
Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Dilip Kumar Jha,
National Institute of Ocean Technology, India

REVIEWED BY

Gopalakrishnan Singaram,
krishkash Envirotech Private Limited, India
Pankaj Verma,
National Institute of Ocean Technology, India

*CORRESPONDENCE

Hojun Yoo

yoohj@geosr.com

RECEIVED 14 August 2024
ACCEPTED 13 December 2024

PUBLISHED 16 January 2025

CITATION

Yoo H, Kim H, Kang TS, Park JY and Kim JB
(2025) Tracking shoreline change using
minimum convolution of Gaussian weight
and squared differences.
Front. Mar. Sci. 11:1480699.
doi: 10.3389/fmars.2024.1480699

COPYRIGHT

© 2025 Yoo, Kim, Kang, Park and Kim. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 16 January 2025

DOI 10.3389/fmars.2024.1480699
Tracking shoreline change using
minimum convolution of
Gaussian weight and
squared differences
Hojun Yoo1*, Hyoseob Kim2, Tae Soon Kang1, Jin Young Park1

and Jong Beom Kim1

1Department of Coastal Management, Geosystem Research Corp., Gunpo, Republic of Korea,
2School of Civil Engineering, Kookmin University, Seoul, Republic of Korea
Detecting and responding appropriately to temporal changes in the shoreline is an

important task for protecting coasts. Video monitoring has been utilized as a

powerful tool for detecting shoreline changes. Existing shoreline-tracking

methods include the threshold methods, colour intensity gradient methods, and

neural networks, which involve ad-hoc assignment of the threshold values,

drawing shore-normal transects, and heavy preliminary training for each coast

with many data, respectively. The study applies a new boundary tracking method

using Minimum Convolution of Gaussian Weight and Squared Differences

(MCGWSD). The new method is fast and effective in a sense that it does not

need ad-hoc threshold, drawing of transects, or pre-training. This method tracks

boundary lines between two zones with no thickness by inversely tracking every

pixel of the late image. The MCGWSD method is first examined for various image

distortions, i.e. translation, linear deformation, angular deformation, and rotation of

images. Images of a part of orange peel are chosen for the test, where a boundary

line is artificially drawn, not necessarily following clear object boundary, but

crosses over small patterns. The new method satisfactorily tracks the movement

of boundary line at the tests. Then field video images of Jangsa Beach between 1

September 2020 and 15 September 2020, when typhoons Maysak and Haishen hit

the coast, are examined to track the shoreline movement. Ground truth shoreline

information at the coast during the time is not available, and results of existing

colour intensity gradient method PIMACS are assumed true. According to PIMACS

results on the beach width along two transects during the period, the shoreline

underwent a movement up to 6 m. The new MCGWSD method tracks the

shoreline position, and its results show good agreement with PIMACS results

along two transects. The merits of the present method are that it produces

shoreline change over the whole domain, and shore-normal transects are not

needed. The present method effectively tracks the shoreline retreat or advance of

as small as 1 pixel of image. The new method could be used for tracking shoreline

change at arbitrary geometry even with sharp corners.
KEYWORDS

minimum convolution of Gaussian weight and squared differences (MCGWSD),
shoreline detection method, shoreline movement, local dissimilarity index,
video monitoring
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1 Introduction

Shoreline changes have significant implications for coastal

communities, including alterations to habitat, infrastructure

damage, and increased vulnerability to coastal hazards.

Monitoring these changes is critical for sustainable development

and disaster risk reduction. Coastal changes are driven by both

natural processes, such as wave action and sea level rise, reduced

river sand supply, and anthropogenic factors, such as urbanization

and resource extraction. Effective monitoring of shoreline changes

is essential for informed decision-making in coastal management,

helping to mitigate the impacts of climate change and safeguard

coastal populations (Luijendijk et al., 2018; Vousdoukas et al., 2020;

and Ribas et al., 2020). Various methods, including remote sensing,

ground surveys, and GIS-based modeling, are employed to track

shoreline changes. However, each method has its limitations in

terms of accuracy, cost, and temporal resolution.

The shoreline is the transition between land and water. It is

often taken as the intersection of mean high water and the shore.

The position of the shoreline continuously shifts over time due to

cross-shore and alongshore sediment transport within the littoral

zone. It influenced by factors such as waves, tides, groundwater,

storm surges, setup, and runup (Boak and Turner, 2005). The

traditional method of monitoring the shoreline is to use GPS

(Morton et al., 1993). This method is relatively fast and accurate

but requires manpower and time costs. With the development of

remote equipment such as satellites, video systems, and drones,

numerous methods for shoreline monitoring have been developed.

COASTSAT (Vos et al., 2019), a shoreline analysis tool utilizing free

satellites like Landsat and Sentinel-2, provided long-term shoreline

change data spanning approximately 40 years, but it is limitation to

detection shoreline change at short-term changes such as typhoons.

Shoreline monitoring using drones provides high-resolution (< 0.1

m) three-dimensional beach elevation data and shoreline locations

(Young et al., 2021), but this requires user time costs for

monitoring operations.

Beach monitoring using video cameras began in 1980 with major

research beginning at the Coastal Imaging Laboratory (CIL) at Oregon

State University and the development of the ARGUS system

(Lippmann and Holman, 1989; Holman and Stanley, 2007).

Research on coastal wave dynamics, wave runup, beach dynamics,

etc., using images has helped to understand coastal morphodynamics,

and has led to rapid developments in video systems, such as improving

the quality of video systems and introducing fixed platforms

(Lippmann and Holman, 1990). With advancements of computer

vision, video analysis systems have also made rapid progress. High-

quality video resolution has further increased the value of research.

Examples of advanced analytical studies on video monitoring include,

sandbar tracking (Lippmann and Holman, 1989; van Enckevort et al.,

2004), beach slope (Damiani and Molfetta, 2008; Plant and Holman,

1997), rip current and longshore current (Chickadel et al., 2003; Almar

et al., 2016; Turner et al., 2007), and wave energy (Stockdon and

Holman, 2000; Shand et al., 2012; Aarninkhof and Ruessink, 2004). In

addition, shoreline extraction techniques using fixed video monitoring

have been gradually improved (Widyantara et al., 2019; Ribas et al.,

2020; Arriaga et al., 2022; Ronneberger et al., 2015; Ciresan et al., 2012;
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Ronneberger et al., 2015) and precise analysis (Kim, 2014; Chang et al.,

2019; Joia Santos et al., 2020) has been achieved with high-

resolution monitoring.

Widyantara et al. (2019) extracted shoreline from snapshot

video images at Cucukan beach, Indonesia using multi thresholding

method. Their results are limited in instantaneous shorelines and

are not directly linked to meaningful medium-term shoreline

positions. Ribas et al. (2020) used space-time filters and a

combination of four methods, including thresholding method

with weights for each method, and assessed their results with

human manual digitization results of shorelines at beaches near

Barcelona, Spain. The validity of this method remains uncertain

because the definition has not been examined in their work. Also, an

algorithm for handling discontinuities of each signal has not been

proposed in their work. Arriaga et al. (2022) detected shoreline

from video images at Sisal Beach, Mexico using a thresholding

method. They extracted the run-up limit, compared them with the

true shoreline, and added some correction width to the detected

shoreline positions. Their study results still show quite high RMSE

values, possibly influenced by temporal wave weather variation, and

unstable run-up limit. Recently, researchers have been working to

identify uncertain shoreline positions using Convolutional Neural

Network (CNN). Ciresan et al. (2012) built a CNN which makes use

of many training data sets, each derived from a sliding window for

each image pixel. Training of their network was expensive due to

excessive number of training data sets, despite artificially reducing

the panel size to limit computational load. Ronneberger et al. (2015)

proposed a deep unsupervised CNN called “U-net” for

segmentation. Their network is composed of two paths: a

contracting path and an expansive path. The expansive path is

executing expansion of the feature map size and reduction of the

number of feature maps. Their intent to introduce the expansive

path was to partially recover the characteristics of the original

image. However, during the expansive path, the most adequate

depth of the network and the up-sampling method should be

chosen depending on the given task and images, see Table 1.

While several techniques have been used to monitor shoreline

change, existing approaches have some weak points on either

accuracy or operational burden. This study introduces a new

method using local dissimilarity by modifying similarity index,

which overcomes these limitations by providing accuracy and

easy operation.

Segmentation is a typical procedure to track objects in images. A

simple method of image segmentation is the thresholding method

(Otsu, 1979; Jardim et al., 2023). This method has often been used

for gray-scale images. A drawback of this method is that it cannot

separate out meaningless patterns in images, if there are any.

Assigning adequate single or multiple thresholds is an important

step for the success of this method. This method seems not adequate

for tracking shoreline movement from images that include bright

gray bubble zones composed of RGB elements. Mean-shift

clustering method has been used to track movement of objects in

images (Zhao et al., 2020). Clustering is the key to identifying the

object to track including instant segmentation which often involves

deep learning algorithms. Shoreline lies in a zone be-tween the run-

up limit and the offshore end of the surf zone. The clustering
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method could separate out the bright gray bubble zone from

onshore and offshore zones. It is important to note that the

position of the shoreline is not the centre of the zone, especially

when the shoreline is a long curve, rather than an object encircled

by a curve. Thus, two-dimensional mean-shift concept does not

seem adequate for tracking lengthy and thin shoreline.

Similarity between two images has been measured by several

indices (Wu et al., 2021; Park et al., 2023). The similarity indices

could be used for tracking objects in images. Similarity indices

include Sum of Squared Differences (SSD), Mean Squared Error

(MSE), Structural Similarity Index (SSIM), and Spatial Correlation

Coefficient (SCC). SSD is considered a dissimilarity index. SSD and

SSIM have been used for assessment of similarity between two

images. It is meaningful to examine whether they can be used for

tracking objects in images. To use SSD or SSIM for tracking a

moving object or a pixel, it could think of comparing local pieces of

images, not the whole images. This study confines the interest on

situations in which partial images of objects or background suffer

translation, and distortion like elastic modification in shape, which

is similar to reshaping of flexible material. In other words, a small

piece of image or a patch undergoes deformations, such as linear

deformation, angular deformation, rotation, and translation, but

only in a small scale.

The shoreline evolves like an elastic material, or an elastic curve,

without abrupt cracking-like deformation SSD is known as a

dissimilarity index rather than a similarity index because it is

inversely proportional to similarity. The smaller the SSD, the

more similar the images are. SSD can be easily modified to a

similarity index by changing its sign and adding a large number,

called Modified SSD (MSSD). Kim et al. (2020) has used a similarity

feature map computed by negative sum of squared difference added

by a bias. Then, the larger the MSSD, the more similar the images

are. MSE describes the averaged SSD over the number of pixels

within a zone and is considered as a normalized value of SSD. It

becomes meaningful if only normalized SSD is needed. After

normalizing pixel values to have a zero mean and variance, the

resulting MSE is called SSIM, which ranges between -1 and 1. SSIM

has often been used to measure similarity between two images. It is

known that the SSD and SSIM values demonstrate different trends

depending on the images to be compared (Wang and Bovik, 2009).

The methodology employed in this study includes Minimum

Convolution of Gaussian Weight and Squared Differences

(MCWSD) method, which were selected due to their applicability,

accuracy, and easy operation in tracking shoreline changes.
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There are two options to track the movement of a pixel: forward

tracking and reverse tracking. It has two images in the time-series.

Reverse tracking assigns a pixel in the second image and finds the

position in the first image. The segmentation map of the first image,

which can be filled in by reverse tracking with no omission, whereas

forward tracking generates holes in the segmentation map. The

reverse tracking repeats for all pixels in the zone of interest.

Segmentation is simply dividing zones into multiple pieces and

assigning class numbers onto them. Strictly speaking, the

segmentation expresses a zero-thickness line or curve that

separates a wide zone into two or more. Some previous studies

have used rectangular boxes for tracking objects. A semantic

segmentation map uses two zones, and instant segmentation uses

many zones with many boundary curves. The simplest boundary is

a curve with zero thickness. For tracking shoreline movement,

tracking one boundary line and encircling an object for tracking

is adequate, because a shoreline is a curve rather than an area.

The new method for shoreline changes detection is applied to

images of a field. Analysis data of Jangsa Beach video monitoring

system are part of the Coastal Erosion Survey Project commissioned

by the Ministry of Oceans and Fisheries (MOF), and are used in this

study. Recent high-quality footage of Jangsa Beach in Korea is

available, and this paper discusses the applicability of the new

method to those video images. If a methodology can trace

shoreline change two-dimensionally without defining transects, it

would be more operational. Then, the methodology could be used

for arbitrary shorelines, even with sharp corners.
2 Materials and methods

2.1 Study site

The study site was Jangsa Beach, located on the east coast of

Korea (129°22’ 32”E, 36°17’ 06”N) (Figure 1). Jangsa Beach is a

typical pocket beach, and the beach face slope is around 7°, and the

bed material on the beach is mostly sandy. The median grain size of

the sediments was found to be 540mm, consistent with findings

from Ministry of SMEs and Startups (2023). As waves approach the

shoreline, waves break as spilling type in the surf zone, and run-up

over the swash zone above the mean water level, as shown in

Figure 2. The wave breaking produces bubbles of bright gray colour,

which is distinctive in video images. Instantaneous video images

(exposure of 0.02 s) show dynamic wave propagation over the beach
TABLE 1 Existing methodologies for shoreline change.

Methodology Property of interest Merits Demerits Year Authors

PIMACS colour intensity gradient direct and easy needs for many transects 2014 Kim et al.

multi threshold bright gray intensity easy concept and operation instantaneous shorelines are dealt with 2019 Widyantara et al.

combination colour intensity gradient choosing best method at each piece discontinuity exists between pieces 2020 Ribas et al.

threshold bright gray intensity easy operation needs correction stage for true shoreline 2022 Arriaga et al.

CNN pattern extraction for shoreline and its change computational load 2012 Ciresan et al.

U-NET pattern extraction for shoreline and its change depending on the given task and images 2015 Ronneberger et al.
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plane. Focus on the semi-steady shoreline and its evolution, the

position of which should be obtained from complex post-processing

techniques like averaging or filtering.

Unlike the waves entering the offshore, the waves in the surf

zone lose their inherent waveforms and react sensitively to the

bathymetry, and wave energy is continuously dispersed in the swash
Frontiers in Marine Science 04
zone. Therefore, when the images taken over a certain period are

synthesized (averaged image), the swash zone area becomes darker

white than other areas. To fully account for the influence of wave

action, automatically saved 180 seconds (3 minutes) of average

images from continuous video data (jpg) every second and analyzed

the coastline using them.
FIGURE 1

Geographical location of Korea (A); location of Jangsa, the area subject to in-site verification and Hupo tide station (KHOA) (B); W1 wave station
(KIOST), transact line, topography, and video monitoring area in Jangsa (C).
FIGURE 2

Spatial colour distribution in on-offshore direction on case of large waves (A); case of small wave (B) (S: Surf zone, E: Edge of shoreline).
frontiersin.org
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2.2 Colour variation around shoreline

The dissimilarity index (DI) and the sum of squared

differences (SSD) have been used to assess similarity between

two images, as follows:

D =oi   oj (yij − xij)
2 (1)

where D is the dissimilarity index, x is the light gray value of the

original image, y is the light gray value of the test image, and i and j

are two-pixel indices in the x and y direction, respectively. The grid

image is converted into an orthoimage, and changes in actual

positions are confirmed with a detailed grid. The mean of DI, or

mean dissimilarity index (MDI), has also been used for the same

purpose and could be considered as a generalized DI against image

size. MDI is an index to express the clarity of the second image with

respect to the original image, or to examine level of damage of the

second image.

DI or MDI could also be used for tracking objects in images.

However, because the equation for DI contains constant weight for

the squared difference at each point, it may become inadequately

influenced by far field points in the comparison window. Another

problem is that a small translation of the image produces significant

errors, if the image contains pixel-sized patterns. A small linear

deformation in one direction will produce large errors as the

distance between the comparison pixel and the reference pixel

grows. Angular deformation or rotation by a small angle will also
Frontiers in Marine Science 05
produce large errors as the distance between two pixels grows.

Therefore, a reasonable damping function to reduce the influence of

distant points from the point of interest on the dissimilarity would

be ideal.

Sharp edges are important information for tracking objects.

Edges mean big jumps in pixel values from the mathematical point

of view and should be regarded with heavy weights if they are near

the boundary line of interest. RGB values are included in the

tracking procedure. Assigning equal weights for R, G, and B

would be acceptable.

Designed new dissimilarity index to include previous

dissimilarity matrix, and the damping effect matrix based on the

distance between the position of interest and that of reference. The

damping effect is incorporated as a two-dimensional Gaussian

function which retains a finite value at the centre and the

decaying property as the distance from the centre increases, as

shown in Figure 3.

The dissimilarity matrix is convoluted with the damping effect

matrix to produce the new dissimilarity index. The present method

is applicable to the case when only small elastic deformations take

place including linear deformation, angular deformation, and

rotation. In other words, the present method has no limit on

translation of local images or object, which go through another

algorithm of zone-screening, shown in Figure 4.

Dk,l,ij = Rk,l,ij + Gk,l,ij + Bk,l,ij (2)
FIGURE 3

Two radius (Radius R1 for sweeping, and radius R2 for Gaussian summation). (A); Segmentation and target area (B).
FIGURE 4

Treatment of translation and deformations in MCGWSD method.
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Rk,l,ij =oi oj  wk,l,ij(trij − arij)
2 (3)

Gk,l,ij =oi oj wk,l,ij(tgij − agij)
2 (4)

Bk,l,ij =oi oj wk,l,ij(tbij − abij)
2 (5)

w(x, y) =
1

2ps 2 exp( − 0:5((
x − mx

s
)2 + (

y − my

s
)2) (6)

wk,l,ij =
1

2ps 2 exp( − 0:5((
i − k
s

)2 + (
j − l
s

)2) (7)

where D is the dissimilarity index; R,  G   and  B are the red,

green and blue value of the original image pixel; tr,   tg   and   tb are

the red, green and blue value of the test image pixel; x and y are the

two axes of the images; i, and j are the pixel indices in the x, y

directions of the original image; k and l are the pixel indices in the

x,   y directions of the test image; mx and my   are the mean position

of x   and   y assuming isotropic weight function; and w is the

Gaussian weight function.

The domain of the Gaussian function for a given (k,   j) position

is infinite, so that there should be a limit for practical computation.

Define a radius R2 for the limit of computation in Equations 2–5.

Then, it is finding the minimum D value by screening the pixels

within the circle of radius R1, and the position (i, j) with the

minimum D becomes the position found, reversely tracked from

the position (k,   l) in the second image. Then, the new class of the

reference pixel (k,   l) inherits that of the position (i, j) in original

image. Because every pixel in the second image is examined, the

new segmentation map has no omission of class, except the

boundary band of the second image of width of R1+R2 due to the

logics above. It should be noted that the radius R1 should be large

enough to account for possible translations of the local image or an

object. The computational algorithm for discrimination of erosion

and deposition from changes between images is summarized

in Figure 5.
2.3 Orthoimage conversion of video
monitoring and PIMACS coastline
analysis method

A total of four cameras were installed and operated at location

on land at Jangsa Beach since in 2018. As shown in Figure 1, it is

utilized for image transformation, coastline extraction, and analysis.

Rectification was performed using the direct linear transform

method with reference to the research of Holland et al. (1997),

and geometric transformation was performed using the focal length

(focal length, azimuth, and camera elevation) based on the basic

principles of photogrammetry. The schematic diagram of Jangsa

video monitoring ortho correction and orthoimage synthesis

created through this process is shown in Figure 6.

To extract beach width from image information, Kim (2014)

Pixel Intensity Moving Average Coastal Shoreline (PIMACS)

method was applied as shown in Figure 7. Based on the coastline
Frontiers in Marine Science 06
in the image, the difference in pixel color characteristics between the

maritime and land areas was used as a specific band to determine

the first point where the color characteristics changed rapidly as the

coastline. Patterns were extracted using the PIMACS method along

the monitoring baseline and were relatively effectively extracted

from images with backlight due to sunrise and sunset, fog, cloudy

weather, water pooling, and changes in color due to changes in solar

altitude. The shoreline for each transect was extracted from the

projected orthoimage, and the beach width was calculated.
3 Analysis results

3.1 Test of minimum convolution of
Gaussian weight and squared differences

On the original image shown in Figure 8A, a new tracking

method, Minimum Convolution of Gaussian Weight and Squared

Differences (MCGWSD), was tested. Its size is 115×340 pixel, and it

shows a piece of orange peel on a wooden floor. Natural boundary

curve is visible around the peel with sharp edges on colour.

However, it draws a straight conceptual reference line piercing

through the peel, similar to a centre line of the peel. The

intentionally drawn line could also be considered a boundary line

which does not express a sharp colour edge. The boundary line does

not have a closed shape, but a straight line, and is simpler than a box

or band. 0 to 255 values are across the artificial boundary line, and

get an annotation map, see Figure 8B.

First, a case with linear deformation is examined. The original

image is linearly deformed in the x direction by 7%. The deformed
FIGURE 5

The computational algorithm for shoreline change.
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FIGURE 7

Shoreline extraction method (PIMACS) using video image colour band.
FIGURE 6

Video monitoring of Jangsa Beach original image, ortho-corrected image, synthetic image.
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https://doi.org/10.3389/fmars.2024.1480699
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yoo et al. 10.3389/fmars.2024.1480699
image is shown in Figure 8C. The convolution of Gaussian weight

and the squared differences is produced at every point of the

deformed image. The new segmentation map for Figure 8C is

shown in Figure 8D, displaying an almost straight boundary line

similar to the original image. Small, rough disturbances are

observed along the boundary line, but the roughness does not

exceed 2 pixels. The new method works well for small linear

deformations such as 7%.

Second, a case of angular deformation is examined. The original

image is deformed with an angular deformation of 5 degrees, as seen

in Figure 8E. Even though the deformation angle is not large, the

squared difference increases sharply with the distance between the

pixel of interest and the reference pixel. The new segmentation map

obtained by the new Gaussian weight method is shown in Figure 8F.

The boundary line represented by the segmentation map reflects an

almost accurate deformation angle of 5 degrees, which

is satisfactory.

Third, a case of rotation is examined. The original image rotates

by 5 degrees, as illustrated in Figure 8G. A new segmentation map is

obtained by the new method, shown in Figure 8H. The new map

displays a rotated boundary line nearly 5 degrees from the original

image with minimal disturbance, which is satisfactory.

Lastly, a case of translation is examined. The original image

translates by 10 pixels in the y direction, degrees, as seen in

Figure 8I. It should be noted that both the object and the

background of the image translate simultaneously to examine the

effect of pure translation. R1 is assigned sufficiently large as 30. The

newly computed segmentation map from the second image using

the present method is shown in Figure 8J. The new boundary line
Frontiers in Marine Science 08
demonstrates an almost exact translation from the original position,

which is satisfactory.

The new method proposed here operates well for linear

deformation, angular deformation, and rotation with the help of

convolution of the image pixel values matrix with Gaussian weights

matrix, and translation with the help of finding MDIs while

screening over a circular zone of radius R1.
3.2 Application of MCGWSD method to
Jangsa Beach

Video monitoring at Jangsa Beach started in 2018, which was

part of the Coastal Erosion Survey Project commissioned by the

Ministry of Oceans and Fisheries (MOF). Images from 1 September

2020 to 15 September 2020 have been observed. During the period

strong typhoons Maysak and Haishen impacted Jangsa Beach. The

time-series of the significant wave height, the significant wave

period, the wave direction measured at St. W1 at 20 m depth

around the mid-south of the beach, and the tidal level during the

above period are shown in Figure 9. The largest significant wave

height during the period was 6.8 m, and the significant wave period

for the largest significant wave height was 10.0 s. Dominant wave

direction during the typhoon was NE, and the PIMACS method was

used to analyze the beach widths along two sections during

the period.

Video images at three times, time 1: 1 September 2020 13:30,

time 2: 12 September 2020 07:00, and time 3: 15 September 2020

10:00 are shown from Figures 10A–C. The bird-eye images are
FIGURE 8

Testing result of minimum sum of Gaussian squared differences [Original image (A); The artificial boundary layer (B); Linearly deformation (C); New
segmentation map (D); Deformation of 5 degree (E); New segmentation map (F); Rotation of 5 degree (G); New segmentation map (H); Upper
translation (I); New segmentation (J)].
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transformed or geo-rectified to plan map images. The plan map

images needed to undergo normalization process, as the averages

and the variances RGB pixel numbers for the 3 images were above

tolerance. In this case the 3 images show small differences in the

averages, and the variances’ relative error are smaller than 5%,

respectively. Only the Jangsa Beach part of plan images was used for

the following study, while the Jangsa Harbors area in the southern

part of images was deleted, as shown in Figure 10. This is because if

areas containing light reflection and dispersion in the image are

excessively used for analysis, analysis errors and distortions will

worsen. Tidal levels at the time were 31cm, 38cm, and 32cm,

respectively. The typical beach face slope at the beach is known

about 1/8, tidal level differences between 7cm, and 6 cm, can cause

0.5m less than difference in shoreline position, which is a very

small value.

Assigning Figure 10A as the original image at time 1, the roughly

estimated shoreline boundary is drawn within the light gray surf and

swash zone using the first momentummethod, which finds the centre

of white colour in one-direction, as shown in Figure 11A. It is noted

that the x direction is almost perpendicular to the shoreline in this
Frontiers in Marine Science 09
specific case and could be used to estimate the rough shoreline

position along y coordinate. Next, Figure 10B) as the evolved image at

time 2. The new shoreline is tracked by using the new method

MCGWSD, generating the new annotation map at time 2, as shown

in Figure 11B. By comparing Figures 11A, B, shoreline movement, i.e.

advancement or retreat from time 1 to time 2, as shown

in Figure 11C.

Next, Figure 10C as the evolved image at Time 3. The new

shoreline is tracked using the new method MCGWSD, generating

the new annotation map at time 3, Figure 12. By comparing

Figures 12A and B, shoreline movement, i.e. advancement or

retreat from time 1 to time 3, as shown in Figure 12C. The new

tracking method MCGWSD is applied to two intervals, i.e. from

time 1 to time 2, and from time 1 to time 3. Ideally, assessing of the

present method require a verification with ground truth answers or

a comparison with solutions produced by other established

methods. The existing shoreline extraction method, PIMACS

(Kim, 2014), is adopted to produce shorelines, for times 1, 2 and

3, and shoreline evolutions for the two times intervals (time 1-time

2; time 1-time 3).
FIGURE 9

Tide level (KHOA), wave height, period, direction (W1) during typhoons Maysak (2020-No. 09) and Haishen (2020-No.10).
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The new shoreline tracking method is applied to the period

between time 1 and time 2. The resulting shoreline advancement

and retreat map is shown in Figure 11C, and the resulting shoreline

advancement and retreat map between time 1 and time 3 is shown

in Figure 12C. At Section A in the northern part of the beach, a mild

shoreline advance of about 1-2 m is observed according to the

PIMACS method, while the present MCGWSD tracking method

shows 2 m advancement, which agrees well with the PIMACS

results (see Table 2). At Section B in the north-central part of the

beach, a significant shoreline retreat of about 4-5 m is observed

according to the PIMACS method, while the present MCGWSD

tracking method shows 5 m retreat, which agrees well with the

PIMACS results (see Table 2 and Figure 13). The analysis sections

are located in the northern part of Jangsa Beach (section 1) and the

north-central part (section 2). The relatively insignificant shoreline

change of section 1 during the direct typhoon impact period is likely

due to the topographical effect, as the area was less affected by wave

energy due to the port structures located in the north. After the high
Frontiers in Marine Science 10
wave period, from the 12th to the 15th day, the sediments eroded in

the central part gradually moved north due to wave energy, and this

change trend was well shown by the results of the two methods

applied through image analysis. The area where erosion was strong

seems to be the central part of the beach. Section 2 shows a clear

erosion trend due to continuous wave energy, and erosion was

particularly strong in early September during the high wave impact

period, and the size gradually decreases thereafter. These change

trend linked to the actual topography were also clearly shown in

both analysis methods.

In total, the absolute errors for shoreline advance and retreat are

within 2 m, and the relative errors with respect to the largest

displacement are within 20%. It is concluded that the new

MCGWSD method can track the shoreline movement from the

video images by considering RGB values around the boundary line

reasonably well, as demonstrated by the present comparisons. The

tests assume that the local colour characteristics around the

shoreline at this site are preserved with time, and the geometry
FIGURE 10

Ortho converted three-minute average video snap image of Jangsa Beach. [2020.09.01 13:30 (A); 2020.09.12 07:00 (B); 2020.09.15 10:00 (C)].
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including shoreline undergoes small-scale elastic deformation and

translation. Even though the present tests at Jangsa Beach in

September 2020 were satisfactory, many future tests at various

sites and times would further validate the present method.

The results indicate that the new method MCGWSD provides

almost same shoreline advance or retreat during given period

compared to previous PIMACS results. However, it should be

noted that The comparison between PIMACS and MCGWSD

reveals that [the present method provides overall shoreline

change with no shore-normal transects, while PIMACS require

shore-normal transects, which require additional processing. When
Frontiers in Marine Science 11
ground truth shoreline information becomes available in the future

research, the accuracy of the methods could further be examined.
4 Conclusions

Object or boundary curve tracking has previously been carried

out by various methods, including simple thresholding methods

using bright gray intensity, colour intensity gradient methods along

transect, and neural networks involving. The thresholding methods

are sensitive to the threshold values, and therefore image-
FIGURE 11

Extraction of shoreline from the application of the First-momentum method (A), MCGWSD new method (B) and its changes at time 1 to time 2 (C).
FIGURE 12

Extraction of shoreline from the application of the First-momentum method (A), MCGWSD new method (B) and its changes at time 1 to time 3 (C).
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dependent. Colour intensity gradient methods along transect

require assignment of shore-normal transects which is not

straightforward on arbitrary coastal shapes. Neural networks

involve costly annotation and training. Furthermore, adequate

architecture of neural networks should be chosen site-specifically.

There has been a concept of similarity index which often

represents the similarity between two images, especially to see the

contamination level of the second image compared to the first

original image. The similarity index has a uniform weight over the

whole image, and thus it could not be used to track a point or an

object in a wide image.

Gaussian weight matrix is introduced here, and convoluted to

squared difference matrix so that it represents the dissimilarity

between two small zones of two images. This index is computed at a

pixel point of reference in the second image to be compared to the
Frontiers in Marine Science 12
original image. The convolutions are obtained within a finite zone, a

circle with radius R2 from the point of reference. Then, find the

position of the minimum convolution by screening a zone, a circle

with radius R1. The position found becomes the reverse tracking

position for the position of reference in the second image. The

above procedure is repeated for all pixels so that the segmentation

map for the second image is completed without any gaps. This

concept is natural, and based on rational reasoning.

The new MCGWSD method was tested on simple situations

involving various deformation of image, and showed good results.

The new MCGWSD method was applied to field images, and shows

very close results compared to an existing colour intensity gradient

method, PIMACS along two transects. However, the new

MCGWSD method provides overall shoreline change on the

whole area, which is a strong point of the new method.

The application field of the newMCGWSDmethod Jansa Beach

has a relatively small tidal range. If the new method is to be applied

to high tidal range site, additional algorithm may be needed. If the

deformation of images is beyond elastic one, e.g. partly folded or cut

off, the applicability of the new MCGWSD should be tested further.

The new method can be confidently adopted for coastal

management and policy, because the new method computes

shoreline change directly by image to image, rather than finds

shorelines first and compares the two. The computed shoreline

change should be reliable, even if the true shoreline positions are

not sure.

Additional application of the new method to other coasts at

other times in the future could further refine the new method

through additional sensitivity test on model parameters and

verification to ground truth shoreline change.
TABLE 2 Shoreline difference for MCGWSD and PIMACS method at
reference date in 1/9/2020.

Content time 1 time 2 time 3

Section 1

PIMACS method(①) – 1.7 2.4

MCGWSD method(②) – 1.0 2.0

Difference(②-①) – -0.7 -0.4

Abs error(m) – 0.7 0.4

Section 2

PIMACS method(①) – 4.9 5.6

MCGWSD method(②) – 5.0 6.0

Difference(②-①) – 0.1 0.4

Abs error(m) – 0.1 0.4
FIGURE 13

Extraction of shoreline position and comparison of the application of the PIMACS method and MCGWSD new method result.
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