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Coastal waters require monitoring of chlorophyll-a concentration (Chl-a) in a

wide range of Chl-a from a fewmg/m3 to hundreds of mg/m3, which is of interest

to the fisheries industry, evaluation of climate change effects, ecological

modeling and detection of Harmful Algal Blooms (HABs). Monitoring can be

carried out from the Visible Infrared Imaging Radiometer Suite (VIIRS) and Ocean

and Land Colour Instrument (OLCI) Ocean Color (OC) satellite sensors, which are

currently on orbit and are expected to be the main operational OC sensors at

least for the next decade. A Neural Network (NN) algorithm, which uses VIIRS

M3-M5 reflectance bands and an I1 imaging band, was developed to estimate

Chl-a in the Chesapeake Bay, for the whole range of Chl-a from clear waters in

the Lower Bay to extreme bloom conditions in the Upper Bay and the Potomac

River, where Chl-a can be used for bloom detection. The NN algorithm

demonstrated a significant improvement in the Chl-a retrieval capabilities in

comparison with other algorithms, which utilize only reflectance bands. OLCI

NIR/red 709/665 nm bands red edge 2010 algorithm denoted as RE10 was also

explored with several atmospheric corrections from EUMETSAT, NOAA and

NASA. Good consistency between the two types of algorithms is shown for the

bloom conditions and the whole range of waters in the Chesapeake Bay (with

RE10 switch to OC4 for lower Chl-a) and these algorithms are recommended for

the combined VIIRS-OLCI product for the estimation of Chl-a and bloom

monitoring. The algorithms were expanded to the waters in Long Island Sound,

demonstrating good performance.
KEYWORDS

chlorophyll-a concentration, coastal waters, neural network, VIIRS, OLCI
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2024.1476425/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1476425/full
https://www.frontiersin.org/articles/10.3389/fmars.2024.1476425/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2024.1476425&domain=pdf&date_stamp=2024-10-22
mailto:gilerson@ccny.cuny.edu
https://doi.org/10.3389/fmars.2024.1476425
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2024.1476425
https://www.frontiersin.org/journals/marine-science


Gilerson et al. 10.3389/fmars.2024.1476425
1 Introduction

In estuaries and adjacent coastal waters, algal blooms are both a

key water quality indicator and a potential hazard (Tango and Batiuk,

2016; Karlson et al., 2021). High biomass blooms have implications

for reducing water clarity and are indicators of eutrophication in

coastal systems (Bricker et al., 2008; Le et al., 2013). Reduced water

clarity and depleted oxygen in bottom waters can have deleterious

effects on essential fish habitats such as submerged aquatic vegetation

in estuaries, leading to a shift from benthic to pelagic-dominated

system productivity (Bricker et al., 2008). Harmful Algal Blooms

(HABs), pertaining to a class of phytoplankton that often contain

toxins, occur in various coastal areas and have a strong impact on

fisheries, tourism, and recreation industries, requiring improved

monitoring of HABs by environmental and health programs. HABs

are often difficult to locate through routine monitoring programs

because of their patchiness, physical circulation of the water, and

vertical migration of algal particles. As a first approximation,

typically, the concentration of chlorophyll-a (Chl-a) is considered

as a proxy for the strength of the algal bloom, while bloom effects can

vary depending on the type of algal species (IOCCG, 2021). Satellites

can support the monitoring of HABs if they provide frequent

coverage and retrieve Chl-a over a wide range of concentrations.

Improved temporal resolution, which could be provided by using

remote sensing products from multiple satellite sensors, can improve

efforts of monitoring and forecasting HABs in coastal and estuarine

waters. Data should come from multiple ocean color sensors to

improve coverage during periods of cloud cover or sun glint (a

problem especially in spring and summer), and to provide multiple

views of blooms within a day.

Ocean color algorithms are based on remote sensing reflectance,

Rrs spectra with Chl-a dominating Rrs spectra in the blue in clear

waters. These algorithms often fail in optically complex coastal and

estuarine waters where HABs occur, due to the high absorption of

colored dissolved organic matter (CDOM) and scattering from

sediments. Therefore, it is important to develop Chl-a algorithms

that are minimally influenced by CDOM and/or high sediment

concentrations. Efforts have been made to improve Chl-a retrievals

from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensors

operated by National Oceanic and Atmospheric Administration

(NOAA) and from Sentinel-3 Ocean and Land Colour Instrument

(OLCI) sensors processed by NOAA in collaboration with the

European Organization for the Exploitation of Meteorological

Satellites (EUMETSAT) (Wang and Son, 2016; Mikelsons and

Wang, 2019; Liu and Wang, 2022; Mikelsons et al., 2022; Wynne

et al., 2022). Currently, there are three VIIRS sensors (on the SNPP,

NOAA-20 and NOAA-21 platforms) and two OLCI sensors on the

Sentinel-3A and 3B in space with 750 m and 300 m spatial resolution

(at nadir), respectively. With additional launches of VIIRS planned,

these two groups of sensors are expected to provide reliable and stable

multi-spectral Ocean Color (OC) data for the next decade and

beyond. The NASA Phytoplankton, Aerosol, Cloud, ocean

Ecosystem (PACE) mission (Werdell et al., 2019), which was

successfully launched in February 2024, has a main hyperspectral

Ocean Color Instrument (OCI), but with a relatively coarse spatial

resolution of 1.0 km (at nadir), which is not often sufficient for many
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coastal areas. The availability of consistent data in a wide range of

Chl-a, with appropriate temporal resolution, will expand the number

of applications and agencies, which utilize remote sensing data to

complement the field data they use for decision-making regarding

HABs. While the definition of HABs can be different for different

water bodies, for this work we only consider high biomass blooms

with Chl-a above 25-30 mg/m3, which require the attention of coastal

managers. This does not imply anything related to toxicity or

deleterious effects to wildlife or public health and relies on in situ

sampling to determine phytoplankton species.

Large uncertainties in remote sensing reflectance (Rrs) retrieval

in blue bands remain a major problem for OC satellite sensors in

coastal areas because of difficulties in atmospheric correction and

low Rrs at this part of the spectrum (Ransibrahmanakul and Stumpf,

2006; IOCCG, 2019). In addition, due to the inability to see through

clouds with OC sensors, daily imagery from current satellite sensors

may be obscured. When monitoring blooms in coastal areas the

combination of insufficient atmospheric correction in coastal and

estuarine waters, and missing imagery due to clouds and sun glint,

can often hinder the use of satellites in monitoring and forecasting

efforts. Large uncertainties make an estimation of Chl-a

concentration unreliable using standard OCx algorithms, which

include the 443 nm band. A Neural Network (NN) Chl-a algorithm

(Ioannou et al., 2014), which avoids blue bands at 412 and 443 nm

for VIIRS demonstrated good performance in variable water areas

(El-Habashi et al., 2016, 2017, 2019). Specifically, based on field

measurements and matchups with satellite data, it has been shown

that the NN Chl-a algorithm is valuable for the detection of Karenia

brevis (KB) algal blooms near the West Florida coast (El-Habashi

et al., 2016, 2017). The algorithm performs similarly to the standard

OCx algorithms in the open ocean and coastal waters for Chl-a < 10

mg/m3 (El-Habashi et al., 2019), but usually cannot detect

accurately for Chl-a > 10-15 mg/m3. A near-infrared (NIR)/red

Chl-a algorithm applied to the bands available on MEdium

Resolution Imaging Spectrometer (MERIS) and OLCI sensors

performs well at Chl-a > 5 mg/m3 in the field (Stumpf and Tyler,

1988; Gitelson, 1992; Moses et al., 2009; Gilerson et al., 2010; Smith

et al., 2018; Neil et al., 2020). Unfortunately, applying the NIR/red

algorithm to VIIRS is impossible, since it lacks a 709 nm band. A

special AC has been developed by the NOAA’s National Centers for

Coastal Ocean Science (NCCOS) group for OLCI and has been

applied to top-of-atmosphere reflectance corrected for molecular

scattering (Wynne et al., 2018). Thus, an accurate estimation of high

Chl-a values remains elusive from VIIRS and even from other

multi-spectral sensors with a richer set of bands.

In addition to M1-M5 bands in the visible, VIIRS sensors have

an imaging band I1 which integrates radiances from 600 to 680 nm,

centered around 640 nm with an almost rectangular spectral

transmission function. Utilization of this band on VIIRS opens

additional possibilities. This 640 nm band covers Rrs features related

to the increase of specific phytoplankton absorption from small

values at 600 nm to high at 675 nm and thus can be sensitive to high

Chl-a. This band as 638_ag (aggregated to 750 m spatial resolution

as all M reflective bands) on SNPP VIIRS and as 642_ag on NOAA-

20 was added to the images using the Multi-Sensor Level-1 to Level-

2 (MSL12) data processing system (Wang and Jiang, 2018)
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and distributedthrough the NOAA CoastWatch (https://

coastwatch.noaa.gov/).

NN and Machine learning algorithms are based on the training

of large datasets of synthetic, field, or satellite data and have recently

been developed to estimate Chl-a and other water parameters on the

global and regional scales (Hieronymi et al., 2017; Pahlevan et al.,

2020; Liu and Wang, 2022; Werther et al., 2022; Cao et al., 2024).

Their performance also depends on the applied atmospheric

correction (Hieronymi et al., 2017).

The Chesapeake Bay and Long Island Sound (LIS) are large US

estuaries on the US East Coast, where Chl-a needs to be monitored

synoptically due to the often-occurring algal blooms and hypoxia

events (Aurin et al., 2010; Wolny et al., 2020; Wynne et al., 2022).

They are highly variable environments. Algal blooms are patchy and

small-scale changes in Chl-a occur rapidly, making synoptic

measurements essential to resolve phytoplankton biomass

(Anderson and Taylor, 2001; Harding et al., 2005). While well-

established monitoring programs, such as the Chesapeake Bay

Program, Save the Sound, and state-lead monitoring provide

routine monthly sampling at select stations, daily synoptic satellite

Chl-a covering the entire estuary provide a better estimate of biomass

and capture transient blooms, often missed by routine sampling.

Multiple studies characterized well water optical properties in

these estuaries from field measurements and satellite observations

(Stumpf and Pennock, 1989; Magnuson et al., 2004; Tzortziou et al.,

2006; Aurin et al., 2010; Shi and Wang, 2013; Zheng et al., 2015;

Turner et al., 2022; Menendez and Tzortziou, 2024), atmospheric

correction algorithms have been assessed (Windle et al., 2022;

Sherman et al., 2023; Cao and Tzortziou, 2024) and algorithms

for the retrieval of Chl-a were developed (Gitelson et al., 2007; Le

et al., 2013; Freitas and Dierssen, 2019; Sherman et al., 2023) for the

specific sensors in these waters beyond standard OC3 and OC4

algorithms (O'Reilly et al., 1998, 2019).

The goal of this work is to extend the previously developed

VIIRS NN-Chl-a algorithm for higher Chl-a by including the I1

imaging band data (600-680 nm) on VIIRS, investigate different

processing schemes for the optimal use of the NIR/red (red edge)

algorithm (Gilerson et al., 2010) on OLCI and develop a field

validated combined OLCI-VIIRS products to improve detection

and surveillance of algal blooms in complex estuarine waters such as

the Chesapeake Bay and Long Island Sound. A more reliable

estimation of Chl-a over the range seen along the U.S. East Coast

is expected to enhance satellite coverage to improve ecological

models, fisheries applications, and provide early and reliable

detection of various blooms to support coastal managers in aiding

aquaculture activities and protecting public health.

OLCI passes the US East Coast around 10 am EST and VIIRS

around 1:30 pm EST. Data from several sensors increase coverage,

however, the benefits are beyond simple statistics because bloom

conditions can change in several hours with changes in tide

conditions and biological processes. Multiple observations per day

were the main incentive for the launch of GOCI sensors, and the

development of geostationary GLIMR and Geo-XO sensors

(Schaeffer et al., 2023). The product described in this paper

creates a capability that would allow an approximation of the

multi-scene capability offered by the geostationary satellites.
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In Section 2, the bio-optical model is discussed, which is used

for the generation of a large dataset for NN training and testing,

different NN approaches are evaluated, and the development of the

NN Chl-a algorithm for VIIRS based on M3-M5 reflectance bands

and I1 imaging band is described. In Section 3, validation of the NN

algorithm on field and satellite data is provided together with the

comparison of VIIRS NN and OLCI RE10 algorithms for a broad

range of conditions with different OLCI atmospheric correction

processing schemes, and expansion of the NN-OLCI product to LIS,

validation on field data. A discussion and conclusions are in

Section 4.
2 Materials and methods

2.1 Field data

Field data, which were used in bio-optical modeling,

comparisons of modeled and field Chl-a and other parameters,

included data from several Chesapeake Bay cruises. A very

comprehensive dataset was acquired by the CCNY-NOAA group

in August 2013 at 43 stations, which included Chl-a, inherent

optical properties (IOPs) and reflectance spectra. Attenuation and

absorption of water and CDOM spectra were measured by the ac-s

instrument; backscattering at 5 wavelengths was measured by the

bb-9 instrument, both included in the WETLABS (Philomath, OR)

package. At each station, upwelling radiance Lu(l,0-) was measured

using a fiber bundle placed just beneath the water surface and

connected to a GER spectroradiometer (SpectraVista, NY). The

downwelling radiance above the surface Ld(l,0+) was measured by

pointing the same probe bundle onto a Spectralon plate and the

downwelling irradiance was determined as Ed(l,0+) = A·p·Ld(l,0+),
where A = 0.99 is the reflectance factor of the Spectralon plate

(Labsphere, NH), constant for the spectrum in the range of

wavelengths from 400 to 800 nm. The underwater remote sensing

reflectance Rrs- is then calculated as Lu(l,0-)/Ed(l,0-) sr-1, which was
adjusted for the propagation through the water-air interface to

calculate above surface Rrs. Chl-a from the samples that were

collected during the field campaign were determined according to

NASA protocol for fluorometric Chl-a determination (Ocean

Optics Protocols, 2003).

Capturing the timing and location of a bloom is difficult, and

often missing in routine monitoring datasets. An opportunistic

sampling event occurred on May 18, 2021, during a high biomass

(reaching up to 50 million cells/L) bloom of Prorocentrum

minimum. Rrs and water samples for Chl-a were collected at 5

stations in the Upper Bay. Chl-a concentrations were measured in

the range of 73–161 mg/m3 and coincided in time with VIIRS and

OLCI overpasses. Additional Rrs spectra and Chl-a were acquired in

the Chesapeake Bay sporadically from 2014–2016, capturing a

range of Chl-a of 9–48 mg/m3. In all these measurements, Rrs
were determined from below water HyperOCR depth profiles.

There was also a large dataset of NCCOS Rrs measurements but

without corresponding Chl-a. All four Rrs datasets are shown below in

Figure 1 in the discussion of the bio-optical model. Ranges of many

parameters, necessary for the model and absorption spectra were
frontiersin.org
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taken from the previous Chesapeake Bay cruises (Magnuson et al.,

2004) and NASA bio-Optical Marine Algorithm Dataset (NOMAD)

database (Werdell and Bailey, 2005). Finally, Chl-a data from the

Chesapeake Bay program (https://www.chesapeakebay.net/) at

multiple stations were used for the validation of the satellite and

in-situ data, where most of Chl-a fell below 20 mg/m3.

Concurrent water samples to extract Chl-a and hyperspectral

Rrs were collected throughout LIS in 2018–2022 in collaboration

with the Connecticut Department of Environmental Protection

(CTDEEP) (Turner et al., 2022; Sherman et al., 2023). Additional

data were collected from small boats. Hyperspectral Rrs were

measured using a HR512-I spectroradiometer (SpectraVista, NY).
2.2 Satellite data and processing schemes

2.2.1 VIIRS data
The Level-2 science-quality data for SNPP VIIRS and near-real-

time (NRT) for NOAA-20 VIIRS with the MSL12 processing were

obtained from the NOAA CoastWatch site, featuring a pixel

resolution of 750 meters at the nadir. This dataset included

normalized water-leaving radiance spectra nLw(l), which were

converted to remote sensing reflectance, Rrs(l), across visible

wavelengths at 410, 443, 486, 551, 638, and 671 nm on SNPP

VIIRS, and 411, 445, 489, 556, 642, and 667 nm on NOAA-20

VIIRS, and Level-2 quality flags. Flag exclusion criteria were applied

to pixels meeting any of the following conditions: land, cloud, sea

ice, atmospheric correction failure, stray light (except for LISCO),

bad navigation quality, high or moderate glint, viewing angles
Frontiers in Marine Science 04
exceeding 60°, and solar zenith angles exceeding 70°. Selection of

files required at least > 50% valid pixels in a given set, i.e., to be free

of flagged conditions. Additionally, pixels with negative water-

leaving radiance were excluded from averaging. In matchups of

satellite to in-situ data from 1 pixel closest to in-situ measurements

was considered and a 3×3-pixel grid box (2250 m × 2250 m)

centered at the AERONET-OC site for the comparison with

AERONET-OC data (Hlaing et al., 2013; Gilerson et al., 2022).

The average Rrs(l) and standard deviation (STD) between pixels,

along with their geometric and radiometric properties, were

recorded. The bidirectional reflectance distribution function

(BRDF) have been applied to the MSL12-derived VIIRS ocean

color data as well as to OLCI data with MSL12 processing

(Gordon, 2005; Wang, 2006; IOCCG, 2010).

2.2.2 OLCI data
The OLCI S3A and S3B Level-2 full-resolution data with 300-

meter spatial resolution per pixel (EUMETSAT, 2021; Mikelsons

et al., 2022) with the Operational Baseline Collection-3 (OBC-3)

processing (Zibordi et al., 2022) were acquired from the NOAA

CoastWatch website (https://coastwatch.noaa.gov/cwn/

index.html), focusing on the Chesapeake Bay area and Long

Island Sound. Each Level-2 file encompasses various geophysical

products related to the atmosphere and ocean, including aerosol

optical thickness, Angstrom exponent at 865 nm, water-leaving

reflectance at 413, 443, 490, 560, 665, 681, and 709 nm, sensor

zenith angle, solar zenith angle, and quality flags. The remote

sensing reflectance, Rrs (l), is computed by dividing the

reflectance spectra by p.
FIGURE 1

Available field Rrs datasets (A–D) and examples of simulated datasets (E) with main water parameters; based specific phytoplankton absorption a*ph(l)
(Magnuson et al., 2004) used in the model (F). Unshaded parameters are measured (A, C, D) or simulated (E). Shaded parameters are estimated from
different algorithms.
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OLCI Level-2 operational water reflectance products do not

include BRDF correction. This omission is due to historical usage

patterns, with primary interest focusing on coastal and inland

waters where the standard open-ocean BRDF approach is not

applicable. Mikelsons et al. (2022) showed that there are some

significant BRDF effects, both on the surface (Gordon, 2005; Wang,

2006) and in water BRDFs (IOCCG, 2010), over open oceans.

However, because there are no established BRDF correction

algorithms for a wide range of coastal waters considered in this

work, BRDF correction was not applied.

Pixels flagged under any of the following conditions were

excluded: invalid flag, land, cloud (including ambiguous and

marginal), coastline, solar zenith angle exceeding 70°, saturated flag,

moderate or high glint, whitecaps, and failed atmospheric correction.

It is important to note that this flag set differs slightly from the set

recommended by EUMETSAT for OLCI (EUMETSAT, 2022). A file

was selected if at least 50% of valid pixels in the set were free of flags.

As for VIIRS, a comparison with measured in-situ Chl-a was carried

out for 1 closest pixel and for comparison with AERONET-OC 7×7

(2100 m × 2100 m) pixel box was considered.

Rrs uncertainties from OLCI in the blue part of the spectra in

EUMETSAT atmospheric correction processing are higher than

those from VIIRS, especially in coastal waters (Zibordi et al., 2022;

Mikelsons et al., 2022; Gilerson et al., 2023). NOAA NCCOS

considered a special atmospheric correction (Wynne et al., 2018)

using SeaDAS and the subtraction of the Rayleigh component from

the TOA radiance. Later, OLCI TOA data were processed using

NOAA MSL12 and NASA l2gen algorithm. All these processing

schemes were considered with a focus on Rrs(l) at the red/NIR

bands necessary to apply the RE10 algorithm for the detection of

algal blooms.
2.3 AERONET-OC data

Remote sensing reflectance (Rrs) for VIIRS and OLCI satellite

sensors were assessed through comparisons with SeaPRISM

instrument (CIMEL Electronique, France) data at the Chesapeake

Bay and Long Island Sound (LISCO) stations, where SeaPRISM

radiometers are deployed on offshore fixed platforms and are part

of AERONET-OC network (Zibordi et al., 2009, 2021). Normalized

water-leaving radiances, nLw(l), following AERONET-OC protocols

and incorporating BRDF correction based on open ocean approaches

(Zibordi et al., 2009, 2021), were acquired from the AERONET-OC

website for the designated sites. These radiances were transformed

into remote sensing reflectance at specific wavelengths. The Long

Island Sound Coastal Observatory (LISCO) site (Harmel et al., 2011)

upgraded its sensor head in August 2021 to match OLCI sensors with

bands at 412, 443, 490, 510, 560, 620, 667, 681, and 709 nm, for

detailed comparisons with OLCI data.

The ocean color data employed in this analysis were derived

from version 3 level 1.5 data, which underwent cloud screening and

quality control measures to ensure data accuracy. All satellite-to-in

situ matchups were conducted within a ±2-hour window around

the satellite overpass time (Zibordi et al., 2009, 2021).
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2.4 Bio-optical model

To develop the NN algorithm, datasets, which connect Chl-a,

IOPs and Rrs(l), water reflectance spectra were simulated based on

the bio-optical model (Gilerson and Huot, 2017) with Rrs(l)
including the sum of elastic Rrs

e(l) component and fluorescence

component Rrs
f(l); the latter was included because it is a part of the

reflectance detected by the broad I1 600-680 nm band. Rrs(l)
spectra were simulated with 1 nm resolution in the range of 400–

750 nm. The maximum of the peak of the fluorescence emission was

assumed at 685 nm, fluorescence quantum yield was assumed 1%;

the spectral shape of fluorescence was modeled as a Gaussian

spectral profile centered at 685 nm, having a full width at half

maximum (FWHM) of 25 nm (Mobley, 1994; Gower et al., 2004).

Above water elastic Rrs
e(l) was calculated following

Lee et al. (2002):

Re
rs(l) = 0:52

R−
rs(l)

(1 − 1:7R−
rs(l))

(1)

where R−
rs(l) is the remote sensing reflectance due to elastic

scattering just below the surface, which is calculated as:

R−
rs(l) = g1u(l)

2 + g2u(l), (2)

u(l) = bb(l)=(a(l) + bb(l)) (3)

where a(l) (m-1) and bb(l) (m-1) are the total absorption and

backscattering coefficient spectra, respectively. Broadly used

empirically derived parameters (Lee et al., 2009) g1 = 0.125 and

g2 = 0.089, which work well for moderate open ocean and coastal

waters were replaced with g1 = 0.23 and g2 = 0.089 equivalent to the

relationship based on our previous studies for a broader range of

water parameters (Gilerson et al., 2007, 2015).

The total spectral absorption coefficient, a(l), is modeled as

a(l) = aw(l) + aph(l) + ag(l) + aNAP(l), (4)

where the water absorption spectrum aw(l) was obtained from

(Pope and Fry, 1997).

In coastal waters, aph(443), ag(443) and aNAP(443) typically

have some correlation (even often weak) with each other (IOCCG,

2006). Based on the data from the NOMAD Chesapeake Bay field

campaigns (Gilerson et al., 2015) and a*ph(443) spectra in the Upper

Chesapeake Bay (Magnuson et al., 2004) the following relationships

at 443 nm were used in the model:

aph(443) = a*ph(443)Chl‐a = 0:031Chl‐a−0:12Chl‐a

= 0:031Chl‐a0:88 for Chl‐a < 60 mg=m3 (5a)

aph(443) = a*ph(443)Chl‐a = 0:019Chl‐a for Chl‐a > 60 mg=m3 (5b)

ag(443) = 1:1aph(443) (6)

aNAP(443) = 1:32� 0:04Chl‐a0:65 (7)
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According to Equation 5, a*ph(443) gradually decreases with

Chl-a and remains constant after 60 mg/m3. ag(443) mostly

followed aph(443) and aNAP(443) increases with Chl-a, but less

fast than Chl-a itself.

Chl-a were randomly distributed between 0.5 and 200 mg/m3.

The spectral phytoplankton absorption coefficient was obtained by

multiplying the Chl-a by a specific absorption coefficient (a*ph(l),
m2 mg-1),

aph(l) = Chl‐a� a*ph(l Þ: (8)

The choice of a*ph(l) strongly influences the corresponding

remote sensing reflectance and the emission of fluorescence and

was modeled as the specific phytoplankton absorption coefficient in

the Upper Chesapeake Bay (Magnuson et al., 2004), shown in

Figure 1F with a gradual decrease with increasing Chl-a consistent

with Equation 5.

To simulate natural variability, a*ph(443) were multiplied by a

random number drawn from a normal distribution (N(m,s 2)) with

a mean m=1 and a variance s2=0.04: X1 eN(1, 0:04). In a similar

manner, ag(443) and aNAP(443) in Equations 6 and 7 were

multiplied by X2 eN(1, 0:09). The ranges of variability here and

below were based primarily on the published values from IOCCG

(2006), NOMAD and the authors’ data for the Chesapeake Bay

(Gilerson et al., 2015).

The spectral absorption coefficients of both CDOM and NAP were

modeled as having an exponentially decreasing shape with wavelength

and referenced to 443 nm (Bukata et al., 1995; Stramski et al., 2001):

ag(l) = ag(443)e
−Sg (l−443), (9)

aNAP(l) = aNAP(443)e
−SNAP(l−443) : (10)

Sg was modeled as a normal distribution 0:017N(1, 0:022) and SNAP
as 0:010N(1, 0:012). Equation 7 was also used to determine the

concentration of NAP, [NAP] (g m-3):

½NAP� = aNAP(443)=a*NAP(443), (11)

where a*NAP(443) (m
2 g-1) is the mass-specific absorption coefficient

of NAP at 443 nm, which was simulated as a uniformly distributed

random number 0:03 ≤ a*NAP(443) ≤ 0:05 (m2 g-1). The [NAP] was

typically in the range of 0–30 g m-3.

The total scattering coefficient (b(l), m-1) was simulated as a

sum of three components:

b(l) = bw(l) + bph(l) + bNAP(l) : (12)

Scattering by NAP was modeled using a power law function

(Stramski et al., 2001; Twardowski et al., 2001) as follows:

bNAP(l) = bNAP(550)(
550
l

)g2 , (13)

bNAP(550) = b*NAP(550)½NAP�, (14)

where b*NAP(550) = 0:5N(1, 0:04) (m2 g-1) is the mass-specific

scattering of non-algal particles at 550 nm, and g2 = 0:8N(1, 0:0049).
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The scattering by phytoplankton was calculated as the

difference between their attenuation and absorption coefficients

(Voss, 1992; Roesler and Boss, 2003):

bph(l) = cph(l) − aph(l): (15)

The attenuation coefficient itself was modeled as a power law

function (Voss, 1992),

cph(l) = cph(550)(
550
l

)g1; (16)

where cph(550) = 0:3Chla0:57 and g1 = 0:8.

In the simulations, the backscattering coefficient (bb(l), m-1)

was modeled as the sum of the contributing components,

bb(l) = bbw(l) + ~bb  phbph(l) + ~bb  NAPbNAP(l), (17)

where bbw(l) is obtained according to Morel, 1974 and ~bb  ph and
~bb  NAP are backscattering ratios for phytoplankton and non-algal

particles assumed to be independent of the wavelength

(Twardowski et al., 2001; Sydor and Arnone, 1997). Typical

values were used as ~bb  ph(l) = 0:006 and ~bb  NAP(l) = 0:02.

120000 different conditions were simulated using this model

with 70% used in generation and 30% in testing and validation.

As was discussed above, several field Rrs datasets were available

for analysis together with (or without) some measurements of water

parameters. Four Rrs sets are shown in Figure 1 with corresponding

water parameters; some of these parameters (shown in grey) were

not measured directly but estimated using available algorithms.

Examples of simulated Rrs spectra are also shown in this figure. It

should be noted that there was a relatively small flexibility in the

selection of parameters described above, which produce spectra

similar to the ones in the bloom areas with typical high CDOM and

corresponding low Rrs in the blue, spectral features in green-red and

a very strong peak around 700 nm comparable with the peak in

the green.

In the model development, Rrs(l) spectra were supposed to be

similar not only to the field spectra in Figure 1, but there were also

supposed to be consistent with the good performance of blue-green

algorithms for Chl-a retrievals. This should be true at least in the waters

with low to moderate Chl-a and RE10 NIR/red bands algorithm for a

broad range of waters and Chl-a concentrations, which were observed

previously for the Chesapeake Bay (Gilerson et al., 2015).

The ranges of water parameters in the Chesapeake Bay are Chl-a =

0.06–165 mg/m3, CDOM absorption at 443 nm ag(443) = 0.015–2.0

m-1, absorption of non-algal particles aNAP(443) = 0.001–3.0 m-1,

scattering at 443 nm b(443) = 0.3–40.3 m-1 with the lowest value

typically in the Lower Bay and the highest in the Upper Bay

(Magnuson et al., 2004). For LIS Chl-a = 1–25 mg/m3, ag(440) =

0.012–0.5m-1, aNAP(440) = 0.02–0.42m-1, particulate backscattering at

650 nm bbp = 0.005–0.06 m-1 with the lowest value in the eastern part

of the Sound and the highest in the western part (Aurin et al., 2010).

In the model Chl-a values were randomly distributed between 0.5 and

200 mg/m3, ag(443) were mostly in the range of 0–3 m-1 with

decreasing quantities till 6.5 m-1 and aNAP(443) = 0–2.5 m-1.

Several metrics were used in the evaluation of Chl-a algorithms

performance which includes a coefficient of determination R2, root
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mean square error (RMSE), relative error e = RMSE/mean as well as

recently suggested metrics (Seegers et al., 2018) mean absolute error

MAE = 10 ^
o
n

i=1
log10 (Mi) − log10 (Qi)j j

n

0
BB@

1
CCA, (18)

and bias

bias = 10 ^
o
n

i=1
log10 (Mi) − log10 (Qi)

n

0
BB@

1
CCA: (19)

It should be noted that in some figures Chl-a values are shown

in the logarithmic scale, while RMSE and e were calculated based on

the linear scale.
2.5 NN algorithm development, analysis of
the optimized structure and validation

In continuation of the approach used by (El-Habashi et al., 2016),

their simple one-hidden layer multilayer perceptron (MLP) structure

was first applied to a newly developed synthetic dataset, to produce a

minimum benchmark against which to improve with the introduction

of the VIIRS imaging I1 band to complement the 486, 551 and 671 nm

band inputs as well as with modifications to the neural network itself.

Variables aph(443), ag(443), ad(443) and bb(443) were kept as outputs.

Chl-a was determined also as an independent output parameter.

Performance results are visible in Table 1. The introduction of the

imaging I1 band immediately provided a large performance boost on all

four output parameters. However, changes in the neural network

structure with the introduction of more neurons in the single hidden

layer and the introduction of Rectified Linear Units (ReLU) as the

activation function produced a negligible change in the network

performance. Similarly, the introduction of a second hidden layer also

produced a negligible change in the network performance, indicating

that the simpler neural network utilized in previous studies is already

capable of capturing the relationships between inputs and outputs well.

In original tests, the bio-optical model was slightly different from

the one described above (specific phytoplankton absorption consisted

of the micro- and picoplankton absorption with a weighting factor

from Ciotti and Bricaud, 2006). In the final version, R2 coefficients

were higher as shown in Table 1 in parentheses. Figure 2 contrasts the

performance of the NNs in the 3-band and 4-band versions against

the expected values for aph(443), ag(443), ad(443), and bb(443) as

measured during the CCNY 2013 cruise in the Chesapeake Bay. In all

cases, including the VIIRS imaging I1 band noticeably improves the

retrieval quality. In these tests, Chl-a were determined from aph(443).

When Chl-a were used directly as one of the retrieval parameters, R2

for Chl-a became 0.984.

If large datasets of Chl-a and Rrs are available for relevant water

conditions, the training can be carried out directly to retrieve Chl-a

and other water parameters from Rrs spectra (Hieronymi et al., 2017;

Pahlevan et al., 2020). While only 70 points of the field data were

available for the Chesapeake Bay, the training gave results quite similar
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to the ones from the bio-optical modeling, however, some additional

tuning was still required, and this option was not further explored.
3 Results

3.1 Preliminary studies

3.1.1 Performance of different Chl-a algorithms
A Satlantic HyperSAS (Halifax, Canada) systemwas installed from

2009 to 2014 at the LISCO site (Harmel et al., 2011) together with the

SeaPRISM instrument on top of a retractable tower at approximately

12 m above the water surface. Three spectrometers observed

downwelling irradiance Ed, sky radiance Ls, and total radiance Lt in

the wavelength range of 305–905 nm with 180 equally spaced

channels. HyperSAS data were processed by the 3C model

(Groetsch et al., 2017, 2020) to minimize the impact of the sky

reflectance from the windy surface and to produce reliable Rrs data.

Several algorithms to determine Chl-a were applied to analyze water

conditions in the area of LISCO during the year of 2013, which

included conditions of algal blooms. Algorithms included standard 3

bands OC3V algorithm (based on 443, 486 and 551 nm), 6 bands

OC6P algorithm (O'Reilly and Werdell, 2019), NN algorithm

(El-Habashi et al., 2019), and NIR/red (red edge) (Gilerson et al.,

2010), further referred to as RE10, based on Rrs(709)/Rrs(665) ratio.

The latter algorithm proved to perform well in a very broad range of

Chl-a > 5 mg/m3 and other water components (Smith et al., 2018;

Pahlevan et al., 2022). All algorithms except RE10 performed similarly

at Chl-a < 10 mg/m3 and substantially underestimated Chl-a in bloom

conditions in 2013, where only RE10 indicated Chl-a up to 40 mg/m3.

3.1.2 Rrs uncertainties
It has been well known for a long time that main Rrs

uncertainties over coastal waters occur at the blue bands 412 and

443 nm (IOCCG, 2019), which motivated the development of other

algorithms avoiding the 443 nm band on VIIRS sensors (Ioannou

et al., 2014; Gilerson et al., 2015; El-Habashi et al., 2016) and NIR/

red algorithms on MERIS and OLCI sensors, which have 709 nm

band (Gitelson, 1992; Moses et al., 2009; Gilerson et al., 2010).

While main uncertainties in the blue were usually attributed to

inaccurate aerosol models in the atmospheric correction process

(IOCCG, 2019), a recent analysis based on the decomposition of Rrs
uncertainties spectra showed that some uncertainties may be

associated with Rayleigh-type components and thus might be

related to small variability (about 1.5%) of the Rayleigh radiance

(Gilerson et al., 2022, 2023) or Rayleigh noise (Malinowski et al.,

2024). It was also shown that OLCI uncertainties in coastal waters

in EUMETSAT processing are about 50% higher than uncertainties

for VIIRS in the blue (Mikelsons et al., 2022; Zibordi et al., 2022;

Gilerson et al., 2023) due to the different atmospheric correction

schemes (Mikelsons et al., 2022) with NOAA MSL12 OLCI

processing having Rrs uncertainties about the same as for VIIRS.

Further, NASA OLCI processing also showed the same level of

uncertainties as those from VIIRS and NOAA MSL12 OLCI. These

effects are additionally demonstrated in Figure 3, where matchups
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are shown for VIIRS, OLCI EUMETSAT, and OLCI MSL12 data

processing at the LISCO AERONET-OC site.

High uncertainties can be clearly seen at the 443 nm band for

VIIRS with a much more stable 490 nm band. Results are similar in

OLCI MSL12 data processing. In EUMETSAT data processing, all

bands below 560 nm show high uncertainties. Uncertainties at 665

nm and 709 nm are also high but these Rrs are related to low Chl-a <

10 mg/m3 conditions in LIS, they are not of the main interest for the

application of the NIR/red algorithm, which works reliably mostly

for higher Chl-a. At the Chesapeake Bay AERONET-OC station

with waters clearer around the AERONET-OC station than at the

LISCO site, correlations were higher for OLCI (not shown).

3.1.3 Evaluation of the performance of Chl-a
algorithms in algal bloom conditions

Blooms often occur near salinity fronts in the Upper Bay and

Potomac River. Satellite imagery for the Chesapeake Bay with

bloom conditions in the Upper Bay, processed with OC3V for

VIIRS, with RE10 using EUMETSAT OLCI imagery with default

and NCCOS atmospheric corrections together with the Chl-a

distributions received with an additional band ratio algorithm.

Chl-a in the bloom areas from different algorithms were 27–140
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mg/m3 for the Upper Bay and 30–200 mg/m3 for the Potomac

River. These data had to be reconciled between different satellite

sensors and algorithms to develop a combined VIIRS-OLCI

product for bloom detection.

At the beginning, Chl-a were estimated in the bloom areas in the

Chesapeake Bay and in the Potomac River for May 13, 2020, using

four different algorithms, including the standard three bands OC

algorithm for VIIRS OC3V, the band ratio VIIRS algorithm with I1

band (chlC) (Gilerson et al., 2021) described below in Section 3.1.4,

OLCI RE10 algorithm with standard OLCI AC and with NCCOS AC

(Wynne et al., 2018). Two bloom areas have been identified: in the

Upper Bay and in the Potomac River. While the shapes of the bloom

areas on satellite images looked similar, it was found that OC3V had

the lowest Chl-a values around 30 mg/m3 and RE10 = 50 – 140 mg/

m3 in the Upper Bay and above 200mg/m3 in the Potomac River with

chlC values were in the middle of these ranges. The focus of this work

was a more detailed evaluation of these algorithms and the newly

developed NN algorithm in various bloom conditions.

3.1.4 Band ratio algorithm with I1 band
The first tests (Gilerson et al., 2021) proved the utility of I1 band

in detecting higher concentrations of Chl-a values. Because of the
TABLE 1 Performance summary in R2 of the neural networks tested on the synthetic dataset, original (final) bio-optical model.

Description Network structure Activation aph(443) ag(443) ad(443) bb(443)

Original MLP 3 × 6 × 4 Sigmoid 0.601 (0.726) 0.588 (0.753) 0.546 (0.738) 0.555 (0.635)

I1 band 4 × 6 × 4 Sigmoid 0.722 (0.80) 0.796 (0.823) 0.640 (0.807) 0.749 (0.77)

More neurons 4 × 36 × 4 ReLU 0.719 0.794 0.635 0.743

2 hidden layers 4 × 36 × 30 × 4 ReLU 0.722 0.798 0.639 0.746
FIGURE 2

Results of a and bb retrievals in m-1 using NN with 3 bands (top) and 4 bands (bottom) based on field data from CCNY 2013 cruise.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1476425
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Gilerson et al. 10.3389/fmars.2024.1476425
complexity of water IOPs spectra in the I1 range, including

variability of CDOM and mineral concentrations in various areas,

it was clear that the algorithm eventually needs to be implemented

in a NN format. But, it appeared useful to evaluate a multi-band

algorithm for the estimation of Chl-a in a wide range of water

conditions. The algorithm was developed using available band
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ratios, which include I1 band. A proper band combination was

determined by tests on the synthetic dataset discussed above.

Application of the first version of the algorithm with I1 band,

which was calibrated on the field data showed a strong dependence

of the estimated Chl-a on the concentration of suspended

particulate matter (SPM) with sediment concentrations estimated
FIGURE 3

Satellite and AERONET-OC matchups at the LISCO site for the matching wavelengths available on the SeaPRISM and on the sensor: (A) SNPP VIIRS,
(B) S3A OLCI with EUMETSAT (OBC-3), and (C) S3A OLCI with NOAA MSL12 data processing.
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from (Nechad et al., 2010) based on Rrs at 671 nm. In the next

iteration, the algorithm was corrected for the impact of SPM

concentration. It was also found that the algorithm often

underestimates Chl-a at Chl-a < 10–15 mg/m3 and it was therefore

combined with the standard OC3V algorithm at Chl-a ≤ 15 mg/m3.

The algorithm was tuned using MATLAB curve fitting toolbox

on 43 Rrs-Chl-a combinations from the CCNY 2013 cruise and then

further on field data from M. Ondrusek’s measurements in 2014-

2021 (see Figures 4D and F) with a total of 70 points. It was

implemented with the final result as chlC:

SPM = 384:11� pRrs(671)=(1 − pRrs(671)=0:1747)  + 1:44 (20)

ratio = (Rrs(486) + Rrs(551))=Rrs(638)� SPM0:3 (21)

ChlC = k� 4604� ratio(−4:252) (22)

chlC = ChlC if  ChlC > 10 mg=m3 (23a)

chlC = OC3V  if  ChlC ≤ 10 mg=m3 (23b)
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Coefficient k in Equation 22 is a tuning parameter, which can be

further changed. In this version, coefficients are different from the

original version (Gilerson et al., 2021), when the algorithm was tuned

only on the data from the CCNY 2013 cruise. The performance of the

algorithm with k =1.0 is demonstrated below in Figures 4D, F.
3.2 Validation of VIIRS algorithms on
satellite and field data

A total of 70 matchups were included in the tests (43 from

CCNY 2013, 22 from Ondrusek 2014-16, and 5 from Ondrusek

2021 measurements) for the validation of NN3, NN4 and VIIRS

standard OC3V algorithms on the field data collected across the

Chesapeake Bay. Results are shown in Figures 4A–C. The

performance of chlC and RE10 on the same field dataset is

shown in Figures 4D–F. Among the first three algorithms in

Figure 4 the NN4 algorithm shows better performance, although

it is worse than the performance of chlC, where all points were

used in the tuning and RE10, for which 709 nm band is not

available on VIIRS. In Figures 4D–F chlC is plotted against field
FIGURE 4

Test of algorithms on the field data: (A) 3 bands NN; (B) 4 bands NN; (C) OC3 VIIRS; (D) chlC vs in-situ Chl-a; (E) RE10 vs in-situ Chl-a,
(F) chlC vs RE10.
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Chl-a and against RE10; RE10 against Chl-a is also shown for the

comparison. High correlations exist for all comparisons in a broad

range of conditions in the Chesapeake Bay, but these relationships

are not always valid for other types of waters. RE10 was also

considered as OC3 VIIRS if RE10 <10 mg/m3.

RE10 was used with the expression (24), which matches the

original version in Gilerson et al., 2010, but does not produce

complex numbers at low Chl-a

RE10 = 46:0676(Rrs(709)=Rrs(665))
1:2260 − 22:6012 (24)

Further tests were performed on SNPP VIIRS data 2012–2022

(NOAA MSL12 data processing) compared with in-situ data from

the Chesapeake Bay program (https://www.chesapeakebay.net)

and there were 2021 measurements at 5 locations. Results are

shown in Figure 5. The stray light flag was on, HIGLINT and

MODGLINT flags were suspended since they did not change the

algorithm performance significantly. Most of the points are in the

Chl-a range below 20 mg/m3. However, all algorithms, including

the OC3 algorithm, retrieve high Chl-a values reasonably well; good

performance of OC3 is most likely due to the specific combination

of the water parameters in bloom areas, which is not typical for

coastal waters with high Chl-a. The time window between satellite

and in-situmeasurements was ±4 hours. Based on our studies in the

Chesapeake Bay, stricter time limits would reduce the number of

points but would not improve statistics.

Here and in the figures below the solid grey line marks the 1:1

relationship, while the upper and lower dashed lines mark the limit

of Y = X*2 and Y = X/2, respectively, where Y are predicted values

and X are expected values.
3.3 Comparison of Chl-a retrievals by VIIRS
and OLCI algorithms

Performance of the RE10 algorithm for OLCI sensors was

evaluated with NCCOS, EUMETSAT, MSL12 and NASA

atmospheric correction by the comparison with VIIRS Chl-a in

bloom areas with a very broad range Chl-a from 2 mg/m3 to over

100 mg/m3. Because the RE10 algorithm does not provide accurate

retrievals for lowChl-a and the OC4 algorithm for OLCI was found not
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to be always reliable in the waters of the Chesapeake Bay, comparisons

were carried out using the RE10M algorithm, where RE10 was replaced

with OC3V Chl-a for Chl-a < 6 mg/m3. It was found that the most

consistent matchups between VIIRS and OLCI retrievals come from

EUMETSAT and MSL12 processing. Examples of such matchups for

the Upper Bay and Potomac River bloom areas are shown in Figure 6.

NN4 versus RE10M shows better results than other algorithms. For low

Chl-a < 6mg/m3, OC3V and chlCmatchups with RE10M are along 1:1

line because OC3V retrievals are used in all these cases. Since VIIRS

algorithmsmatchups vs RE10M in EUMETSAT andMSL12matchups

produce similar results, both processing approaches from EUMETSAT

and MSL12 were recommended for the combined OLCI product. It

should be noted that, according toMikelsons et al. (2022), EUMETSAT

processing is more sensitive to the sun glint, which was shown in

our comparisons.
3.4 Combined products, and
satellite imagery

Based on the whole study, NN4 VIIRS and OLCI RE10

algorithms were recommended for the combined VIIRS-OLCI

product. RE10 was used in combination with OC4 (with OC4 if

RE10< 10 mg/m3 and OC4 <10 mg/m3 or OC4 < 10 mg/m3 and clear

water conditions based on the diffuse attenuation coefficient

threshold Kd(490) < 0.25 m-1). Examples of the imagery from both

algorithms are shown in Figure 7 for May 18, 2021, when field

measurements were also available at 5 locations with the coordinates

shown in Table 2, together with measured Chl-a at these points and

retrieved from OC3, chlC, NN3, and NN4 algorithms from VIIRS

and RE10 fromOLCI. Note that part of the area on the OLCI image is

masked because of clouds. As before, a slight overestimation of Chl-a

is seen in both images in very turbid waters in the Upper Bay,

Delaware Bay, and some tributaries. Adjustment coefficients for chlC,

NN3, and NN4 are also given in Table 2. Relative spectral response

(RSR) functions were not taken into account in the NN algorithms

development to simplify tuning of the algorithms based on the bio-

optical model only and comparison with field measurements; for the

same reason RSR for the I1 band was considered as RSR = 1.0 for the

whole range of wavelengths 600–680 nm. The actual RSR for this
FIGURE 5

Comparison of satellite and in-situ data for the Chesapeake Bay. Expected and predicted Chl-a as determined by the one-hidden layer MLP in both
its 3-band and 4-band versions and OC3 VIIRS algorithms.
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band is close to RSR ≈ 0.9, which matches the adjustment coefficient

for NN4. The NN3 and chlC algorithms provided similar images but

with some adjustments of coefficients, which were less stable than

those from the NN4 algorithm. Other examples of images from

VIIRS and OLCI for bloom conditions on May 21, 2021, and non-

bloom conditions on April 4, 2024, are shown in Figure 8.

The distribution of absorption and backscattering coefficients at

443 nm retrieved from NN4 together with the SPM concentration

based on Equation 20 for May 18, 2021, are shown in Figure 9,

providing additional information about water parameters in the
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Chesapeake Bay and specifically in the bloom areas, which helps to

understand bloom conditions in more details. As can be expected,

ad(443), bb(443) and SPM have similar patterns since they are

mostly proportional to the concentrations of non-algal particles, aph
(443) and ag(443) are high in the bloom areas.

The NN4 algorithm was developed based on SNPP VIIRS bands,

VIIRS on NOAA-20 has several slightly different bands as was shown

above, specifically for the NN algorithm there are M3–M5 bands

centered at 489, 556, and 667 nm, and I1 band centered at 642 nm

and NN4 algorithm required additional tuning. While the effects of
FIGURE 6

Matchups between VIIRS and OLCI Chl-a retrievals in bloom areas.
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TABLE 2 Chl-a measurements and retrieval comparison for May 18, 2021.

Lat/Lon (West) Ondrusek SNPP VIIRS OLCI N20 VIIRS

OC3V chlC (1.6) NN3 (0.85) NN4 (0.9) RE10 OC3V NN4 (0.7)

39.046 76.392 133 82 128 125 126 128 253 110

39.053 76.405 129 91 135 133 133 114 NaN 126

39.055 76.423 161 143 143 156 154 286 NaN 118

39.073 76.403 137 80 121 126 126 164 NaN 163

38.964 76.452 73 60 77 104 96 85 313 104
F
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FIGURE 7

OC3 VIIRS (left panel), NN4 VIIRS (middle panel) and OLCI (right panel) Chl-a retrievals in bloom areas on May 18, 2021.
FIGURE 8

OC3 VIIRS, NN4 VIIRS and OLCI Chl-a retrievals with bloom conditions on May 21, 2021 (top row) and non-bloom conditions on April 15, 2024
(bottom row).
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spectral differences between VIIRS-SNPP and VIIRS-NOAA-20 at

the blue bands are negligible (e.g., within ~0.1% at M2 band), there

are large differences at M4 (green) and M5 (red) bands (e.g., ~16% at

M4 band for open oceans) (Wang et al., 2020). Over coastal regions,
Frontiers in Marine Science 14
there are important effects of M4 band difference between VIIRS-

SNPP and VIIRS-NOAA-20, because Rrs from NOAA-20 (at 556

nm) is usually much closer to the Rrs peak than that from SNPP (at

551 nm). The same NN4 algorithm was used for VIIRS NOAA-20
FIGURE 9

Distributions of absorption, backscattering coefficients (m-1), in the Chesapeake Bay from NN4 VIIRS algorithm, SPM (g/m3) from (NeChad et al., 2010).
FIGURE 10

Comparison of NOAA-20 VIIRS images retrieved with OC3V and NN4 algorithms.
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bands but with the coefficient 0.65. Images for OC3V and NN4 for

NOAA-20 VIIRS are shown in Figure 10 and Chl-a are added to

Table 2. Chl-a fromOC3V andNN4 in the same scale looks similar to

SNPP Chl-a distributions. For OC3V Chl-a values at in-situ

measured points match less accurately with a strong overestimation

at two points and were not processed at three other points. NN4 for

NOAA-20 is less accurate than for SNPP but can be also

recommended for the joint product.
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3.5 Applications of the developed
algorithms to the waters in Long
Island Sound

The performance of the NN4 algorithm was validated on the

field data in Long Island Sound. Field data were acquired during

cruises in 2018–2023 and included radiometric measurements and

Chl-a (Sherman et al., 2023). Results for different algorithms are
FIGURE 11

Performance of algorithms on Rrs and Chl-a data in LIS.
FIGURE 12

Performance of several VIIRS algorithms in comparison with OC4 based on the LISCO radiometric data.
Chl-a OC3 VIIRS           Chl-a NN4 VIIRS             Chl-a OC4 OLCI

FIGURE 13

OC3, NN4 Chl-a from VIIRS and OC4 from OLCI in LIS on April 16, 2024.
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shown in Figure 11. Most of Chl-a values are below 25 mg/m3, the

range that was not the main focus of the NN4 algorithm. The best

performing algorithm is OC4 followed by OC3 and NN4. However,

all these algorithms perform quite well for Chl-a > 2 mg/m3 and

much worse below this value. The NN4 algorithm was used with a

coefficient of 0.6, while it was 0.9 in the Chesapeake Bay for SNPP

VIIRS. The difference in coefficients might be explained by

differences in a*ph(l) with shifts in phytoplankton species

(including size and Chl-a packaging), between the time periods in

LIS and in the Chesapeake Bay. Optical differences in the water may

also influence the bio-optical model. More details about this

difference should be further studied.

There were few matchups with VIIRS for field data used in

Figure 11. Sherman et al. (2023) had OLCI retrievals corrected with

the Polymer atmospheric correction algorithm and a bio-optical

model for moderately turbid waters (Steinmetz et al., 2011), which

resulted in good agreement with field observation across the Sound.

The performance of algorithms was evaluated at the LISCO site for

the period of August 2021–May 2022. The SeaPRISM instrument

has bands similar to OLCI bands, and there were no direct field Chl-

a measurements. Chl-a were estimated by the OC4 algorithm and

compared with those from the NN4 and OC3 algorithms with

VIIRS bands, with Rrs determined from the SeaPRISM bands using

an adjustment based on the relationship between bands from the

synthetic dataset. The NN4 and OC3 algorithms perform very

consistently in the whole range of Chl-a from 2–25 mg/m3 as

shown in Figure 12. However, there were no in-situ Chl-a data to

confirm these retrievals. Images of Chl-a in LIS based on OC3 and

NN4 retrievals for VIIRS and OC4 for OLCI are shown in Figure 13

and are very consistent with each other generally confirming the

good performance of algorithms in Figure 12. Both NN4 and OC3

algorithms for VIIRS can be recommended for the joint product

with OLCI OC4.
4 Discussion and conclusions

Satellite data and imagery from SNPP and NOAA-20 VIIRS

sensors and Sentinel-3A and 3B OLCI sensors were analyzed

together with field data to develop the combined product for the

estimation of Chl-a in two large US estuaries: the Chesapeake Bay

and Long Island Sound to improve detection of algal blooms. The

bio-optical model was developed to satisfy a broad range of

conditions in waters from low Chl-a and corresponding

absorption and backscattering coefficients in fresher reaches of

the estuaries, with a switch for higher values in areas with high

Chl-a and phytoplankton bloom conditions. The neural network

(NN4) algorithm was developed for the retrieval of Chl-a and other

water parameters from VIIRS in the Chesapeake Bay, which

reasonably matches in-situ data. All VIIRS imagery used was

from NOAA processing using MSL12 atmospheric correction.

Based on the long-time knowledge about the vulnerability of the

Rrs at 412 and 443 nm bands over coastal turbid waters, these bands

were excluded from potential algorithms. The NN4 algorithm

utilizes SNPP VIIRS four bands centered at 486, 551, 638, and
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671 nm, which includes data from the imaging I1 600-680 nm band

centered at 638 nm. It is demonstrated that the inclusion of this

band data significantly improved retrieval of Chl-a and other water

parameters in comparison with the previous versions of similar

algorithms, which utilized only three 486, 551, and 671 nm bands.

Analysis of several atmospheric correction and processing

approaches from EUMETSAT (OBC-3), NOAA (MSL12), and

NASA (L2gen) for OLCI for the application of the NIR/red RE10

Chl-a algorithm that requires accurate Rrs values at 665 and 709 nm

bands showed that both MSL12 and OBC-3 data can be

recommended for the combined product.

The NN4 and RE10 algorithms were analyzed in various water

types demonstrating consistency during algal bloom conditions. These

algorithms were selected for the multi-sensor product to support algal

bloom detection in the Chesapeake Bay. The OC4 algorithm replaces

RE10 for Chl-a < 10 mg/m3, so VIIRS and OLCI Chl-a retrievals are

consistent for the broad range of conditions in the Chesapeake Bay.

The Rrs from the bio-optical model were re-trained to develop a NN4

algorithm for NOAA-20 VIIRS, which showedmostly Chl-a similar to

those from the NN4 for SNPP VIIRS. In LIS during the whole period

of study, there were no in-situ Chl-a above 30 mg/m3. The NN4, OC3

and OC4 algorithms showed approximately the same performance

and can be recommended for the estimation of Chl-a in LIS with the

switch to RE10 for OLCI in case of higher Chl-a.

Further examination is recommended to determine if the

combined NN4, OLCI with a switch to OC4 under low Chl-a

conditions is accurate and provides the best estimate of Chl-a when

switching water classes from coastal to offshore. This ability to

provide consistent Chl-a from coastal to offshore, with improved

cloud clearing capability through a multi-sensor approach, would

support improved fisheries modeling capability, improved bloom

monitoring, and the development of an improved long-time-series

data of Chl-a to determine changes in primary productivity under

changing climate conditions and in response to managing nutrient

loading into coastal systems.
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