AUTHOR=Wu Song , Bao Senliang , Dong Wei , Wang Senzhang , Zhang Xiaojiang , Shao Chengcheng , Zhu Junxing , Li Xiaoyong TITLE=PGTransNet: a physics-guided transformer network for 3D ocean temperature and salinity predicting in tropical Pacific JOURNAL=Frontiers in Marine Science VOLUME=11 YEAR=2024 URL=https://www.frontiersin.org/journals/marine-science/articles/10.3389/fmars.2024.1477710 DOI=10.3389/fmars.2024.1477710 ISSN=2296-7745 ABSTRACT=

Accurately predicting the spatio-temporal evolution trends and long-term dynamics of three-dimensional ocean temperature and salinity plays a crucial role in monitoring climate system changes and conducting fundamental oceanographic research. Numerical models are the most prevalent of the traditional approaches, which are often too complex and lack of generality. Recently, with the rise of AI, many data-driven methods are proposed. However, most of them take no consideration of natural physical laws that may cause issues of physical inconsistency among different variables. In this paper, we proposed PGTransNet, a novel physics-guided transformer network for 3D Ocean temperature and salinity forecasting. This model is based on Vision Transformer, and to enhance the performance we have three aspects of improvements. Firstly, we design a loss function that deliveries the physical relationship among temperature, salinity and density by fusing the Thermodynamic Equation. Secondly, to capture global and long-term dependencies effectively, we add the Pacific Decadal Oscillation (PDO) and North Pacific Gyre Oscillation (NPGO) in the embedding layer. Thirdly, we adopted the Laplacian sparse positional encodings to alleviate the artifacts caused by high-norm tokens. The former two are the core components to leverage the physical information. Finally, to comprehensively evaluate PGTransnet, we conduct rich experiments in metrics RMSE, Anomoly Correlation Coefficients, Bias and physical consistency. Our proposal demonstrates higher prediction accuracy with fast convergence, and the metrics and visualizations show that our model is insensitive to hyperparameter tuning, ensuring better generalization and adherence to physical consistency. Moreover, as observed from the spatial distribution of the anomaly correlation coefficient, the model exhibits higher forecasting accuracy for coastal and marginal sea regions.