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Segmentation of oil spills with few-shot samples using UAV optical and SAR

images is crucial for enhancing the efficiency of oil spill monitoring. Current oil

spill semantic segmentation predominantly relies on SAR images, rendering it

relatively data-dependent. We propose a flexible and scalable few-shot oil spill

segmentation network that transitions from UAV optical images to SAR images

based on the image similarity of oil spill regions in both types of images.

Specifically, we introduce an Adaptive Feature Enhancement Module (AFEM)

between the support set branch and the query set branch. This module leverages

the precise oil spill information from the UAV optical image support set to derive

initial oil spill templates and subsequently refines and updates the query oil spill

templates through training to guide the segmentation of SAR oil spills with limited

samples. Additionally, to fully exploit information from both low and high-level

features, we design a Feature Fusion Module (FFM) to merge these features.

Finally, the experimental results demonstrate the effectiveness of our network in

enhancing the performance of UAV optical-to-SAR oil spill segmentation with

few samples. Notably, the SAR oil spill detection accuracy reaches 75.88% in 5-

shot experiments, representing an average improvement of 5.3% over the

optimal baseline model accuracy.
KEYWORDS

oil spill, UAV, deep learning, few-shot, segmentation
1 Introduction

With the intensification of marine resource exploitation and the expansion of marine

transportation, the marine environment faces increasingly severe threats (Sun et al., 2023).

Among them, marine oil spills have long-term impacts on the marine environment, are

challenging to treat, and are difficult to detect (Habibi and Pourjavadi, 2022; Wang et al.,

2023). Consequently, some scholars have focused on developing efficient and generalized

oil spill detection models.
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While traditional oil spill monitoring can accurately detect oil

spills, it is limited in scope and time-consuming. Remote sensing

technology is essential for detecting and monitoring oil spills

ranging from microscopic to large-scale. A variety of satellite

images, including those used for optical, microwave, and infrared

remote sensing, are employed for this purpose (Ma et al., 2023;

Mohammadiun et al., 2021; Al-Ruzouq et al., 2020). Optical remote

sensing data can be acquired at a low cost; for example, drones can

be used to acquire high-resolution regional oil spill imagery in near-

shore waters of harbors. However, their data coverage is limited,

making it challenging to utilize them in the complex meteorological

environments of offshore oceans (Chen et al., 2024). Microwave and

infrared remote sensing offer the advantage of wide-range and all-

weather data acquisition. However, the resolution of the data is low,

and the cost of acquisition is high, which makes data processing

challenging (Chaturvedi et al., 2020; Song et al., 2020). Additionally,

SAR data can be interfered with by various types of land features in

harbor areas and on land, reducing the accuracy of oil spill detection

(Fan and Liu, 2023). Hence, in the age of data-driven artificial

intelligence, there is a need to investigate a deep learning based

semantic segmentation network that performs well in oil spill

detection using both UAV optical and SAR data with few shot

samples. This study aims to enhance the accuracy and efficiency of

oil spill extraction from multi-source, multi-modal remote sensing

images while minimizing the model’s data dependency, an area

currently underexplored in oil spill detection research.

Data-driven detection methods, particularly semantic

segmentation, aim to predict category labels for new objects from

a pixel-level perspective (Wang et al., 2021). This task has numerous

applications, including scene understanding, medical diagnosis, and

remote sensing information extraction, among others (Yuan et al.,

2021; Asgari Taghanaki et al., 2021). Unlike object detection

methods for oil spill detection, semantic segmentation divides

pixels of the oil spill area. This approach facilitates the

measurement of the oil spill area’s size and its impact on

neighboring areas.

Following a literature review, current research on semantic

segmentation of oil spills still primarily relies on SAR data. The

main approach involves enhancing the model’s feature extraction

capability to improve segmentation accuracy (Soh et al., 2024;

Hasimoto-Beltran et al., 2023; Fan et al., 2023; Bianchi et al.,

2020). Chen (Chen et al., 2023) developed an effective

segmentation network named DGNet for oil spill segmentation.

This network incorporates the intrinsic distribution of backscatter

values in SAR images. DGNet consists of two deep neural modules

that operate interactively. The inference module infers potential

feature variables from SAR images, while the generation module

generates an oil spill segmentation map by using these potential

feature variables as input. The effectiveness of DGNet is

demonstrated through comparison with other state-of-the-art

methods using a large amount of Sentinel-1 oil spill data. On the

other hand, Lau (Lau and Huang, 2024) combines geographic

information with remote sensing imagery for oil spill

segmentation. The study explores a deep learning approach for oil

spill detection and segmentation in nearshore fields, achieving

overall accuracies of 77.01% and 89.02%, respectively. They
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subsequently developed a Geographic Information System (GIS)

based validation system to enhance the deep learning model’s

performance, leading to an overall accuracy of 90.78% for the

Mask R-CNN model. However, the model’s performance can be

limited in some cases due to the unavailability of accurate

geographic information under subjective and objective conditions.

Some other researches have considered the remote sensing physical

characteristics of marine oil spill in designing the model (Fan et al.,

2024; Amri et al., 2022). For example, Chen (Chen et al., 2023)

proposed a new segmentation method for marine oil spill SAR

image, which considers the physical characteristics of SAR image

and oil spill segmentation at the same time in order to realize the

accurate oil spill segmentation. Secondly, a deep neural

segmentation network is constructed by combining the features of

oil spill backscattering values in SAR images, which is capable of

segmenting oil spill SAR images including similar points. The

experimental results show that the method can identify the oil

spill area better with less samples. Li (Li et al., 2021) proposed a

multi-scale conditional adversarial network (MCAN), designed for

oil spill detection using limited data. This network employs a

coarse-to-fine training approach to capture both global and local

features, and it demonstrates accurate detection performance even

when trained on only four oil spill observation images. Li (Li et al.,

2022) also proposed an adversarial ConvLSTM network (ACLN)

for correcting predicted wind fields to match reanalysis data. By

using a correction-discriminator framework, the network improved

the accuracy of real-time wind field estimation and demonstrated its

effectiveness in oil spill drift prediction, significantly reducing errors

compared to traditional methods. Overall, generative adversarial

networks require sophisticated training techniques. However,

current oil spill detection methods based on the physical

mechanism of remote sensing have limited transferability across

different domains, and these models are still reliant on data.

The acquisition cost of optical image is low and the visibility is

strong. However, satellite based optical imaging is less used in oil

spill studies than microwave imaging because it relies on favorable

weather conditions. However, UAVs capture images at low altitudes

with minimal cloud interference and high resolution, making them

a crucial data source for oil spill detection. Zahra (Ghorbani and

Behzadan, 2020) annotated UAV-acquired offshore oil spill images,

created an optical semantic segmentation dataset, and utilized an

improved Mask-RCNN to identify the oil spill area, achieving a 60%

accuracy. Ngoc (Bui et al., 2024) collected patrol videos taken by

UAV to create an oil spill optical dataset. This dataset was used to

train the DaNet deep learning model for oil spill segmentation and

classification. The results demonstrated that the DaNet model

achieved an average accuracy of 83.48% and mIoU of 72.54%.

From another perspective, supervised learning-based oil spill

detection is currently mainstream. However, its strong data

dependence and high cost of data annotation pose challenges.

Furthermore, the weak migration performance of models hinders

timely access to oil spill information. As a result, some scholars are

now focusing on weakly supervised oil spill detection methods. For

example, Kang (Kang et al., 2023) proposed a self-supervised

spectral-spatial transformer network (SSTNet) for hyperspectral

oil spill detection. Initially, a transformer-based comparative
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learning network extracts deep discriminative features, which are

then transferred to the downstream classification network for fine-

tuning. Experimental results on a self-constructed hyperspectral oil

spill database (HOSD) demonstrate the method’s superior

performance over existing techniques in distinguishing various oil

spill types, including thick oil, thin oil, sheen, and seawater.

However, the network’s fine-tuning process is complex.

Recently, few-shot semantic segmentation has emerged as a hot

topic in current research due to its powerful cross-domain few-shot

adaptive segmentation capability (Zhou et al., 2022). Existing

research on few-shot learning primarily focuses on visual

information extraction (Zheng et al., 2022; Kang et al., 2023). The

main research methods include fine-tuning (Sun et al., 2023), metric

learning (Jiang et al., 2021), and meta-learning (Khadka et al.,

2022). Among them, meta-learning is currently the mainstream

approach for few-shot semantic segmentation, typically employing

a two-branch architecture consisting of a support branch and a

query branch. The support branch extracts feature from the support

image and its semantic mask in the source domain, while the query

branch uses these features to match with the target domain image,

thereby learning new knowledge and completing the cross-domain

semantic segmentation with few samples (Lang et al., 2023).

Motivated by the latest research direction and considering the

shortcomings of oil spill detection research, we proposed a study on

multi-scale and few-shot oil spill semantic segmentation by

combining UAV optical and SAR images. Utilize the distinctive

image features of oil spill areas in UAV optical and SAR images.

Leverage the deep learning modeling capabilities to guide the

model in establishing feature correlations of oil spill areas in

both image types. Enhance the model’s cross-domain oil spill

detection capabilities.

Since UAV optical images can provide more spatial and

semantic information, UAV optical images are used as support

sets for few-shot sample training, and SAR images are used as query

sets for testing. Firstly, a cross-domain adaptive module is designed

to create and update feature templates, updating respective category

features through similarity matching with the support and query

sets. Secondly, to fully leverage multi-scale features, we employ the

Adaptive Feature Enhancement Module for high-level and low-level

features. Finally, the Weighted Multiscale Feature Fusion Module is

designed to fuse the multi-scale features.

The main contributions of this paper are as follows:
Fron
1. We propose a multi-scale cross-domain few-shot oil spill

detection network to quickly self-learn the common

features of oil spills in UAV optical and SAR images.

This is achieved by designing corresponding adapter

modules in the few-shot semantic segmentation task. We

experimentally demonstrate that the architecture can be

integrated into different feature extraction networks,

improving the network ’s cross-domain adaptive

capability. In addition, our network is flexible. First,

different types of feature extraction modules could be

selected according to the actual situation of oil spill

detection, making the entire network easier to deploy on

edge devices. Secondly, the available data can flexibly select
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the training mode of the model, which can either choose

the full supervision of a single branch or the two-branch

training of knowledge transfer with few samples. In this

way, the oil spill detection requirements of different types of

images such as UAV optical and SAR can be effectively met,

and the detection efficiency is greatly improved.

2. We designed the cross-domain Adaptive Feature

Enhancement (AFEM) module and the multi-scale

feature fusion module (FFM) to enhance the extraction of

multi-scale cross-domain similar features of the model.

3. In this paper, through the innovative method of setting the

similarity matching of oil spill template library, the

knowledge transfer from UAV optical to SAR oil spill

image is realized efficiently by learning the common

features of UAV optical and SAR oil spill images, and the

oil spill segmentation of few-shot SAR images is completed.

Moreover, the segmentation accuracy is higher than that of

the current mainstream few-shot semantic segmentation

benchmark model.
The rest of the paper is organized as follows: Section 2 will

introduce the dataset used for the study and the processing

methods. Section 3 will present the specific design details of the

few-shot oil spill detection network. Section 4 will present the

experimental design details and experimental results. Section 5

will discuss the design ideas and future research directions of the

network in light of the experimental results. Finally, Section 6 will

summarize the entire research.
2 Datasets

2.1 UAV optical oil spill dataset

Thomas (De Kerf et al., 2024) recently released the UAV-

acquired harbor oil spill optical dataset, comprising 1268 images.

As shown in Figure 1, the dataset is categorized into oil, water, and

other categories, and it ensures that each sample image contains all

semantic categories, thereby ensuring the balance of the samples.

This dataset fills a gap in publicly available oil spill optical semantic

segmentation datasets and serves as a crucial resource for

environmental protection in harbor environments. To maintain

consistency with the semantic segmentation categories of the SAR

oil spill detection dataset, we harmonized the category

segmentation of the optical dataset, merging waters, other

categories, and unknown categories into a single “other” category.
2.2 SAR oil spill dataset

The first oil spill detection SAR image dataset used in this study

was developed by Krestenitis (Krestenitis et al., 2019), as shown in

Figure 2. The dataset includes Sentinel-1 SAR image representations

of offshore oil spills and corresponding labels. The training set

comprises 1002 images, and the test set contains 110 images with

corresponding labels. The spatial resolution of the image is 10m. To
frontiersin.org
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emphasize the recognition of oil spill areas, this study merged the

semantic segmentation task into two categories: oil spill areas and

other. Data augmentation was employed to increase the training

dataset size, with randomized horizontal and vertical flips applied

only to the training set. The images were normalized using the mean

and standard deviation of the training set before being used as

inputs to the various models in this study.

In Figure 3, to verify the robustness of the model, the SOS oil

spill detection dataset released by Zhu (Zhu et al., 2022) was selected

for this study. It comprises two parts: (1) 14 PALSAR images of the

Gulf of Mexico region with a pixel spacing of 12.5 m and HH

polarization; and (2) 7 Sentinel 1A images of the Persian Gulf

region, with a spatial resolution of 5 m × 20 m and VV polarization.

To enhance dataset diversity, original images underwent operations

such as rotation and random cropping, resulting in 6456 oil spill

images from the 21 original images. Subsequently, the data were

manually labeled and subjected to expert sampling, resulting in a

final dataset of 8070 labeled oil spill images.
Frontiers in Marine Science 04
Finally, to improve the training efficiency of the model, the

dimensions of the images and annotations in all three datasets were

resized to 256×256.

Figure 4 presents a typical example of UAV optical oil spill

imagery. A comparison of Figures 3, 4 shows that the oil spill areas

in both SAR and UAV optical images display a patchy distribution

and are distinctly different from the ocean background. These

characteristics align with the similarity criteria necessary for

transfer learning in computer vision across different image sources.
3 Methods

3.1 Overview of few-shot semantic
segmentation network

In this section, we first introduce the overall network for

semantic segmentation of oil spills in UAV optical and SAR
FIGURE 2

Semantic segmentation dataset of the first SAR images.
FIGURE 1

Semantic segmentation dataset of UAV optical images.
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images, and then focus on two main components of the network:

the Adaptive Feature Enhancement Module (AFEM) and the

Feature Fusion Module (FFM).

The semantic segmentation network for UAV optical and SAR

images with few samples designed in this study mainly focuses on

the detection of oil spill categories, which belongs to the one-way k-

shot detection task, meaning that only k samples are used for

training. Therefore, in the model training stage, c support set

samples IcS,M
c
Sf gcc=1 are selected in the UAV optical oil spill

dataset Doptical, c is the number of training sets for visible oil spill

images. Moreover, one query set sample Iq,Mq

� �
is selected in the

SAR oil spill dataset DSAR. The model obtains the ability to predict

Mq by training on the support ensemble sample and Iq. The UAV

optical and SAR image less sample oil spill semantic segmentation

network, as shown in Figure 5, feeds the UAV optical oil spill

semantic segmentation support sample set IcS,M
c
Sf gcc=1 and the SAR

oil spill semantic segmentation query sample I_q into the encoder

of ResNet50 for feature extraction, respectively. Since the low-level

features retain more structural features such as texture and edges of

the image while the high-level features retain more abstract

semantic relational features, all of the information are important

for sample less semantic segmentation. Thus, the model obtains the

encoder’s low-level features Flow
S , Flow

q and high-level features Fhigh
S ,

Fhigh
q at two levels respectively. Then, Flow

S , Flow
q and MS are fed into

our proposed adaptive feature enhancement module for feature

interaction, thereby obtaining the class-specific features F
low*
S and
Frontiers in Marine Science 05
F
low*
q of the oil spill. Subsequently, the original features are merged

with the oil spill-specific features by means of residual

concatenation to maximize information retention. For the high-

level features Fhigh
S and dFhigh

q , the same approach of feature

interaction and feature merging is used. Finally, the low-level and

high-level features after the adaptive feature enhancement module

and feature merging are fed into the feature fusion module for the

interaction of high-level and low-level features, which makes full

use of the advantages of the different levels of features of the oil spill

area in the UAV optical and SAR images, and improves the model’s

performance of semantic segmentation of the oil spill area with

few samples.
3.2 Adaptive feature enhancement module

The Adaptive Feature Enhancement Module proposed by us is

shown in Figure 6, which consists of generating and updating the oil

spill class feature template library and oil spill feature enhancement.

Here we take the low-level feature as an example, and the high-

level feature performs the same operation. For the oil spill semantic

segmentation task of low-sample SAR images with c UAV optical

support samples, the first task is to generate the oil spill feature

template database. The support set feature Flow
S ∈ Uc�d�h�w and

the support set image mask MS ∈ Uc�h�w (where d represents the

dimension of the feature, h and w represent the height and width of
FIGURE 4

Example of typical UAV optical oil spill images.
FIGURE 3

Semantic segmentation dataset of the second SAR images.
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the feature) are used to generate a specific class of features for the oil

spill area. Initially, an initial SAR image oil spill template library is

obtained after the branch training of the query set. P =

P1, P2,…, Pmf g ∈ Um�d , where m represents the number of

categories of templates, which is mainly related to the

morphological categories of oil spill areas in SAR images. The

specific type of oil spill template Plow
t is obtained by supporting set

features Flow
S andMS through pixel-by-pixel multiplication in spatial

dimension, and the calculation formula is as follows:

Plow
t = Mean(Flow

S :MS) (1)

Since we set the semantic category of the non-oil spill area in

mask MS to 0 and the semantic category of the oil spill area to 1,

only the features of the oil spill area are retained after the template

generation operation. This way, interference from the background

on the oil spill feature recognition can be avoided. In the model test

stage, similarity matching was used to update the template Pm of

different oil spill types, and the specific calculation formula was as

follows.

Ptrain
m = (1 − a)� l2(P

low
t ) + a � l2(Pm) (2)
Frontiers in Marine Science 06
Ptest
m = Argmax(l2(P

train
m ) · l2(P

low
t ) (3)

Finally, according to experimental experience, using the top five

templates with the highest similarity can obtain the most

comprehensive features more efficiently, and can prevent feature

overfitting. Therefore, only the top five templates with the highest

similarity are selected as the final UAV optical-SAR oil spill

template library. This way, each oil spill template Pm will be able

to express the features of different oil spill types well in the current

feature representation space.

In addition, the model can learn the invariant oil spill template

feature when transforming from UAV optical to SAR oil spill

feature space. We can calculate the similarity between the UAV

optical support set feature Flow
S and the oil spill class template Pm

obtained earlier, and the calculation formula is as follows.

Elow
m = Min(6,Max(0, l2(F

low
S ) · l2(Pi)�

ffiffiffi
d

p
)) (4)

F
low*
S = Elow

m · Flow
S + Flow

S (5)
FIGURE 6

The structure map of the adaptive feature enhancement module.
FIGURE 5

The network map of few-shot UAV optical-SAR oil spill semantic segmentation.
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After the above steps, the support set feature Flow
S is constrained

by the previously obtained oil spill template, and here only the

support set feature Flow
S is described as an example, the same

procedure will be applied to the query set feature Flow
q based on

the SAR oil spill image, and to the encoder’s high-level feature

outputs Fhigh
S and Fhigh

q .
3.3 Feature fusion module

Although UAV optical images and SAR images have similar

features in the oil spill area, the two different data characteristics pose

great challenges to transfer learning of few-shot oil spill segmentation.

Furthermore, the distribution of the enhanced features F*S (F
*
q ) in the

high-level and low-level features and the original features FS(Fq) has

changed significantly after the previous feature enhancement. Based

on this, instead of fusing only single features of the support set and

query set images as in previous sparse sample semantic segmentation

studies, this study fully considers the contour information in the low-

level features and the abstract semantic information in the high-level

features (Hyperspectral image instance segmentation using spectral-

spatial feature pyramid network). An adaptive weighted high and

low-level feature fusion module is proposed, and the specific

structural diagram is shown in Figure 7.

First, a new feature C is generated from the merged high-level

feature B after upsampling and the low-level feature A. The number

of channels in C consists of A and B’. Then, C is reduced by 1×1

convolution to obtain D. Next, two projective fully connected layers

with weight parameters Wdown and Wup are used to compress and

expand the channel dimension of the feature, with a ReLU activation

function used between the two fully connected layers to improve the

nonlinear characteristics of the feature. Finally, the output features

are obtained by taking the dot product with D to obtain E. Feature E

is then connected with feature A using residuals to obtain the final

fusion feature F. The overall calculation formula is as follows:

F = ReLU(Conv1�1(UP(B) · A) · Wdown)

· Wup ∗Conv1�1(UP(B) · A) + A (6)
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4 Experiment

4.1 Experimental setup

Our network is built on PyTorch 2.0 and trained on an RTX

3090 GPU with 24GB of memory. 70% of the UAV optical dataset

(887) are selected as the training set and 10% (126) are selected as

the validation set. The initial model weights and oil spill template

library are obtained by training in the support set branches of the

model. The training batch size for the experiment is set to 8. As

shown in Equation 7, we choose the weighted binary cross entropy

as the loss function. The importance of the loss in the oil spill area is

increased by 20%, making the model pay more attention to

identifying the oil spill area. The model uses AdamW as the

optimizer, with an optimization momentum of 0.95, a learning

rate of 0.001, and a weight decay coefficient of 0.001. After training

the model support branches using UAV optical images, we begin

the second phase of transfer learning training. At this stage, the

model weights trained on the UAV optical oil spill dataset were

transferred to the feature extraction branch of the SAR oil spill

model. Only 1, 3, and 5 samples are randomly selected from the

SAR oil spill data for the few-shot query branch fine-tuning training

and last test, respectively, and fine-tuned together with the previous

support branches. Simultaneously, the oil spill template library is

updated, and fine-tuning is limited to no more than 1500 iterations

each time. Each trial is evaluated based on the results offive random

sample trials, and the results of 1-shot and 5-shot SAR oil spill

detection with small samples are obtained.

Lwbce = −1:2� ytruelog(ypred) − (1 − ytrue)log(1 − ypred) (7)
4.2 Experimental result

In order to comprehensively evaluate the effectiveness of the

network proposed in this study, we selected four mainstream few-

shot semantic segmentation networks: MSANet (Iqbal et al., 2022),

PFENet (Tian et al., 2022), HSNet (Min et al., 2021), and BAM
FIGURE 7

The structure map of the feature fusion module.
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(Lang et al., 2022). VGG, ResNet, and DenseNet are then used as

encoders for the network, respectively. The performance of the model

is evaluated from both quantitative and qualitative perspectives.

In terms of quantitative evaluation, as shown in the Table 1, our

network outperforms other small-sample semantic segmentation

models in UAV optical-SAR oil spill detection tasks in both 1-shot

and 5-shot settings. Compared with the SOTA model MSANet, the

proposed network in this study achieves an average IoU

improvement of 3.7%, 6.5%, and 8.2% in the 1-shot configuration

of VGG16, ResNet50, and DenseNet121 backbone oil spill detection

tasks, respectively. IoU increases averaged 3.5%, 6.2%, and 6.1% in

the 5-shot configuration, respectively.

In terms of qualitative evaluation, as shown in Figure 8, we first

generate an attention heat map for the task of SAR oil spill detection

with few samples. It can be observed that after training with the

support of the ensemble of UAV optical oil spill data, along with the

adaptive feature enhancement module and the multi-scale feature

fusion module, the output features can effectively focus on the oil spill

areas distributed in different locations in the SAR image. This

indicates that the two modules we designed facilitate feature

migration, enabling the model to achieve a relatively strong ability

to detect oil spills based on learning only a small amount of SAR oil

spill data. This demonstrates the efficacy of the two modules in

facilitating the migration of oil spill features, thereby enhancing the

model’s oil spill detection capability with few shot SAR oil spill data.

On the other hand, according to the previous experiments result,

we found that the results of the 5-shot experiment were the most

representative, so we chose the test results of the 5-shot experiment as

the benchmark for model comparison. The Figure 9 illustrates the

comparison results between several benchmark models and our
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proposed network in the 5-shot SAR oil spill semantic segmentation

task. It is evident from the figure that our model closely approximates

the real label and effectively segments different types of oil spill areas.

Overall, our model effectively focuses on the boundaries of oil spill

regions with varying shapes, enabling more accurate extraction of the

spill areas. Figure 9 shows that our model accurately extracts oil spill

regions, with no internal holes appearing in the detected spill areas.

This improves the overall integrity of the detection, and the spill

boundaries are more precise without being overly smoothed.

We conducted ablation experiments to investigate the effects of the

key components of the model, the Adaptive Feature Enhancement

Module (AFEM) and the Feature Fusion Module (FFM), on the

model’s performance, as shown in the Table 2, Figure 9. The feature

enhancement using the AFEM module resulted in the most significant

model accuracy improvement of 1.12% compared to the strategy of

directly merging features from both branches. This indicates that the

interaction of oil spill features from UAV optical and SAR can fully

learn the respective features of the two data types to enrich the model’s

information and improve its migration learning ability. Additionally,

Utilizing the Oil Spill Template Library (OTL) fully explores the

correlation between deep model feature modeling. It guides the

establishment of feature similarity matching criteria between UAV

optical and SAR images, thereby enhancing the few-shot SAR image oil

spill detection capability. As shown in Table 2, the detection accuracy

was increased by 1.55% after OTL was used. Additionally, the loss

variation curve of the ablation model training function in Figure 10

shows that the model utilizing feature enhancement modules and

multi-scale feature oil spill templates most effectively improves the

cross-domain few-shot oil spill detection capability. This model also

achieves the fastest training and convergence speed.
TABLE 1 IoU results of the few-shot oil spill semantic segmentation tasks.

Backbone Method
1-shot (IoU) 5-shot (IoU)

Flod-0 Fold-1 Fold-2 Fold-3 Flod-0 Fold-1 Fold-2 Fold-3

VGG 16

MSANet 60.11 68.6 62.31 57.16 64.28 70.47 63.91 58.76

PFENet 55.13 64.23 57.17 53.6 57.09 66.24 60.09 57.92

HSNet 52.19 61.8 55.24 54.83 55.86 64.13 61.53 56.08

BAM 60.05 65.72 58.1 56.4 62.11 69.78 62.28 62.27

Ours 63.11 69.65 62.56 61.86 64.22 72.63 65.08 64.38

ResNet 50

MSANet 61.37 70.46 63.4 58.67 65.78 71.47 64.89 59.27

PFENet 56.3 68.23 59.17 55.39 58.76 68.11 61.17 58.39

HSNet 55.6 63.8 57.51 55.13 57.46 66.08 63.51 57.08

BAM 62.18 69.72 60.24 58.18 62.59 71.27 64.19 62.87

Ours 64.69 72.65 66.78 68.78 66.09 75.43 67.08 69.83

DenseNet 121

MSANet 61.92 70.88 62.67 59.34 66.13 71.8 65.14 62.59

PFENet 57.15 69.27 61.05 54.89 58.8 70.56 61.33 60.89

HSNet 56.05 63.36 58.21 56.08 57.96 65.17 63.21 58.6

BAM 63.1 70.14 60.68 59.22 63.98 70.61 64.75 61.22

Ours 65.95 73.94 67.72 69.89 67.13 75.88 68.52 70.18
The performance metrics of our proposed model are shown in bold.
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FIGURE 8

The attention heat map of SAR oil spill images.
FIGURE 9

Visual comparison results of the first disaster semantic segmentation task.
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5 Discussion

Based on the previous experimental results and analysis, this

section discusses the effectiveness of the few-shot oil spill semantic

segmentation network proposed in this thesis for UAV optical-SAR

images from several aspects.

During the research of the paper, we identified similarities

between UAV optical and SAR oil spill images, such as the patchy

distribution of oil spill regions and the distinct texture and color
Frontiers in Marine Science 10
differences between the oil spills and the background. Our model

design is based on these principles, resulting in a framework for

knowledge transfer and template matching fromUAV optical to SAR

images. Additionally, we observed that differences in image resolution

between the two types of data also affect the knowledge transfer

performance of the model. For instance, the optical images we used

have a sub-meter resolution, suitable for detecting small sized oil

spills, while SAR images have a 10-meter resolution, suitable for

large-scale oil spill detection in adverse weather conditions. We took

this into account in our model design by incorporating modules for

extracting and fusing low-level and high-level features, which

provides the model with receptive fields at various scales and

enhances its ability to perceive oil spills of different sizes.

To further validate the transfer learning capability of our

proposed model, we conducted an experiment in contrast to the

previous one. We collected UAV oil spill images from the previous

dataset and input them into the model trained on SAR oil spill data

for fine-tuning and testing. The results, shown in the Figure 11,

demonstrate that the model effectively extracts oil spill regions from
FIGURE 10

Training loss curve of the ablation models.
TABLE 2 Ablation study with 5-shot semantic segmentation on
SAR images.

AFEM FFM OTL IoU%

✔ – 70.61

✔ – 71.73

✔ ✔ – 73.84

✔ ✔ ✔ 75.39
FIGURE 11

Transfer learning results from SAR to UAV optical images.
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UAV optical images. This indicates that our proposed model

exhibits some transfer learning capabilities.

During the model design phase, this study first adopts the current

mainstream two-branch architecture for few-shot semantic

segmentation and sets up replaceable feature extraction encoders. It

then considers the similarity of oil spill features in optical and SAR

images, designing an optical-SAR adaptive feature enhancement

module with an updatable oil spill template library. This module

enables the formation of an optimal oil spill template library through

few-shot SAR images, guiding cross-data-modality few-shot oil spill

segmentation. Secondly, inspired by the concept of encoder feature

extraction, this study fully exploits the information of low-level and

high-level features. It designs a multi-scale feature fusion module that

allows the model to adaptively learn the importance of features in

different dimensions through weighting. This approach helps retain

the most important features while removing redundant ones. The

effectiveness of the network is demonstrated through few-shot

semantic segmentation experiments.

Of course, our model has limitations. Firstly, although it

establishes a connection between UAV optical and SAR oil spill

images through similarity matching templates, improving the few-

shot SAR oil spill detection capability, its segmentation accuracy is

still lower than that of fully supervised oil spill semantic

segmentation models. Additionally, due to the lack of

incorporation of physical mechanism knowledge, the model’s

interpretability is relatively weak, and its cross-regional

transferability has not been validated. Additionally, we found that

the model’s transfer learning capability between optical oil spill

images from Sentinel and Landsat platforms and SAR images is

relatively limited. This is because optical remote sensing images are

more easily affected by complex ocean environments and weather

conditions like clouds. In our experiments, the transfer model often

misclassified waves and clouds as oil spills. This issue requires

further investigation in future research.

In the future, we plan to design a few-shot semantic

segmentation network based on the physical mechanisms of SAR

oil spill imaging to improve cross-modal oil spill detection

performance. Additionally, we will continuously collect oil spill

semantic segmentation data from various regions for training and

leverage the latest large models (SAM) to design prompt learning

methods that incorporate expert knowledge, thereby enhancing

model robustness. This network can serve as a reference for

future research on few-shot semantic segmentation methods.
6 Conclusions

In this paper, we propose a new flexible semantic segmentation

network for few-shot oil spills. Based on the current mainstream

two-branch structure, we design the Adaptive Feature

Enhancement Module, which can update the oil spill template

library, to accurately guide and enhance features highly correlated
Frontiers in Marine Science 11
with few-shot objects according to the oil spill image features of

UAV optical and SAR. Additionally, we design the Feature Fusion

Module for weighted feature fusion, fully considering the

advantages of encoder low-level and high-level features, which

improves the efficiency of feature information utilization. Finally,

through comparison experiments with mainstream few-shot

semantic segmentation models under different backbones, the

results show that our network improves oil spill detection

accuracy by an average of 5.3% over the state-of-the-art

benchmark model. The model reduces the misclassification of oil

spills with slender bar shapes.
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