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ISSA optimized spatiotemporal
prediction model of dissolved
oxygen for marine ranching
integrating DAM and Bi-GRU
Wenjing Liu1,2, Ji Wang1,2*, Zhenhua Li1,2 and Qingjie Lu1,2

1School of Electronic and Information Engineering, Guangdong Ocean University, Zhanjiang,
Guangdong, China, 2Guangdong Province Smart Ocean Sensor Network and Equipment Engineering
Technology Research Center, Guangdong Ocean University, Zhanjiang, Guangdong, China
In marine ranching aquaculture, dissolved oxygen (DO) is a crucial parameter that

directly impacts the survival, growth, and profitability of cultured organisms. To

effectively guide the early warning and regulation of DO in aquaculture waters,

this study proposes a hybrid model for spatiotemporal DO prediction named

PCA-ISSA-DAM-Bi-GRU. Firstly, principal component analysis (PCA) is applied to

reduce the dimensionality of the input data and eliminate data redundancy.

Secondly, an improved sparrow search algorithm (ISSA) based on multi strategy

fusion is proposed to enhance the optimization ability and convergence speed of

the standard SSA by optimizing the population initialization method, improving

the location update strategies for discoverers and followers, and introducing a

Cauchy-Gaussian mutation strategy. Thirdly, a feature and temporal dual

attention mechanism (DAM) is incorporated to the baseline temporal

prediction model Bi-GRU to construct a feature extraction network DAM-Bi-

GRU. Fourthly, the ISSA is utilized to optimize the hyperparameters of DAM-Bi-

GRU. Finally, the proposed model is trained, validated, and tested using water

quality and meteorological parameter data collected from a self-built LoRa+5G-

based marine ranching aquaculture monitoring system. The results show that:

(1) Compared with the baseline model Bi-GRU, the addition of PCA, ISSA and

DAM module can effectively improve the prediction performance of the model,

and their fusion is effective; (2) ISSA demonstrates superior capability in

optimizing model hyperparameters and convergence speed compared to

traditional methods such as standard SSA, genetic algorithm (GA), and particle

swarm optimization (PSO); (3) The proposed hybrid model achieves a root mean

square error (RMSE) of 0.2136, a mean absolute percentage error (MAPE) of

0.0232, and a Nash efficient (NSE) of 0.9427 for DO prediction, outperforming

other similar data-driven models such as IBAS-LSTM and IDA-GRU. The

prediction performance of the model meets the practical needs of precise DO

prediction in aquaculture.
KEYWORDS

marine ranching, dissolved oxygen prediction, improved sparrow search algorithm
(ISSA), dual attention mechanism, Bi-GRU
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1 Introduction

As one of the crucial indicators of water quality, dissolved

oxygen directly determines the health status of the water

environment in marine ranching, and then affects the overall

aquaculture benefits. Its concentration is influenced by factors

such as air temperature, atmospheric pressure, and water body

conditions, exhibiting nonlinear, coupled, and time-varying

characteristics (Cuenco et al., 1985; Lipizer et al., 2014). When

the DO concentration in water is too high or insufficient, it can

directly or indirectly alter other water quality indicators, affecting

the health status of aquacultured species, leading to decreased

resistance, slow growth, stagnation, or even death (Abdel-Tawwab

et al., 2019; Neilan and Rose, 2014; Jiang et al., 2021). Therefore,

through real-time monitoring and effective prediction of DO

concentration in water aquaculture, precise regulation of the

water quality environment can be achieved, reducing the

aquaculture risks in marine farms and enhancing their

economic benefits.

Currently, artificial intelligence technology is widely used for

modeling complex nonlinear systems (Zhu et al., 2019; Choi et al.,

2021; Than et al., 2021; Guo et al., 2022, 2023). Scholars have

proposed various methods for water quality prediction in different

environments and achieved certain results. Wu et al. (2018) used a

BP neural network model optimized by particle swarm optimization

(PSO) for dissolved oxygen prediction. Zhu et al. (2017) established

a dissolved oxygen prediction model based on the least squares

support vector regression (LSSVR) model and fruit fly optimization

algorithm (FOA). Li et al. (2023) applied a prediction model

combining PCA with particle swarm optimization-based LSSVM

to dissolved oxygen prediction in the Yangtze River Basin in

Shanghai. Kuang et al. (2020) proposed a hybrid DO prediction

model KIG-ELM consisting of K-means, improved genetic

algorithm (IGA), and extreme learning machine (ELM). Cao et al.

(2021a) proposed a method based on k-means clustering, PSO, and

an improved soft ensemble extreme learning machine (SELM). The

BP, SVM, LSSVM, and ELM prediction methods mentioned above

all belong to shallow machine learning models. They have fast

training speeds and can achieve high accuracy, but their

representation capabilities for complex functions are limited

under limited samples and computing units. Their generalization

ability for complex classification problems is also constrained to a

certain extent.

Additionally, scholars have also proposed an adaptive network-

based fuzzy inference system (ANFIS), which combines the

characteristics of fuzzy logic and neural networks. By learning the

fuzzy rules and weight parameters from data, ANFIS can predict

unknown data. Sharad et al. (2018) introduced two data-driven

adaptive neuro-fuzzy systems: fuzzy C-means and ANFIS based on

subtractive clustering, which were used to predict sensitive

parameters in monitoring stations that could lead to changes in

existing water quality index values. Arora and Keshari (2021)

employed ANFIS with grid partitioning (ANFIS-GP) and

subtractive clustering (ANFIS-SC) to simulate and predict high-

dimensional river characteristics. The results showed that both

ANFIS models could fully and accurately predict DO. However,
Frontiers in Marine Science 02
ANFIS lacks adaptability, precise control over complex systems, and

may encounter high computational complexity when dealing with

complex problems.

In recent years, the development of deep learning models has

provided an effective solution for the prediction of dissolved oxygen

in aquaculture. Deep learning can achieve complex function

approximation by learning a deep nonlinear network structure and

mine the implicit information in data. Compared with machine

learning methods with shallow structures, it has stronger learning

and generalization abilities and demonstrates a strong ability to learn

the essential features of data sets from a small number of samples.

Among them, the recurrent neural network (RNN) based on deep

learning, as a powerful tool for modeling sequential data, has received

widespread attention and application. By introducing a recurrent

structure within the network, RNN can model the temporal

dependencies in sequential data, thereby capturing temporal

dependencies and contextual information. However, due to

parameter sharing and multiple multiplications, RNN is prone to

the problems of gradient vanishing or gradient explosion during

backpropagation, making it difficult to train the model or causing it to

fail to converge. Long short-term memory (LSTM) and gated

recurrent unit neural network (GRU), as the most popular variants

of RNN, can effectively address the issues of gradient vanishing and

gradient explosion during RNN training, and have become the

mainstream for time series prediction (Li et al., 2021; Liu P. et al.,

2019). Compared to LSTM, GRU consists of an update gate and a

reset gate with simpler structure and fewer number of

hyperparameters. Liu Y. et al., (2019) conducted research on short-

term and long-term DO predictions using attention-based RNN,

indicating that the proposed model outperformed five attention-

based RNN methods and five baseline methods. Zhang et al., 2020

introduced a DO prediction model, kPCA-RNN, which combines

Kernel PCA and RNN demonstrating that the model’s prediction

performance surpassed current feedforward neural networks

(FFNNs), support vector regression (SVR), and general regression

neural networks (GRNN). Sun et al., 2021 proposed a DO prediction

model that integrates an improved beetle antennae search algorithm

(IBAS) with LSTM networks. Cao et al. (2021b) proposed a LSTM

prediction model based on K-means clustering and improved particle

swarm optimization (IPSO). Huan et al., 2022 systematically

discussed and compared GRU water quality prediction methods

based on the attention mechanism. The results showed that its

performance in DO prediction surpassed that of LSTM based on

the attention mechanism, as well as five traditional baseline

algorithms: ANFISR, BF-AN, ELM, SVR, and ANN. However, only

the feature attention mechanism was utilized in their study. Chen

et al. (2022) established an attention-based LSTMmodel (AT-LSTM)

to predict water quality in the Burnett River in Australia. The

research findings indicated that the incorporation of the attention

mechanism enhanced the prediction performance of the LSTM

model. Only the temporal attention mechanism was used in their

study. Tan et al. (2022) constructed a neural network model

combining CNN and LSTM to predict DO demonstrating that this

model achieved more accurate peak fitting predictions than

traditional LSTM models. Yang and Liu (2022) utilized an

improved whale optimization algorithm (IWOA) to optimize a
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GRU, creating a water quality prediction model for sea cucumber

aquaculture. Experimental results showed that this model surpassed

prediction models such as Support Vector Regression (SVR),

Random Forest (RF), CNN, RNN, and LSTM networks in terms of

prediction accuracy and generalization performance. Jiange et al.

(2023) proposed a prediction model combining improved grey

relational analysis (IGRA) with LSTM optimized by the ISSA

named IGRA-ISSA-LSTM. Results indicated that the proposed

model achieved higher determination coefficients (R2) for

predicting DO, pH, and KMnO4 compared to the IGRA-BP,

IGRA-LSTM, and IGRA-SSA-LSTM models. Zhang et al. (2023)

introduced an DO spatio-temporal prediction model based on an

improved RGU with a dual attention mechanism (IDA-GRU) and an

improved inverse distance weighting (IIDW) interpolation algorithm.

Existing research has shown that various models can be

employed for DO prediction, with deep learning-based models

outperforming shallow machine learning models and ANFIS. The

critical aspects of building an efficient and accurate DO prediction

model focus on preprocessing of input data, model selection and

improvement and hyperparameter optimization (Wang et al.,

2023). Based on these findings, this paper proposes an hybrid

model, named PCA-ISSA-DAM-Bi-GRU, to predicting DO in

marine aquaculture farms. Specifically, PCA is utilized for

dimensionality reduction of the model input data, while the DAM

integrating both temporal and feature attention, is fused with the

bidirectional gated recurrent unit (Bi-GRU) neural network for

feature extraction. Furthermore, an enhanced ISSA incorporating

multiple strategies is employed to search and optimize the

hyperparameters of the Bi-GRU, aiming to enhance the model’s

prediction precision. Finally, the accuracy and reliability of the

model are validated using data collected from a self-built LoRa+5G-

based marine aquaculture farm monitoring system.
2 Materials and methods

2.1 Marine ranching environment
monitoring system based on LoRa+5G

This experiment has independently established a marine

ranching environment monitoring system based on LoRa+5G,

which integrates functions such as data collection, remote

transmission, storage management, remote monitoring, and data

analysis. The overall architecture is shown in Figure 1 and can be

functionally divided into a perception layer, a network layer, and an

application layer. The perception layer utilizes various sensors to

collect water quality parameters and meteorological parameters.

The network layer transmits the collected data to the application

layer through the LoRa sensor network combined with 5G

communication technology. The application layer stores and

analyzes the collected data, providing a user interface as needed.

For this experiment, the monitoring system was deployed at an

aquaculture farm in Xiayang Town, Xuwen County, Zhanjiang City,

Guangdong Province, China, covering a sea area of 40m in length

and 40m in width. To collect three-dimensional distribution data of

the aquaculture area, nine water quality sensors were placed at
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corresponding locations above and below water depths of 0.8m and

1.6m. The monitor point distribution is shown in Figure 2.

The data collected by the water quality sensors include dissolved

oxygen, water temperature, conductivity, pH value, ammonia

nitrogen content, and turbidity. The meteorological monitoring

station, located near the aquaculture farm, gathers data on

atmospheric temperature, atmospheric relative humidity,

atmospheric pressure, wind speed, wind direction, solar radiation,

and rainfall. During the data collection process, factors such as the

aquaculture environment, sensor malfunctions, and fluctuations in

network signals can lead to the presence of abnormal values and a

small number of missing values in the sample data. In this study, the

mean smoothing method is adopted to eliminate abnormal data,

and the linear interpolation method is used to fill in missing values.

Additionally, a min-max normalization process is applied to each

variable to ensure consistent scaling for analysis.
2.2 Construction of dissolved oxygen
prediction model

2.2.1 Principal component analysis
On the basis of ensuring the integrity, validity, and accuracy of

the input data, dimensionality reduction can be applied to eliminate

redundancy in the input data, effectively reduce the complexity of

the model structure, and enhance the model’s learning performance

and prediction accuracy. Principal Component Analysis (PCA) is a

commonly used data analysis method that transforms data from a

high-dimensional space to a low-dimensional space. It recombines

numerous indicators with certain correlations into a new set of

uncorrelated comprehensive indicators, thereby achieving the goals

of removing redundant information and noise reduction. Assuming

the input raw data is in the form of a matrix, the specific steps for

PCA to extract the principal components are as follows:
1. Data Decentralization: subtract the mean of each feature

from itself X0
ij = Xij − �Xi;

2. Compute the Covariance Matrix: X0
ijX

0 T
ij ;

3. Calculate Eigenvalues and Eigenvector;

4. Select Principal Components: sort the eigenvalues from

largest to smallest and select the top k eigenvalues;

5. Construct Projection Matrix: combine the eigenvectors

corresponding to the selected eigenvalues to form the

projection matrix;

6. Dimensionality Reduction: multiply the original matrix by

the projection matrix to obtain a new set of samples that

retains most of the representative feature information from

the original samples.
2.2.2 Bi-directional gated recurrent unit
neural network

The GRU network is a simplified variant of the LSTM network.

It consists of an update gate and a reset gate, resulting in a simpler

structure with fewer hyperparameters. GRU networks take
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sequential data as input and utilize recurrent convolutional neural

networks for feature extraction, making them well-suited for time

series prediction. The specific structure of the GRU network cycle

unit is illustrated in Figure 3. The input of the network unit includes

the current input xt and the hidden state ht-1 passed down from the

previous time step. The output is both the output for the current

time step and the hidden state ht passed to the next time step. The

specific calculation process is described by Equations 1–4:

rt = s (Wrxxt +Wrhht−1 + br) (1)

zt = s (Wzxxt +Wzhht−1 + bz) (2)

h
0
t = tanh (Whxxt +Whrrtht−1 + bh) (3)

ht = (1 − zt)ht−1 + zth
0
t (4)

where rt , zt , h
0
t and ht represent the output of the reset gate, the

output of the update gate, the candidate state, and the hidden state,

respectively. Wrx and Wrh are the weight matrices of the reset gate,
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Wzx andWzh are the weight matrices of the update gate, andWhx and

Whr are the weight matrices of the candidate output. br , bz and bh are

the bias vectors for the reset gate, the update gate, and the candidate

output, respectively. s and tanh denote the sigmoid activation

function and the hyperbolic tangent function, respectively.

Since GRU can only establish unidirectional associations in

time series, the concentration of dissolved oxygen at a given

moment should be related to both the preceding and following

water quality and meteorological factors. The bidirectional GRU

(Bi-GRU) can simultaneously mine the sequential correlation and

reverse correlation of the time series, and comprehensively extract

the timing features. Therefore, this study employs bi-directional

GRU (Bi-GRU), which simultaneously explores the sequential and

inverse sequential correlations in the time series, comprehensively

extracting temporal features. The Bi-GRU network comprises two

independently and symmetrically structured GRUs with identical

inputs but opposite information transmission directions. The

outputs from these two GRUs, which are independent and do not

interact with each other, are concatenated to form the output for

each time step, as shown in Figure 4.
FIGURE 1

Overall structure of the aquaculture environmental monitoring system.
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2.2.3 Dual attention mechanism
The attention mechanism in deep learning is a biomimetic

technique that mimics the selective attention behavior in human

reading, listening and speaking. Integrating attention mechanisms

into neural network can make it autonomously learn and pay more

attention to the important information in model input, and enhances

the model’s feature extraction capabilities, robustness, and

generalization ability by assigning different weights to the model’s

inputs. In the DO prediction, the importance of each environmental

factor is different, and the influence weight of the same

environmental factor on DO concentration at different time points

is also different. Furthermore, environmental factors at different

historical moments have different importance in influencing

current DO concentrations. Therefore, in this study, a feature
Frontiers in Marine Science 05
attention mechanism is introduced at the Bi-GRU encoder stage to

adaptively assign weights to different environmental factors at each

time step. This mechanism enables the model to focus on the most

influential factors for DO prediction. Additionally, a temporal

attention mechanism is introduced at the decoder stage of the fully

connected layer to dynamically adjust the weights of different time

steps’ influence on the current DO concentration, so as to better

capture the key information in the time series data. The combination

of these two attention mechanisms allows for a more comprehensive

and nuanced understanding of the complex relationships between

environmental factors and DO concentrations over time.

The feature attention mechanism in the encoder utilizes multi-

layer perceptron operations to quantify the feature attention

weights, as illustrated in Figure 5. Its input comprises n
FIGURE 3

Basic structure of GRU.
FIGURE 2

The distribution of monitor points.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1473551
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1473551
environmental feature vectors xt = (x1t , x
2
t ,⋯, xnt ) at time t and the

hidden layer state ht-1 output by the encoder at the previous time

step. The output is the attention weight of each feature at this time

step a t = (a1
t ,a2

t ,⋯,an
t ), where ak

t assesses the importance of the

k-th feature. Subsequently, the updated ~xt = (a1
t x

1
t ,a2

t x
2
t ,⋯,an

t x
n
t )

is employed as the encoder input for time t. The specific calculation

process is outlined in Equations 5 and 6:

rkt = VT
r tanh (Wrht−1 + U rx

k + br) (5)

ak
t = softmax(rkt ) =

exp (rkt )

o
n

i=1
exp (rit)

(6)
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where VT
r , Wr and U r represents the network feature weights

that need to be learned, and br is the bias parameters. The softmax

function is applied for normalization, ensuring that the sum of all

weights equals 1.

The temporal attention mechanism structure in the decoder is

illustrated in Figure 6. Take the encoder’s historical hidden state

H = (h1,⋯, ht ⋯, hT ) and the decoder’s hidden layer state at the

previous moment dt-1 as the input of the temporal attention

mechanism to obtain the temporal attention weight coefficient b t =

(b1
t , b2

t ,⋯, bT
t ) at the current moment. bk

t represents the influence

of the hidden layer state at the k-th layer on the DO prediction at

the current moment. By weighted summing the bk
t with the

corresponding hidden layer state hk, the comprehensive

information of the predicted time series features could be

obtained:. The calculation process is shown in Equations 7 and 9:

lkt = VT
d tanh (Wddt−1 + Udhk + bd) (7)

bk
t = softmax(lkt ) =

exp (lkt )

o
T

i=1
exp (lit)

(8)

ct = o
t

k=1

bk
t hk (9)

where VT
d , Wd and Ud represents the network feature weights

that need to be learned, and bd is the bias parameters. The softmax

function is applied for normalization, ensuring that the sum of all

weights equals 1.

Fuse the dissolved oxygen yt with ct as the input to the GRU

network:

~yt = ~W
T ½yt , ct � + ~b (10)

where ~WT and ~b represents the weights and biases for the fused

input to the GRU neural network.

The hidden state after incorporating the temporal attention

mechanism is updated using Equation 11:
FIGURE 5

Structural diagram of the feature attention mechanism.
FIGURE 4

Bi-GRU network structure.
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dt = f1(dt−1,~yt−1) (11)

The predicted value of the dissolved oxygen to be predicted is:

~yT+1 = F(y1, y2,…yT , x1, x2,…xT )

= VT
y (Wy½dT , cT � + bw) + by (12)

where Wy and bw are the weights and biases of the GRU

network, respectively; while VT
y and by are the weights and biases

of the entire network, respectively.
2.2.4 Improved sparrow search algorithm
The hyperparameters of neural network models affect the

structure, topology, and details of the training process, which in

turn impact the learning process and performance of the models.

Traditionally, the setting of Bi-GRU hyperparameters often relies

on trial and error based on experience, leading to poor stability,

susceptibility to overfitting and underfitting, and time-consuming

processes. Existing research has demonstrated the importance of

hyperparameter optimization in enhancing the robustness,

generalization, stability, and accuracy of models (Sun et al., 2021;
Frontiers in Marine Science 07
Yang and Liu, 2022; Jiange et al., 2023). There are numerous

hyperparameter optimization algorithms, among which the

sparrow search algorithm (SSA) proposed in 2020 is a novel

swarm intelligence optimization algorithm inspired by bird

foraging behavior (Xue and Shen, 2020). By simulating the

foraging process of sparrows to search for optimal solutions, SSA

boasts high search accuracy, fast convergence speed, and strong

robustness, making it widely applicable to various optimization

problems. This study proposes an improved sparrow search

algorithm (ISSA) that integrates multiple strategies to search and

optimize the hyperparameters of the Bi-GRU model, thereby

enhancing the model’s optimal learning capabilities.

SSA is a discoverer-follower model which superimposes detection

and early warning mechanism. The individual who finds the best

food in the sparrow acts as the discoverer, and the other individuals

act as followers, and compete with the discoverer for food when the

discoverer finds the better food. Additionally, a certain proportion of

individuals within the population are selected as scouts to conduct

reconnaissance and warning, abandoning food sources if danger is

detected. Addressing the issues of insufficient population diversity,

poor convergence performance, and the imbalance between global
FIGURE 6

Structural diagram of the temporal attention mechanism.
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exploration and local exploitation capabilities in the standard SSA,

this study proposes improvements to the algorithm from the

following aspects.

2.2.4.1 Incorporating gauss chaotic sequence into
population initialization

The standard SSA randomly generates the initial population,

and once the population gathers, it will affect the breadth of the

search space. Additionally, if a “super sparrow” (an individual with

a fitness value significantly higher than the average) emerges

prematurely during the iteration process, a large number of

participants may converge towards it, drastically reducing the

diversity of the population. To address these issues, the gauss

chaotic sequence is introduced into the initialization phase of the

SSA algorithm. The gauss chaotic mapping possesses properties

such as regularity, randomness, and ergodicity, which can help

ensure a uniform distribution of the initial population, enhancing

both the diversity of the population and the global search

performance of the model. The mathematical expression for the

gauss chaotic mapping is given as:

xk+1 =
0                       xk = 0      

1
xk mod (1) ,          xk ≠ 0

(
(13)

where “mod” represents the modulo operation.

2.2.4.2 Improving the discoverer’s position update
strategy by borrowing from the salp group algorithm

The position update strategy for discoverers in the standard SSA is:

xt+1i,d =
xti,d · exp ( −

i
b1Tmax

)        R2 < ST

xti,d + b2 · L                     R2 ≥ ST

(
(14)

where t represents the current iteration number; Tmax represents

the maximum number of iterations; b1 and b2 are random numbers,

b1 ∈ (0, 1� and b2 follows a normal distribution; L is a 1×d matrix

filled with 1; R2 ∈ ½0, 1�,which represents the warning value; and ST ∈
½0:5, 1� represents the safe value.

According to the Equation 14, when R2 < ST , each dimension of

the position converges towards zero, leading the algorithm to easily

become trapped in local optima near zero and potentially miss

optimal solutions located away from zero. In order to improve the

global search ability of the algorithm, this study draws on the

leader’s update strategy in the Salp Group Algorithm (Mirjalili et al.,

2017), and modified the position update formula for the discoverer

as follows:

xt+1i,d =
xti,d ·

c1½(ub−lb)c2+lb)� 
(1+c3)ub

    R2 < ST

xti,d + b2 · L               R2 ≥ ST

8<
: (15)

c1 = 2 exp−(
4t

Tmax
)2 (16)

In Equation 15, ub and lb represents the lower and upper

bounds of the current dimension’s search space, respectively. c2, c3
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∈ (0, 1) are random variables that follow a uniform distribution,

and c1 serves as a balancing parameter that regulates the trade-off

between the algorithm’s global search and local search capabilities.

With these modifications, the SSA discoverer’s position does not

necessarily decrease in each dimension at the early stage of iteration,

which improved the search range and global search ability of the

population. Meanwhile, it also maintains a balance with the

convergence speed and local search capabilities during the later

iterations of the algorithm.

2.2.4.3 Improving the follower’s position update strategy
inspired by chicken swarm optimization

In the standard SSA, the follower’s position update strategy is

typically defined as follows:

xt+1i,d =
b2 · exp (

xtworst−x
t
i,d

i2 )                i > N
2

xt+1p,d + xti,d − xt+1p,d

��� ��� · A+ · L  i ≤ N
2  

8><
>: (17)

where xt+1p,d refers to the best position found by the discoverer (or

leader) of the swarm during the t+1-st iteration of the algorithm,

and xtworst represents the worst position found by any individual

(including both followers and the discoverer) in the current

iteration or across all iterations so far. A+ = AT (AAT )−1, where A

is a 1-by-dmatrix whose elements are randomly chosen from the set

{1, −1}.

According to Equations 17, when i ≤ N
2  , the follower’s position

update is primarily guided by the leader xt+1p,d . It is prone to rapid

aggregation of the population within a short period, leading to a

sharp decline in population diversity and significantly increasing

the probability of the algorithm falling into a local optimum.

Drawing inspiration from the random following strategy in the

chicken swarm algorithm (Osamy et al., 2020), where hens converge

towards roosters with a certain probability, the follower’s position

update strategy is improved as follows:

xt+1i,d =
b2 · exp(

xtworst−x
t
i,d

i2 )          i > N
2

xti,d + Srand(0, 1)(xtk,d − xti,d)        i ≤
N
2  

   

8<
: (18)

S = exp (fs� fi) (19)

where k ∈ ½1,N� represents the fitness of any k-th sparrow, and

k ≠ i. The improved SSA ensures both convergence and population

diversity, balancing local exploitation and global search capabilities.

2.2.4.4 Introduction of Cauchy-Gaussian
mutation strategy

The standard SSA is prone to falling into local optima and

stagnation in the later stages of iteration due to the decrease in

population diversity. Therefore, the Cauchy-Gaussian mutation

strategy (Wang et al., 2020) is adopted in this study to ensure

population diversity and resistance to stagnation, thereby

avoiding premature convergence of the algorithm. The specific

formula is as follows:
frontiersin.org

https://doi.org/10.3389/fmars.2024.1473551
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1473551
ubest = xbest ½1 + l1Cauchy(0,s
2) + l2Gauss(0,s

2)� (20)

s =
1,          f (xbest) < f (xi)

exp ( f (xbest )−f (xi)f (xbest )j j )       f (xbest) ≥ f (xi)

(
(21)

In Equations 20 and 21, ubest represents the position of the

optimal individual after mutation; s denotes the standard deviation

of the Cauchy-Gaussian mutation strategy; Cauchy(0,s 2) is a

random variable that follows a Cauchy distribution; Gauss(0,s 2)

is a random variable that follows a Gaussian distribution; l1 =
1 − t2

T2
max

and l2 = t2

T2
max

are dynamic parameters adaptively adjust

with the number of iterations.

2.2.5 Dissolved oxygen prediction model fuse
DAM and Bi-GRU optimized by ISSA

The flowchart of the ISSA-optimized DO prediction model

integrating DAM and Bi-GRU proposed in this study is shown in

Figure 7. The main processes include data the preprocessing based

on PCA, the hyperparameter optimization conducted by ISSA, the

training and optimization of the DAM-Bi-GRU model, and the

evaluation of model performance.
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3 Results

3.1 Data processing

To validate the performance of the proposed model in this

article, data from the study area spanning 86 days from June 1st

2023 to August 25th 2023 were collected, with each data point

recorded every 30 minutes, resulting in a total of 4,184 data sets for

every given monitor point. The first 60 days’ data were used as the

training set, the next 13 days’ data as the validation set, and the final

13 days’ data as the test set, following a 7:1.5:1.5 ratio. For any given

time t, the model’s input comprised the aquaculture environmental

parameters from the preceding 24 hours, and its output predicted

the dissolved oxygen levels for the following 2 hours. This resulted

in 2,832 training samples, 624 validation samples, and 624 test

samples. Due to space limitations, a portion of the raw data

collected on June 20th 2023 is presented in Table 1. Furthermore,

taking monitor point A9 as an example, after removing outliers and

filling in missing values through linear interpolation, statistical

analysis was conducted on the data, as shown in Table 2.

Subsequently, the PCA algorithm was applied to reduce the data’s
FIGURE 7

Flowchart of DO prediction algorithm PCA-ISSA-DAM-Bi-GRU.
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dimensionality, eliminating redundant information and noise.

Finally the processed data was input into the neural network

model for feature extraction. The PCA of the aquaculture

environmental parameters is presented in Table 3. As can be

seen, the cumulative contribution rate of the first seven

components reaches 86.27%, representing the majority of

environmental information. Therefore, this study selected seven

principal components, utilizing PCA to reduce the original 13-

dimensional data to seven dimensions.
Frontiers in Marine Science 10
3.2 Hyperparameter optimization and
training of the model

The data, after being processed through outlier removal, linear

interpolation for missing values, and principal component analysis,

was input into the neural network model for hyperparameter

optimization and training.

Step 1: Initialize the hyperparameters of the ISSA. The number

of sparrows was set to 50, the maximum number of iterations T was
frontiersin.or
TABLE 1A Water quality data collected by monitoring station A9 on June 20, 2023.

Time

Water quality parameters

Dissolved
oxygen/
(mg·L−1)

Water
temperature/°C

Conductivity/
(mS·cm−1)

pH
value

Ammonia
nitrogen/
(mg·L−1)

Turbidity/
NTU

06:00 5.35 27.14 2980.52 7.72 0.27 18.27

06:30 5.39 27.14 3080.74 7.72 0.27 18.29

07:00 5.47 27.14 3220.28 7.75 0.27 19.11

07:30 5.58 27.24 3170.19 7.76 0.28 19.63

08:00 5.77 27.24 3586.48 7.77 0.28 19.92

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

14:00 8.23 29.52 3800.46 7.82 0.38 20.35

14:30 8.41 29.64 3740.74 7.87 0.38 20.77

15:00 8.65 29.02 3826.92 7.95 0.39 21.06

15:30 8.92 30.18 3780.36 8.02 0.39 21.95

16:00 8.78 30.15 3776.62 8.11 0.41 21.84
TABLE 1B Meteorological parameter data collected by monitoring station A9 on June 20, 2023.

Time

Meteorological parameters

Temperature/
°C

Relative
humidity/%

Pressure/KPa
Wind
Speed/
(km·h−1)

Wind
direction/°

Solar
radiation/
(W·m−2)

Rainfall/
mm

06:00 28.46 87.38 101.42 12.25 117.75 68.45 0

06:30 28.64 87.24 101.42 14.37 127.36 60.24 0

07:00 28.91 87.41 101.42 13.96 123.95 88.90 0

07:30 29.32 86.95 101.41 16.75 131.24 120.37 0

08:00 29.75 86.23 101.41 15.33 135.78 135.66 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

14:00 33.72 84.66 101.26 16.82 130.25 458.36 0

14:30 33.48 83.35 101.26 14.29 123.74 520.59 0

15:00 32.95 84.71 101.27 12.88 119.55 330.47 0

15:30 32.53 83.29 101.26 15.26 121.57 220.69 0

16:00 31.47 83.04 101.25 16.88 120.49 392.21 0
g
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100, with the proportions of producers, followers, and scouts being

70%, 10%, and 20% respectively. The safety threshold was set to 0.6,

and the search space was 5-dimensional. For the two-layer Bi-GRU,

the optimization range for the number of hidden neurons was [8,

128], the optimization range for the maximum number of iterations

was [10, 100], the optimization range for the batch size was [16,

128], and the optimization range for the learning rate was

[0.001, 0.1].

Step 2: Train the DAM-Bi-GRU model using the

hyperparameter combinations provided by ISSA. Each sparrow

corresponds to a set of hyperparameter combinations. The model

was trained using supervised learning, with the root mean square

error (RMSE) function serving as the loss function. The

mathematical definition of RMSE is as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(yi − ŷ i)

2

r
(22)

where yi and ŷ i represents the actual value and the predicted

value by the model respectively, and N is the number of training

samples in a batch. An end-to-end learning approach was adopted,

where the neural network’s weights were continuously adjusted

through forward propagation and backward propagation of

gradients. The iteration stops once the preset number of iterations

is reached or the training objective is achieved, completing the neural

network training. Ultimately, each hyperparameter combination

corresponds to a trained DAM-Bi-GRU model.

Step 3: Validate the DAM-Bi-GRU models trained in Step 2

using the pre-divided validation dataset. The validation result of

each trained DAM-Bi-GRUmodel was measured by RMSE, and the

fitness of the sparrow corresponding to the set of hyperparameter

combinations for that model is also evaluated using the same

RMSE value.

Step 4: Determining whether the model training has concluded

based on the fitness value. If it has reaches the maximum number of
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the presented iterations of ISSA or the optimal fitness value of the

sparrow population has met the training objective, end the training

and output the DAM-Bi-GRU model with the optimal parameter

combination. Otherwise, update the positions of producers,

followers, and scouts based on the fitness values of the sparrow

population, and generate new hyperparameter combinations.

Repeat Steps 2 to 4 until the training is completed.

Following the above optimization and training steps, the final

results of DAM-Bi-GRU hyperparameter optimization were

obtained, with the hidden neuron counts for the two-layer Bi-

GRU being 46 and 72 respectively; the maximum number of

iterations being 86; the batch size being 66; and the learning rate

being 0.004. Furthermore, the proposed ISSA was compared with the

original SSA, PSO, and GA in terms of optimization performance.

The convergence of the algorithms during the iterative optimization

process is illustrated in Figure 8. It can be seen that the fitness value

of ISSA converges to around 0.21 after approximately 35 iterations,

while SSA converges to around 0.23 after about 45 iterations, PSO

converges to around 0.26 after approximately 55 iterations, and GA

converges to around 0.28 after approximately 70 iterations. This

indicates that the optimization ability and convergence speed of ISSA

are significantly higher than those of SSA, GA, and PSO.

Additionally, the fluctuating downward trend of the fitness value

of ISSA in Figure 8 suggests its ability to quickly escape local optima.

In contrast, the other three optimization algorithms exhibit varying

degrees of stagnation.
3.3 Testing and evaluation of the model

In this study, the root mean squared error (RMSE), mean

absolute percentage error (MAPE), and Nash-Sutcliffe efficient

(NSE) were adopted to evaluate the predictive performance of the

model. The calculation formulas are as follows:
TABLE 2 Statistical results of data collected by monitoring station A9.

Category Indicators Mean ± SD Range

Water quality parameters

Dissolved oxygen/(mg·L−1) 7.534 ± 2.175 3.29∼11.64

Water temperature/°C 27.422 ± 3.210 18.58∼33.36

Conductivity/mS·cm−1 3450.463 ± 400.675 2240.45∼5300.60

pH value 7.920 ± 0.218 7.24∼8.91

Ammonia nitrogen/(mg·L−1) 0.324 ± 0.112 0.06∼0.58

Turbidity/NTU 20.301 ± 2.430 15.4∼30.5

Meteorological Parameters

Temperature/°C 28.512 ± 5.351 22.32∼34.05

Relative humidity/% 85.638 ± 6.250 73.45∼94.68

Pressure/KPa 101.512 ± 0.782 99.25∼102.07

Wind speed/(km·h−1) 16.578 ± 5.530 7.00∼52.00

Wind direction/(°) 173.539 ± 56.821 22.5∼360

Solar radiation (W·m−2) 625.537 ± 568.248 0.0∼1915.00

Rainfall/mm 2.350∼8.852 0.0∼38.8
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RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(yi − ŷ i)

2

r
(23)

MAPE =
1
No

N
i=1

yi − ŷ i

yi

����
���� (24)
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NSE = 1 −o
N
i=1(yi − ŷ i)

2

oN
i=1(yi − �yi)

2 (25)

where yi is the actual value, �yi is the mean of the actual values, ŷ i

is the predicted value by the model, and N is the number of data

points in the data set used for evaluating the model’s performance.

A lower RMSE indicates better predictive performance. MAPE

measures the average magnitude of the percentage errors in a set

of predictions, without considering their direction. A lower MAPE

indicates better predictive accuracy. NSC ranges from negative

infinity to 1, with 1 indicating a perfect match between observed

and predicted values. Higher NSE values indicate better predictive

performance. In summary, a lower RMSE and MAPE, and a higher

NSC, all suggest better predictive performance of the model.

The 624 test data set samples were inputted one by one into the

trained DAM-Bi-GRU model with the optimal combination of

hyperparameters, the prediction results were obtained sequentially.

The model’s performance parameters on the test set were calculated by

Equations 23–25, namely RMSE, MAPE, and NSE which found to be

0.2136, 0.0232, and 0.9427, respectively. Additionally, Figures 9A–D

sequentially present the comparison curves of predicted and actual

values for the test samples, the prediction errors, the distribution of

prediction errors, and the linear fitting between predicted and actual

values. From Figure 9A, it can be observed that the proposed PCA-

ISSA-DAM-Bi-GRUmodel is capable of capturing the changing trends

of real dissolved oxygen data, sensitively identifying subtle fluctuations
TABLE 3 Principal component coefficient matrix of aquaculture environment parameters.

Indicators
Component

1
Component

2
Component

3
Component

4
Component

5
Component

6
Component

7

Water
temperature

0.467 −0.184 −0.114 0.147 −0.052 −0.030 −0.124

Conductivity −0.352 −0.038 0.294 −0.132 −0.160 −0.084 −0.131

pH value −0.278 −0.241 0.469 0.153 −0.078 −0.232 −0.094

Ammonia
nitrogen

0.314 −0.296 −0.370 0.055 0.079 0.140 −0.207

Turbidity 0.114 −0.385 −0.208 −0.258 0.1411 −0.273 0.776

Temperature 0.452 0.242 −0.213 0.147 −0.037 −0.063 −0.097

Relative
humidity

0.135 0.644 −0.187 −0.037 −0.087 −0.197 0.226

Pressure −0.378 −0.229 −0.340 0.068 0.063 0.025 −0.075

Wind speed −0.060 0.161 −0.305 −0.218 0.581 0.688 0.050

Wind direction −0.086 0.032 −0.027 0.844 −0.055 0.280 0.416

Solar radiation −0.306 0.197 −0.458 0.136 0.084 0.024 −0.258

Rainfall 0.018 0.281 0.031 0.249 0.761 −0.498 −0.065

eigenvalue 3.632 1.585 1.402 1.050 0.976 0.903 0.804

Contribution
rate/%

30.266 13.208 11.686 8.750 8.136 7.524 6.701

Cumulative
contribution

rate/%
30.266 43.474 55.160 63.910 72.046 79.570 86.271
FIGURE 8

Iterative optimization and convergence curves for different
optimization algorithm.
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in the data, and maintaining a high prediction accuracy. Figures 9B–D

demonstrate that there is a small discrepancy between the predicted

and actual values.
3.4 Comparison and analysis of the models

To analyze and evaluate the competitiveness and superiority of

the proposed model, this article designed ablation experiments and

comparative experiments, selecting different models to compare

their predictive performance.

3.4.1 Ablation experiments
The ablation experiments were conducted in two groups, A and

B. The models in Group A do not incorporate the hyperparameter

optimization module ISSA, with the baseline model being Bi-GRU.

The models in Group B all include the ISSA, with the baseline

model being ISSA-Bi-GRU. Each group include three models: one

with PCA added alone to the baseline module, one with DAM

added alone, and one with both PCA and DAM added
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simultaneously. For experiments in Group A, the random search

method was used to determine the model’s hyperparameters with

the number of random searches setted to be 100, which is equivalent

to the maximum number of iterations for the ISSA module.

The prediction performance of each model on the test data set is

shown in Table 4. In Group A, the prediction performance

indicators RMSE, MAPE, and NSE of the baseline model Bi-GRU

are 0.4077, 0.0527, and 0.8358, respectively. Compared with it, the

PCA-Bi-GRU model shows a 9.22% decrease in RMSE, a 11.76%

decrease in MAPE, and a 1.99% increase in NSE. The DAM-Bi-

GRU model exhibits a 18.42% reduction in RMSE, a 28.27%

reduction in MAPE, and a 5.56% increase in NSE. The PCA-

DAM-Bi-GRU model, on the other hand, demonstrates a 24.63%

decrease in RMSE, a 40.23% decrease in MAPE, and a 8.91%

increase in NSE compared to the baseline. In Group B, the

prediction performance indicators RMSE, MAPE, and NSE of the

base model ISSA-Bi-GRU are 0.3424, 0.0392, and 0.8682,

respectively. The PCA-ISSA-Bi-GRU model shows a 4.35%

decrease in RMSE, a 8.16% decrease in MAPE, and a 3.44%

increase in NSC compared to it. The ISSA-DAM-GRU model
FIGURE 9

(A) DO prediction of the proposed model on the test data set. (B) Prediction error of the test data set; (C) Histogram of the prediction error
distribution on the test data set; (D) Linear fitting between predicted and observed values.
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exhibits an 18.81% reduction in RMSE, a 17.6% reduction in MAPE,

and a 6.73% increase in NSC. The PCA-ISSA-DAM-Bi-GRU

model, however, demonstrates a 37.62% decrease in RMSE, a

40.82% decrease in MAPE, and an 8.85% increase in NSE

compared to the base model. This indicates that both the DAM

module and the PCA module can enhance the prediction

performance of the models, with the DAM module showing a

more significant improvement than PCA, and their fusion being

even more effective. Figures 10A–C represent the three evaluation

indicators (RMSE, MAPE, and NSE) for the models in Groups A

and B, respectively. It can be observed that optimizing the

hyperparameters of the Bi-GRU module through the ISSA

module indeed enhances the prediction performance of the models.

3.4.2 Comparative experiments
3.4.2.1 Comparison with baseline modules

To evaluate the superiority of PCA, ISSA, and Bi-GRU in

enhancing prediction accuracy within the proposed model, the

following comparative experiments were also conducted in this

study: 1) Pearson correlation coefficient analysis was used to

replace PCA, resulting in the comparative model P-ISSA-DAM-Bi-

GRU; 2) ISSA was replaced with SSA, GA, and PSO, respectively,

generating comparative models PCA-SSA-DAM-Bi-GRU, PCA-GA-

DAM-Bi-GRU, and PCA-PSO-DAM-Bi-GRU; 3) Bi-GRU was

replaced with Bi-LSTM, LSTM, and CNN, respectively, resulting in
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comparative models PCA-ISSA-DAM-Bi-LSTM, PCA-ISSA-DAM-

LSTM, and PCA-ISSA-DAM-CNN. Eight comparative models were

evaluated in total corresponding to serial numbers 1 to 8. The

experimental results are presented in Table 5 and Figure 11,

revealing the following: 1) The prediction performance metrics of

the PCA-ISSA-DAM-Bi-GRUmodel are superior to those of P-ISSA-

DAM-Bi-GRU, indicating that PCA outperforms the Pearson

correlation coefficient analysis method in dimensionality reduction

for data input in terms of dissolved oxygen prediction performance;

2) The prediction performance metrics of PCA-ISSA-DAM-Bi-GRU

are superior to those of PCA-SSA-DAM-Bi-GRU, PCA-GA-DAM-

Bi-GRU, and PCA-PSO-DAM-Bi-GRU, with the NSE value reaching

0.9807, demonstrating that compared to baseline approaches such as

SSA, GA, and PSO, the optimization of Bi-GRU hyperparameters by

ISSA results in better model fitting; 3) The prediction performance

metrics of PCA-ISSA-DAM-Bi-GRU are slightly higher than those of

PCA-ISSA-DAM-Bi-LSTM and significantly higher than those of

PCA-ISSA-DAM-LSTM and PCA-ISSA-DAM-CNN, indicating that

bidirectional neural networks enhance temporal feature extraction for

contextually related time series prediction.

3.4.2.2 Comparison with existing models

Furthermore, in order to test the overall predictive performance

of the proposed hybrid model PCA-ISSA-DAM-Bi-GRU, this paper

also selected dissolved oxygen prediction models proposed in the
TABLE 4 Predictive performance of different models for the ablation experiments.

Group Model RMSE/(mg·L−1) MAPE NSE

A
(Model with-out ISSA)

Bi_GRU 0.4077 0.0527 0.8358

PCA_Bi_GRU 0.3701 0.0465 0.8524

DAM_Bi_GRU 0.3326 0.0378 0.8823

PCA_DAM_Bi_GRU 0.3073 0.0315 0.9103

B
(Model with ISSA)

ISSA_Bi_GRU 0.3424 0.0392 0.8682

PCA_ISSA_Bi_GRU 0.3275 0.0360 0.8981

ISSA_DAM_Bi_GRU 0.2780 0.0323 0.9266

PCA_ISSA_DAM_Bi_GRU 0.2136 0.0232 0.9427
FIGURE 10

Prediction performance presented by (A) RMSE, (B) MARE and (C) NSE for various models in the ablation study. Group A do not incorporate attention
mechanism and Group B incorporate attention Mechanism.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1473551
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1473551
past three years, namely IPSO-LSTM (Cao et al., 2021b), IBAS-

LSTM (Sun et al., 2021), CNN-LSTM (Tan et al., 2022) and IDA-

GRU (Zhang et al., 2023) for comparison. The results in Table 6

show that the model proposed in this paper outperforms those 4

models, indicating the effectiveness and superiority of the individual

modules and their fusion in enhancing the prediction accuracy of

dissolved oxygen.
3.5 Application of the model

To evaluate the practical effectiveness of the proposed model, the

dissolved oxygen prediction for August 26, 2023, at the A9

monitoring station was selected as the experimental case. The

prediction results and prediction error curves from the proposed

PAC-ISSA-DAM-Bi-GRU model, along with the PCA-ISSA-Bi-

GRU, PCA-DAM-Bi-GRU, IBAS-LSTM (Sun et al., 2021), and

IDA-GRU (Zhang et al., 2023) models discussed in the previous

section, are presented in Figure 12. The error value curves visually

reflect the differences between the predicted curves and the actual

curves, with smaller fluctuations and closer proximity to the zero-

value line indicating better prediction performance. The analysis is as

follows: 1) The prediction curve of the PCA-ISSA-DAM-Bi-GRU

model proposed in this paper (Figures 12A, B) is closest to the actual

observed values; 2) The prediction accuracy of PCA-ISSA-Bi-GRU

without the dual attentionmechanism (Figures 12E, F) and the IBAS-

LSTM (Sun et al., 2021)model (Figures 12G, H) is significantly lower
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than that of the other three models, especially during the daytime.

This maybe due to the factor that the dissolved oxygen is greatly

affected by light intensity, and the introduced attention mechanism

increases the weight of light intensity to improve the prediction

accuracy; 3) The PCA-DAM-Bi-GRUmodel (Figures 12C, D), which

do not incorporate hyperparameter optimization module ISSA,

performs slightly better than IDA-GRU (Zhang et al., 2023)

(Figures 12I, J), but both are significantly inferior to the PCA-

ISSA-DAM-Bi-GRU model (Figures 12A, B) that incorporates

ISSA for hyperparameter optimization.

As can be seen from Figure 11, the daily dissolved oxygen

reaches the peak at around 15:00 and reaches the valley value at

around 06:00, which can reflect the health state of the water

environment to a large extent. Figure 13 presents the predicted

dissolved oxygen distribution at various depths and monitoring

stations at 06:00 and 15:00 on August 26, 2023, using the proposed

PCA-ISSA-DAM-Bi-GRU model. The analysis of this distribution

provides valuable insights into the health status of the aquatic

environment. The key observations are: 1) Vertical dissolved

oxygen gradient: compared Figures 13A–D, it could be concluded

that within the same vertical profile, the dissolved oxygen levels at

1.6 meters depth are consistently lower than those at 0.8 meters,

with this difference being more pronounced during the day

compared to night. This vertical gradient is a common

phenomenon in aquatic systems, where oxygen solubility

decreases with depth due to factors such as temperature and

pressure. 2) Spatial variations during daytime: it could be seen
TABLE 5 Predictive performance of different models for the comparative experiments.

Model number Prediction model RMSE/(mg·L−1) MAPE NSE

1 PCA-ISSA-DAM-Bi-GRU 0.2136 0.0232 0.9427

2 P-ISSA-DAM-Bi-GRU 0.2742 0.0306 0.9294

3 PCA-SSA-DAM-Bi-GRU 0.2821 0.0317 0.9316

4 PCA-GA-DAM-Bi-GRU 0.2933 0.0346 0.9358

5 PCA-PSO-DAM-Bi-GRU 0.2928 0.0336 0.9346

6 PCA-ISSA-DAM-Bi-LSTM 0.2178 0.0292 0.9401

7 PCA-ISSA-DAM-LSTM 0.2558 0.0287 0.9395

8 PCA-ISSA-DAM-CNN 0.2931 0.0358 0.9162
FIGURE 11

Prediction performance presented by (A) RMSE, (B) MARE and (C) NSE for various models in the comparative experiments.
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from Figure 13A that during the day, the dissolved oxygen

concentration in regions A1, A2, and A4 is higher than in A3 and

A7. This can be attributed to various factors, including wind

direction, water temperature, and the photosynthetic activity of

aquatic plants (e.g., phytoplankton). Favorable wind conditions can

enhance mixing and oxygenation, while increased photosynthetic

activity during daylight hours releases oxygen into the water.

3) Spatial variations during nighttime: it could be seen from

Figure 13C that The distribution of dissolved oxygen at night is

influenced by different factors, such as the aggregation patterns of

fish schools, wind direction, and the location of feeding devices.

Notably, the dissolved oxygen levels in regions A1 and A9 are
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higher, while those in A7 and A8 are lower. This can be explained

by the possible concentration of fish schools or the efficiency of

oxygen replenishment mechanisms in these areas. Additionally, the

reduced photosynthetic activity at night leads to a general decrease

in dissolved oxygen levels across all regions.

The observed diurnal and spatial variations in dissolved oxygen

concentrations highlight the complexity of aquatic ecosystems and

the importance of accurate monitoring and prediction. The PCA-

ISSA-DAM-Bi-GRU model, by capturing these dynamic changes,

provides a powerful tool for assessing the health of aquaculture

systems and informing management decisions aimed at optimizing

conditions for fish growth and welfare.
4 Discussion

4.1 Optimization mechanism of ISSA

As can be observed from Figure 8, the proposed ISSA in this study

exhibits superior capability in optimizing model hyperparameters and

convergence speed compared to the original SSA, GA, and PSO.

Table 5 further indicates that the DO prediction performance of Bi-

GRU optimized by ISSA is superior to that optimized by SSA, GA, and
TABLE 6 Predictive performance of existing models.

Model
RMSE/
(mg·L−1)

MAPE NSE

PCA-ISSA-DAM-Bi-GRU 0.2136 0.0232 0.9427

IPSO-LSTM (Cao et al., 2021b) 0.3861 0.0492 0.8635

IBAS-LSTM (Sun et al., 2021) 0.3528 0.0426 0.8724

CNN-LSTM (Tan et al., 2022) 0.3495 0.0358 0.8631

IDA-GRU (Zhang et al., 2023) 0.3128 0.0327 0.9084
FIGURE 12

The prediction results and prediction error curves from five models on August 26, 2023. (A, B) PCA-ISSA-DAM-Bi-GRU model; (C, D) PCA-ISSA-Bi-
GRU; (E, F) PCA-DAM-Bi-GRU; (G, H) IBAS-LSTM (Sun et al., 2021); (I, J) IDA-GRU (Zhang et al., 2023).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1473551
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1473551
PSO. The optimization capability and convergence speed of SSA are

primarily influenced by factors such as population diversity, global

search performance, and local search ability. ISSA employs a multi-

strategy fusion approach for improvement, which not only enhances

the diversity and quality of the initial population but also fully utilizes

information exchange among sparrow individuals to achieve a balance

between local exploitation and global search in the algorithm.

Additionally, it improves the algorithm’s ability to escape from local

extrema. Firstly, the introduction of Gauss chaotic sequence into the

population initialization process ensured a uniform distribution of

the initial population, thereby enhancing population diversity and the

global search performance of the model. Secondly, the improvement

of the position update strategy for discoverers by drawing inspiration

from the Salp Swarm Algorithm allowing the discoverers to not

necessarily decrease in every dimension during the early iterations,

enhancing the search range and global search capability of the

population while also maintaining the convergence speed and local

search ability during the later iterations of the algorithm. Furthermore,

the improvement of the position update process for followers by

adopting the random following strategy from the Chicken Swarm
Frontiers in Marine Science 17
Optimization (CSO) algorithm, where hens converge towards roosters

with a certain probability. This ensures both convergence and

population diversity, balancing local exploitation and global search.

Lastly, the introduction of the Cauchy-Gaussian mutation strategy

maintains population diversity and resistance to stagnation,

preventing premature convergence of the algorithm.
4.2 Optimization effects of each module in
the proposed PAC-ISSA-DAM-Bi-GRU

Based on ablation and comparison experiments, the analysis of the

optimization effects of each module in the PCA-ISSA-DAM-Bi-GRU

model on DO prediction is as follows: 1) ISSA can optimize the

hyperparameters of the neural network model, thereby enhancing its

prediction performance for the factor that hyperparameters control

the structure, topology, and training process of the network, directly

impacting the model’s fitting degree, generalization ability, and

stability during training. 2) Dimensionality reduction of data using

PCA can improve model performance, and the effect is superior to
FIGURE 13

Dissolved oxygen distribution on different time at different water layers on August 26th 2023. (A) Dissolved oxygen distribution at a depth of 0.8
meters on 15:00; (B) Dissolved oxygen distribution at a depth of 1.6 meters on 15:00; (C) Dissolved oxygen distribution at a depth of 0.8 meters on
06:00; (D) Dissolved oxygen distribution at a depth of 1.6 meters on 06:00.
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that of the Pearson correlation coefficient analysis method. This is

because the Pearson correlation coefficient analysis method only

selects factors with high correlation coefficients with dissolved

oxygen as inputs, completely ignoring factors weakly correlated with

dissolved oxygen. In contrast, the PCA analysis method used in this

study can capture 86.27% of water quality and meteorological

information with only 7 dimensions of data. While reducing the

dimensionality, it ensures that the input information is more complete

and comprehensive, facilitating subsequent feature extraction. 3) The

DAM module introduces a dual attention mechanism combining

feature and temporal attention. The feature attention mechanism

adaptively assigns weights to different environmental factors at each

time point, while the temporal attention mechanism dynamically

adjusts the weights of different time steps on the current DO

concentration. This enables the neural network to better capture

critical information in time series data. 4) The prediction

performance of Bi-GRU is significantly higher than that of LSTM

and CNN. This is because the dissolved oxygen concentration at a

particular moment is correlated with environmental factors both

before and after it. Bi-GRU can simultaneously explore the

sequential and inverse correlations in time series, comprehensively

extracting temporal features.
4.3 Competitiveness and superiority
compared to existing models

4.3.1 Comparison with IPSO-LSTM and
IBAS-LSTM

Both the IPSO-LSTM (Cao et al., 2021b) and IBAS-LSTM (Sun

et al., 2021) models employed modified optimization algorithms, IPSO

and IBAS, respectively, to optimize the hyperparameters of LSTM

networks. In contrast to the PCA-ISSA-DAM-Bi-GRU model

proposed in this paper, neither of these models performed PCA

dimensionality reduction nor incorporates the feature and temporal

attention mechanism DAM. Firstly, an ISSA-Bi-GRU model was

constructed, and experiments revealed that its prediction

performance was slightly higher than that of IPSO-LSTM (Cao

et al., 2021b) and IBAS-LSTM (Sun et al., 2021), as shown in

Table 7. This demonstrates the superiority of the ISSA and Bi-GRU

modules proposed in this paper. Therefore, the optimization

capabilities and convergence speeds of ISSA, IPSO, and IBAS were

compared in this paper. As shown in Figure 14 and significantly higher

than those of IPSO. This demonstrates that the ISSA, with its enhanced

search mechanisms and adaptive parameter adjustments, exhibits
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superior performance in finding optimal solutions and converging

towards them efficiently, compared to the other two algorithms.

Furthermore, PCA-IPSO-DAM-LSTM and PCA-IBAS-DAM-LSTM

were constructed based on IPSO-LSTM (Cao et al., 2021b) and IBAS-

LSTM (Sun et al., 2021), respectively. Significant improvements in

prediction performance were observed as shown in Table 7,

thoroughly validating the effectiveness of PCA and DAM proposed

in this paper in enhancing the predictive capabilities of the models.

4.3.2 Comparison with CNN-LSTM
CNN-LSTM (Tan et al., 2022) employed CNN to extract local

features from the data before feeding them into the LSTM network.

Compared to the PCA-ISSA-DAM-Bi-GRU model proposed in this

paper, CNN-LSTM functionally lacks the integration of the feature

and temporal attention mechanism DAM, as well as the utilization

of ISSA for optimizing the hyperparameters of the neural network.

Firstly, PCA-Bi-GRU model was constructed for comparative

experiments, with hyperparameter optimized through random

search. Experimental results in Table 8 indicated that its

predictive performance was slightly inferior to CNN-LSTM (Tan

et al., 2022), suggesting that the combination of CNN and LSTM

indeed enhances the feature extraction capability of the data.

Furthermore, CNN-ISSA-DAM-LSTM model was built upon

CNN-LSTM (Tan et al., 2022). Experiments revealed significant

improvement in predictive performance as shown in Table 8, which

reaffirms the effectiveness of the ISSA and DAM proposed in this

paper in enhancing the predictive functionality of the model.

TABLE 7 Predictive performance of various models.

Model
RMSE/
(mg·L−1)

MAPE NSE

ISSA-Bi-GRU 0.3424 0.0392 0.8682

IPSO-LSTM (Cao et al., 2021b) 0.3861 0.0492 0.8635

IBAS-LSTM (Sun et al., 2021) 0.3528 0.0426 0.8724

PCA-IPSO-DAM-LSTM 0.3082 0.0397 0.8963

PCA-IBAS-DAM-LSTM 0.2762 0.0324 0.9178
FIGURE 14

Iterative optimization and convergence curve for different
optimization algorithm.
TABLE 8 Predictive performance of existing models.

Model
RMSE/
(mg·L−1)

MAPE NSE

PCA-Bi-GRU 0.3701 0.0465 0.8524

CNN-LSTM (Tan et al., 2022) 0.3495 0.0358 0.8631

CNN-ISSA-DAM-LSTM 0.2474 0.0256 0.9397
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4.3.3 Comparison with IDA-GRU
IDA-GRU (Zhang et al., 2023) employed a dual attention

mechanism similar to this paper to optimize the hyperparameters of

GRU, incorporating both feature and temporal attention at the input

ends of the GRU encoder and decoder. However, its optimization

effect is inferior to the model presented in this paper. Firstly, IDA-

GRU (Zhang et al., 2023) utilized the Pearson correlation coefficient

method to select environmental factors with high correlation

coefficients with DO as input variables, whereas this paper adopts

PCA, preserving approximately 86.27% of the information from all

environmental factors. Secondly, IDA-GRU (Zhang et al., 2023) did

not employ an intelligent optimization algorithm for hyperparameter

tuning. In the comparison experiment, random search method was

used to determine its hyperparameters, but its predictive performance

still lags behind the model in this paper. This underscores the

effectiveness of the ISSA proposed in this paper in enhancing the

predictive performance of the model.
4.4 Practical application significance,
limitations, and future research prospects
of the model

This model utilized historical data from the past 24 hours to make

real-time predictions of dissolved oxygen concentration 2 hours

ahead, combined with LoRa+5G-based sensor deployment, enabling

simultaneous prediction of dissolved oxygen concentrations at

multiple points, thereby effectively forecasting the dissolved oxygen

distribution in aquaculture areas. The engineering application analysis

of the model reveals that it achieves good prediction results, effectively

guiding water quality early warning and regulation, reducing

aquaculture risks in marine ranching, and enhancing aquaculture

efficiency. However, this study has limitations in spatial dimension

prediction. The spatial distribution of dissolved oxygen was achieved

through joint multi-point prediction, and the prediction accuracy of

dissolved oxygen between points is related to the density of sensor

deployment. Moreover, due to the limited availability of observed

data, this study does not discuss the prediction performance of the

model under different weather conditions. In future research, we will

add more monitoring points in depth and attempt to employ a 3D

convolutional neural network (3D-CNN) to capture the

spatiotemporal characteristics of the data, providing more accurate

prediction results. Additionally, we will further extend the

experimental period to accumulate more data, which will be

clustered according to weather conditions before predictive

modeling for different categories, thereby enhancing the

applicability and accuracy of the model.
5 Conclusion

To enhance the accuracy, generalization, and robustness of the

dissolved oxygen prediction model in aquaculture water, this paper

constructed a data-driven dissolved oxygen prediction model that

integrates principal component analysis (PCA), dual attention

mechanism (DAM), and bi-directional gated recurrent unit (Bi-
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GRU) neural network. Furthermore, an improved sparrow search

algorithm with multi-strategy fusion (ISSA) is introduced for

hyperparameter optimization. The main conclusions are as follows:
1. By applying PCA, the 13-dimensional input is reduced to 7

dimensions, eliminating redundancy and correlation

among variables. This enhances the feature representation

power of the input data for the prediction model and

reduces its complexity. The fusion of DAM and Bi-GRU

strengthens the feature extraction capability of the

prediction model. The introduction of the feature

attention mechanism in the encoder stage adaptively

assigns weights to different environmental factors at each

time step, while the time attention mechanism in the

decoder stage dynamically adjusts the weights of the

influence of different time steps on the current dissolved

oxygen concentration. This enables the model to better

capture the key information in the time series data.

Combined with Bi-GRU, it simultaneously mines the

sequential and inverse sequential correlations in the time

series, comprehensively extracting temporal features.

2. The hyperparameters of the Bi-GRUmodel are searched and

optimized using ISSA to enhance the model’s optimal

learning capability. The Gauss chaotic sequence is

introduced into the population initialization, and the

updating strategy of the discoverer’s position is improved

by referencing the salp swarm algorithm. Meanwhile, the

updating strategy of the follower’s position is optimized by

drawing inspiration from the chicken swarm algorithm, and

the Cauchy-Gaussian mutation strategy is incorporated to

enhance the convergence performance of the SSA algorithm,

balancing its global search and local exploitation capabilities.

3. The root mean square error (RMSE), mean absolute

percentage error (MAPE), and Nash-Sutcliffe efficiency

(NSE) of the proposed PCA-ISSA-DAM-Bi-GRU model

for predicting dissolved oxygen are 0.2136, 0.0232, and

0.9427, respectively. The ablation study demonstrates that

each component of the hybrid model contributes to

enhancing the predictive performance of the model. By

comparing the results with traditional baseline approaches,

it is evident that each module in the hybrid model provides a

more significant optimization effect on prediction accuracy.

4. By combining the proposed model with wireless sensor

deployment, it can effectively predict the spatio-temporal

distribution characteristics of dissolved oxygen in

aquaculture water, enabling dynamic monitoring of water

quality in marine ranching and intelligent analysis of the

aquaculture environment, thereby facilitating the

construction of modern marine ranching.
In summary, the model proposed in this paper, combined with

wireless sensor deployment, can effectively predict the spatio-temporal

distribution characteristics of dissolved oxygen in aquaculture water

bodies. This enables dynamic monitoring of water quality in marine

ranching and intelligent analysis of the aquaculture environment,

thereby contributing to the modernization of marine ranching
frontiersin.org

https://doi.org/10.3389/fmars.2024.1473551
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Liu et al. 10.3389/fmars.2024.1473551
construction. The model provides a powerful tool for managing and

optimizing aquaculture operations, ensuring sustainable development

and improved productivity in marine ranching systems.
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