef, terraces, Indian Ocean, sea-level, Shallow marine carbonates

    Received: 15 Aug 2024; Accepted: 07 Oct 2024.

    Copyright: © 2024 Misra, Menon, Sahoo, Mannu and Khanna. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Pankaj Khanna, Indian Institute of Technology Gandhinagar, Gandhinagar, India

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.