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Introduction: Suspended particulate matter (SPM) is a critical indicator of water

quality and has a significant impact on the nearshore ecological environment.

Consequently, the quantitative evaluation of SPM concentrations is essential for

managing nearshore environments and planning marine resources.

Methods: This study utilized Sentinel-2’s single band and water index variables to

develop a remote sensing inversion model for oceanic SPM in the estuary of the

Pinglu Canal in China. Six machine learning algorithms were employed: K-

nearest neighbor regression (KNNR), AdaBoost regression (ABR), random forest

(RF), gradient boosting regression (GBR), extreme gradient boosting regression

(XGBR), and light generalized boosted regression (LGBM). The model with the

optimal performance was then selected for further analysis. This research applied

the established model to investigate the spatial-temporal dynamics of SPM from

2021 to 2023.

Results: The findings indicated that (1) the XGBR algorithm exhibited superior

performance (R2 = 0.9042, RMSE = 3.0258 mg/L), with LGBM (R2 =0.8258, RMSE

= 4.0813 mg/L) and GBR (R2 = 0.823, RMSE = 4.3477 mg/L) also demonstrating

effective fitting. However, the ABR, RF, and KNNR algorithms produced less

satisfactory fitting results. (2) Additionally, the study revealed that the

combination of input variables in the XGBR algorithm was more accurate than

single-variable inputs. (3) The contribution of single-band variables to the XGBR

algorithm surpassed that of water index variables, with B12, B4, and B11 emerging

as the top three influential variables in the model. (4) The annual SPM

concentration in the study area exhibited an overall increasing trend, while its

spatial distribution generally decreased from the estuary toward the Maowei Sea

and Qinzhou Bay.
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Discussion: The combination of Sentinel-2 data and XGBR model has shown

good performance in retrieving SPM concentration, providing a new method

and approach for large-scale estimation of SPM concentration.
KEYWORDS

machine learning algorithm, Sentinel-2, suspended particulate matter, Pinglu Canal,
Maowei Sea
1 Introduction

The suspended particulate matter (SPM) concentration serves

as a pivotal parameter in the evaluation of water quality and plays a

significant role in coastal ecosystems (Chen et al., 2015; Kratzer

et al., 2020). The concentration of SPM directly correlates with the

optical properties of water, including transparency, turbidity, and

color. These properties, in turn, influence the distribution of

underwater light fields, imposing limitations on the growth and

reproductive processes of primary productivity, such as

phytoplankton (Li et al., 2019; Zhang et al., 2021; Wang et al.,

2022a; Wang et al., 2022). Concurrently, SPM serves as a crucial

medium for the transport and transformation of waterborne

pollutants, facilitating the cycling of nutrients, organic

contaminants, and heavy metals (Cheng et al., 2019; Liu et al.,

2019). Consequently, changes in SPM concentration may have

adverse effects on nearshore ecosystems. The spatial distribution

characteristics of SPM plays a pivotal role in the analysis of erosion

and sedimentation processes in estuarine and coastal regions,

serving as the primary influencing factor in topographic and

geomorphic evolution (Ji et al., 2018; Ma et al., 2024). Thus, the

quantitative assessment of spatiotemporal dynamic changes in SPM

concentration holds great significance for marine engineering

construction, nearshore marine environmental management, and

marine resource planning.

Traditionally, SPM monitoring involves field sampling and

subsequent laboratory analysis. This method provides precise

SPM concentration information at specific locations. However,

this approach demands considerable human resources, material

inputs, and financial investments, and its monitoring scope is

limited, hampering the acquisition of spatial distribution trends in

SPM variations (Li et al., 2006). In light of advancements in remote

sensing satellite technology, coupled with the rapid development of

image processing technology, remote sensing technology has

brought us a novel monitoring approach (Yang et al., 2022; Li

et al., 2023; Li et al., 2024b; Saha and Pal, 2024). Compared to

traditional methods, remote sensing offers distinct advantages, such

as streamlined data acquisition, well-established processing

techniques, and the capacity for large-scale monitoring.

Consequently, this technique has become a crucial technical tool

in the field of offshore water quality monitoring and has been

applied extensively in water monitoring (Guang et al., 2007;
02
González Vilas et al., 2024). Numerous scholars have conducted

extensive research on SPM remote sensing quantitative inversion

methods employing various remote sensing data sources. Ocean

color satellites such as Sea-Viewing Wide Field-of-View Sensor

(SeaWiFS) (Ramaswamy et al., 2004), Medium Resolution Imaging

Spectrometer (MERIS) (Moore et al., 1997), Moderate Resolution

Imaging Spectroradiometer (MODIS) (Miller and Mckee, 2004),

and Geostationary Ocean Color Imager (GOCI) (Liu et al., 2013)

have successfully analyzed the SPM distribution in coastal waters.

Nevertheless, their utility in smaller-scale areas such as estuaries,

rivers, and lakes is constrained due to limited spatial resolution

(Yan et al., 2024). Several medium-resolution remote sensing

satellites designed for land applications have been used to study

SPM concentrations, and notable progress has been made.

Noteworthy examples include Williamson and Grabau (1974)

investigation using measured data and Landsat series data and

Wang et al. (2022b) successful mapping of total suspended

matter concentrations in major river mouths using Landsat5 TM

and Landsat8 OLI images. Additionally, Lu et al. (2019) established

a suspended matter inversion model for Donghu Lake using

48 Landsat satellite images spanning from 1973 to 2018,

thereby analyzing the long-term trends in total suspended

solids concentration.

In comparison to medium-resolution satellites such as the

Landsat series, high-resolution satellites have the potential to

construct more refined SPM models owing to their superior

spatial resolution. High-spectral-resolution satellites such as EO-1

(Yan et al., 2006; Liu et al., 2021), HJ-1A/B (Xiao et al., 2012; Xing

et al., 2014; Yu et al., 2020), and Zhuhai 1 (Yin et al., 2021) have all

been applied in the field of SPM. However, these high-resolution

satellites often fail to simultaneously meet the demands for both

high spatial and temporal resolution while missing key spectral

bands essential for SPM inversion. Compared to optical sensors,

Synthetic Aperture Radar (SAR), Polarimetric SAR, and Unmanned

Aerial Vehicle (UAV) LiDAR exhibit higher spatial resolution when

acquiring image data (Lu et al., 2024; Tang et al., 2023; Li et al.,

2024a). However, monitoring large areas requires substantial

human and material resources for these sensors, thus posing

challenges to their widespread adoption in practical applications.

With a spatial resolution of up to 10 m, a revisit period of 5 days,

and a spectral range covering visible light, near-infrared, and

shortwave infrared, Sentinel-2 presents promising prospects for
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SPM inversion. Pahlevan et al. (2017) employed Sentinel-2 data for

the remote sensing inversion of total suspended solids, achieving

high-quality inversion products. Li et al. (2021) conducted a

comparative analysis of commonly used satellites, including

MODIS, Landsat-8, Sentinel-2, and HJ-1B, finding Sentinel-2 to

be the most suitable for monitoring total suspended matter in the

Yangtze River mainstream. Moreover, Li et al. (2023) used remote

sensing image data from Landsat-8, Sentinel-2, and GF-1 to invert

suspended solid concentrations in the Three Gorges Reservoir area

of the Yangtze River and Changshou Lake and concluded that

Sentinel-2 exhibited the highest accuracy. These studies collectively

demonstrate that the utilization of Sentinel-2 data can yield a robust

model for SPM inversion. Furthermore, a comparative analysis of

different remote sensing data sources indicates that Sentinel-2 data

excel in SPM inversion, underscoring its considerable advantages

and potential for application in SPM inversion. However, further

validation of its effectiveness in this specific study area is warranted.

Currently, various methods, including analytical methods

(Dekker and Peters, 1993), semianalytical methods (Jiang et al.,

2023), and empirical methods (Meng et al., 2011), are employed for

SPM remote sensing inversion. The analytical approach relies on

bio-optical and radiative transfer models to simulate the absorption

and backscattering coefficients in relation to remote sensing data

and water quality parameters (Pan and Ma, 2008). This method,

while accurate, necessitates measuring the inherent optical

properties of water components, resulting in complex algorithms

with limited applications (Lee et al., 1994). Semianalytical methods

combine spectral characteristics with statistical models to achieve

water quality parameter inversion (Koponen et al., 2002). Shun et al.

(2019); Jiang et al. (2021), and Jiang et al. (2023) have successfully

estimated the suspended sediment concentration in water bodies

using semi-analytical methods. However, the construction of these

models requires the measurement of multiple optical parameters of

water bodies, making the models relatively complex. Empirical

methods, on the other hand, base SPM inversion on measured

SPM data and remote sensing data (Chen et al., 2015). These

methods are simpler than traditional methods and have become

the primary approach for SPM inversion. Numerous scholars have

successfully utilized empirical methods for SPM remote sensing

monitoring in inland and marine waters, yielding favorable results.

The established empirical models include single-band models

(Chen et al., 2015; Gao et al., 2019), band ratio models

(Wirabumi et al., 2021; Zhong et al., 2022), and multiple

regression models (Molkov et al., 2019). However, for optically

complex regions such as estuaries and nearshore waters, linear

models may not be suitable when applied in isolation. The ongoing

integration of computer and remote sensing technology has

introduced machine learning algorithms as a promising direction

for SPM inversion due to their ability to handle complex

nonlinearities. Traditional machine learning algorithms, such as

Support Vector Regression (SVR), Random Forest (RF), and K-

Nearest Neighbor Regression (KNNR), have been widely applied in

the field of water quality remote sensing inversion and have been

successfully used in estimating SPM concentrations in most cases

(Chen et al., 2019; Hu et al., 2020; Kolluru and Surya, 2022; Liu

et al., 2021; Wang et al., 2022b). These research findings
Frontiers in Marine Science 03
demonstrate the significant potential of machine learning

algorithms in SPM inversion. In recent years, thanks to the rapid

development of computer technology, an increasing number of

novel machine learning algorithms have been introduced into the

inversion study of SPM concentrations in water bodies

(Balasubramanian et al., 2020; Duan et al., 2022; Kolluru and

Surya, 2022; Pahlevan et al., 2022). Gradient boosting algorithms,

which enhance model accuracy by transforming weak learners into

strong learners, encompass various models such as ABR, GBR,

XGBR, and LGBM. As demonstrated by studies conducted by Chen

et al. (2022); Duan et al. (2022), and Wen et al. (2024), these

algorithms exhibit a reduced sensitivity to the quality of training

data, particularly when applied to SPM inversion, resulting in

favorable prediction outcomes. However, further in-depth

research is still needed to determine whether these new gradient

boosting algorithms outperform traditional machine learning

methods (such as KNNR and RF) in prediction performance and

which algorithm is more suitable for SPM inversion. Additionally,

numerous scholars conduct research on SPM inversion using

machine learning algorithms, their focus primarily lies in areas

such as rivers, estuaries, and coastal seas. Despite the fact that

scholars such as Sipelgas et al. (2006); Feng et al. (2014), and Song

et al. (2018) have utilized traditional empirical regression models to

analyze SPM in engineering construction areas and achieved

promising results, studies attempting to apply machine learning

inversion methods to observe SPM variations in engineering

construction, especially in artificial canal construction, are

exceedingly scarce. Consequently, how effective are different

machine learning algorithms in inverting SPM in coastal

engineering construction areas, particularly in the estuary regions

of canal construction? Can they efficiently monitor the trends in

SPM concentration changes? These questions necessitate further

exploration and validation.

The Maowei Sea’s nearshore area is a crucial mangrove

conservation region. This area boasts abundant marine resources

and biodiversity and serves as a prominent natural habitat for near-

river oysters in southern China. It also supports marine aquaculture

products such as green crabs, groupers, and sea bass. The Maowei

Sea is a multifunctional semienclosed bay that integrates mangrove

conservation, aquaculture, tourism, and port activities. In recent

years, the Maowei Sea’s marine economy has improved, with the

construction of the Pinglu Canal serving as a key development. The

Pinglu Canal project originates at Pingtang River Estuary in

Hengzhou City, Nanning, and extends south along the

mainstream of Qin River through Qinzhou City into Maowei Sea

in the Beibu Gulf, with a total length of approximately 140 km. It

serves as a waterway connecting rivers to the sea. Specifically, the

Pinglu Canal involves two segments of the estuary waterway within

the study area, namely the urban segment of Qin River and the

offshore segment of the estuary. The primary channel construction

activity in this area during the project involves dredging, which is

carried out using dredgers to excavate and dredge the underwater

channel. During construction, activities such as channel dredging,

sediment transfer, and marine waste disposal will generate

suspended solids. As the concentration of suspended solids

increases, it may adversely affect organisms in the surrounding
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ecological environment, including mangroves, oysters, and green

crabs. Therefore, monitoring of SPM in the study area is of

particular importance. However, study on changes in SPM

concentration in this region, especially those resulting from the

construction of the Pinglu Canal, is currently extremely rare and

scarce. However, study focusing on the changes in SPM

concentration in this region, particularly those induced by the

construction of the Pinglu Canal, remains extremely scarce.

Meanwhile, no scholars have yet attempted to obtain the

distribution of SPM concentrations in this area using machine

learning methods. Based on this, the present study aims to evaluate

the accuracy of different algorithms in estimating SPM

concentrations using four novel machine learning algorithms and

two traditional ones. Based on this evaluation, the optimal machine

learning model is selected to estimate SPM concentrations in the

study area. This paper has three main research objectives: (1) to

explore the applicability of different novel machine learning

algorithms and traditional machine learning algorithms in SPM

inversion; (2) to analyze the impact of different input variables on

the accuracy of the inversion model; and (3) to understand the

spatio-temporal trends of SPM concentrations under the influence

of the construction of the Pinglu Canal project.
Frontiers in Marine Science 04
2 Materials and methods

2.1 Study area

TheMaowei Sea is located in the northern part of the Beibu Gulf of

Guangxi (108°28′E-108°37′E, 21°48′N-21°55′N), with a total area of

approximately 135 km2. It measures approximately 12.6 km in width

from east to west and approximately 18 km in depth from north to

south (Figure 1). The region is situated in a subtropical monsoon zone

influenced by the southeast monsoon and experiences an average

annual precipitation of 1658 mm. There are distinct seasonal variations

characterized by dry and wet periods: from May to September, more

than 70% of the annual rainfall occurs, while the rainfall is low from

October to April of the following year (Lu et al., 2022). The study area

consists primarily of three rivers that flow into the sea, namely, the Qin

River, Dalan River, andMaoling River. Annually, these rivers discharge

significant amounts of fresh water and sediment directly into the bay.

In 2021, China explicitly proposed a plan to advance the construction

of the Pinglu Canal.The Pinglu Canal starts at the mouth of the

Pingtang River in Nanning, passes through Qinzhou city along the Qin

River, traverses the Maowei Sea, and then enters the Beibu

Gulf (Figure 1D).
FIGURE 1

Location of the study areas (A, B), sample points (C), and the Pinglu Canal and its affected areas (D).
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2.2 Data sources

2.2.1 In situ measurements
In November 4, 2023, a field survey was conducted, with 51

sampling points established at the mouth of the Qin River, Dalan

River, Maoling River, Maowei Sea area, and Qinzhou Port, as

depicted in Figure 1C. The weather during the field sampling was

clear, with calm water surfaces. The collection process of water

samples strictly adhered to the Specification for Offshore

Environmental Monitoring (HJ 442-2008) and the Technical

Specification for Offshore Environmental Monitoring Part 3:

Offshore Seawater Quality Monitoring (HJ 442.3-2020). Seawater

was collected at a depth of 0.5 m below the surface, then sealed and

transported to the laboratory for water quality testing to determine

the concentration of Suspended Particulate Matter (SPM).

According to the Specification for Marine Monitoring - Part 4:

Seawater Analysis (GB 17378.4-2007), the gravimetric method was

employed to detect SPM. This involved taking a 2 L water sample

and passing it through a 0.45 mm microporous filter membrane.

After drying at a constant temperature, the weight of SPM retained

on the filter membrane was measured using an analytical balance.

The concentration of SPM in the water was then calculated based on

the volume of the water sample. Additionally, each sampling point

was recorded with longitudinal and latitudinal coordinates using a

GPS positioning device.

2.2.2 Remote sensing data
Sentinel-2 is a high-resolution multispectral satellite launched

by the European Space Agency (ESA) that consists of 2A and 2B

satellites. The Multi-Spectral Instrument (MSI) sensor carried by

the Sentinel-2 satellite is capable of capturing images in 13 different

spectral bands, covering a range from visible light to shortwave

infrared. These images have varying spatial resolutions. Table 1

highlights the main characteristics of Sentinel-2 images. Compared
Frontiers in Marine Science 05
to Landsat-8, Sentinel-2 has superior spatial and temporal

resolutions, making it advantageous for monitoring terrestrial

ecology, inland rivers, and coastal ecological environments (Cao

et al., 2023). For this study, Sentinel-2 images from the European

Aviation Copernicus Data Center (https://dataspace.copernicus.eu/

browser/) were utilized, specifically the L2A level products.

Compared to the L1C class, Sentinel-2 L2A data have undergone

preprocessing, including geometric correction, radiometric

correction, and atmospheric correction.

Due to the influence of cloud cover and access time, it was

difficult to synchronize the field sampling time with the imagery.

Therefore, in this study, we obtained an image from November 1,

2023, which was close to the SPM sampling time and had a cloud

cover below 10%, for spatial matching. Additionally, the field

sampling was conducted during the dry season in Maowei Sea,

while the Pinglu Canal construction officially commenced in 2022.

To investigate the impact of the Pinglu Canal construction project

on SPM concentrations, we selected eight satellite images from the

dry seasons of Maowei Sea between 2021 and 2023, with cloud cover

below 10% and ensuring that the study area was not obscured by

clouds. These images cover three critical periods: before the

commencement of the Pinglu Canal construction, the initial

phase of construction, and the full-scale construction. The specific

usage of these satellite images is detailed in Table 2. SNAP software

was used to resample L2 A-level products, convert Sentinel-2 bands

to a resolution of 10 m using the nearest neighbor method, and

extract single-band information, based on the positional

information of the sampling points, obtained their image

spectra (Figure 2).
2.3 Methods

2.3.1 Research technique
This study utilized Sentinel-2 image band data and field-

measured SPM data to estimate the SPM concentration in the

ocean at the mouth of the Pinglu Canal. Six machine learning

methods were employed to determine the spatiotemporal
TABLE 1 Sentinel-2 spectral variables list.

Band Introduction
of Bands

Central
Wavelength (mm)

Spatial
Resolution (m)

B1 Coastal aerosol 0.443 60

B2 Blue 0.490 10

B3 Green 0.560 10

B4 Red 0.665 10

B5 Vegetation red edge 0.705 20

B6 Vegetation red edge 0.740 20

B7 Vegetation red edge 0.783 20

B8 NIR 0.842 10

B8a Narrow NIR 0.865 20

B9 Water vapor 0.945 60

B10 SWIR-Cirrus 1.375 60

B11 SWIR 1.610 20

B12 SWIR 2.190 20
TABLE 2 Utilization of sentinel-2 data for analyzing the spatio-temporal
distribution of SPM.

Number Image Level Date

1 L2A 2021.11.26

2 L2A 2021.12.06

3 L2A 2022.12.31

4 L2A 2023.01.20

5 L2A 2023.01.25

6* L2A 2023.11.01

7 L2A 2023.11.21

8 L2A 2023.11.26
*Indicating its simultaneous use for matching with ground samples and establishing a model.
frontiersin.org

https://dataspace.copernicus.eu/browser/
https://dataspace.copernicus.eu/browser/
https://doi.org/10.3389/fmars.2024.1473104
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Mo et al. 10.3389/fmars.2024.1473104
distribution characteristics of the SPM. The specific technical

process of this study is illustrated in Figure 3 and is as follows:
Fron
1. Preprocessing of Sentinel-2 data and determination of SPM

concentrations via the gravimetric method.

2. Extraction of feature variables from Sentinel-2 data,

including single-band variables and water index variables,

and variable importance analysis.

3. The SPM test dataset was divided randomly into 80% for

training and 20% for testing. Six machine models were

evaluated using R2 and RMSE to select the most suitable

machine learning model.

4. An SPM concentration distribution map was created using

the best machine learning algorithm model.
2.3.2 Model variable selection
Research has demonstrated that multi-band indices exhibit

greater sensitivity than single-band indices (Gao et al., 2020). To

improve the accuracy of the inversion model, a water index sensitive

to SPM was incorporated in addition to the single band. This study

employed two sets of variables and their combinations for analysis:

the 12 single bands extracted from Sentinel-2 (excluding the cirrus

band B10) and the 7 water body indices calculated using the band

operation tool in ENVI software (Table 3). The water body indices

included the normalized difference water index (NDWI), modified

normalized difference water index (MNDWI), enhanced water

index (EWI), revised normalized difference water index

(RNDWI), normalized difference turbidity index (NDTI), simple

ratio (SR), and simple ratio water color (SRWC).
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2.3.3 Methods
To assess the differences in performance among various

machine learning algorithms, this study selected six different

algorithms, namely, KNNR, ABR, RF, GBR, XGBR, and LGBM,

for estimating SPM concentration.

2.3.3.1 K-nearest neighbor regression

The KNNR algorithm is a nonparametric algorithm that

operates based on distance measurements. It is renowned for its

simplicity in understanding and implementing. The regression

principle of KNNR mirrors that of classification (Altman, 1992).

However, KNNR has been extended to the field of regression based

on the classification foundation. When conducting regression

analysis using this algorithm, it becomes essential to locate the k

nearest neighbors of a sample. The sample attributes are then

assigned by averaging the attributes of those neighbors, with

different weights assigned based on the degree of influence of

each neighbor on the sample (Zhang and Zhou, 2007). The

accuracy of KNNR is dependent on the number of nearest

neighbors, k. If k is set too small, the prediction result will be

sensitive to noise. Conversely, setting k too large will result in the

nearest neighbor list containing an excessive number of

nonapproximate samples, leading to accuracy difficulties and

significant errors (Jia et al., 2014).

2.3.3.2 AdaBoost regression

ABR is an iterative algorithm that builds strong learners by

integrating weak classifiers. During training, the method

continuously updates the distribution weights of the samples and

iterates to improve the prediction output probability (Lu et al.,
FIGURE 2

presents the remote sensing reflectance (Rrs) spectra of the sampling points obtained using Sentinel-2 imagery.
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2015). The main process involves iteratively selecting a training set

from the samples to train the model and assigning weights. In each

subsequent training iteration, a greater weight is given to

unclassified samples. After each iteration, ABR assigns weights to

weak classifiers based on an optimized decision tree classifier—

higher weights correspond to better classification performance

(Liang et al., 2013).

2.3.3.3 Random forest

The RF algorithm was proposed by Breiman (2001) in 2001.

This algorithm employs decision trees as base learners and employs

the bagging method to randomly sample them, generating multiple

subsets for constructing a regression tree and obtaining the final

result (Cheng et al., 2023). RF randomly sample and return the

original sample set, reusing some data while others are left unused.
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The unused data, known as out-of-bag data, are employed to

evaluate the performance of the RF algorithm models. The RF

algorithm uses out-of-bag data estimation methods to calculate the

error generated by the model, and the importance of each input

factor is determined by the estimation error.

2.3.3.4 Gradient boosting regression

The GBR is the regression form of GBDT. GBR initially

constructs a regression tree with equal weights based on the

original data. This approach estimates different data points during

each training session, which effectively reduces overfitting. The

model progressively minimizes the loss function and expedites

convergence, achieving local or global optimal solutions. Through

continuous iteration, the predictions are combined and averaged to

obtain the final solution (Friedman, 2001).
FIGURE 3

Research technical route for estimation of SPM.
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2.3.3.5 Extreme gradient boosting regression

XGBR is a novel gradient boosting decision tree model that was

proposed by Chen and Guestrin (2016) in 2016. It combines the

cause-based decision tree (CBDT) and gradient boosting machine

(GBM) methods, resulting in enhanced problem-solving

capabilities. XGBRs have gained widespread adoption across

various industries. Its approach involves utilizing Taylor

expansion for more efficient function minimization. Additionally,

regularization terms are incorporated to improve the model’s

generalization ability and prevent overfitting.

2.3.3.6 Light generalized boosted regression

LGBM is an enhanced model based on GBDT proposed by

Microsoft in 2017 (Zhou et al., 2019b). This algorithm excels in

handling massive amounts of data processing and offers several

advantages, including short running time, low memory

consumption, and high accuracy. The underlying mechanism of the

LGBM algorithm involves the linear combination of mweak regression

trees to form a strong regression tree. During the generation process of

each tree, a random selection of samples and data features is employed

for training, ensuring tree diversity. The algorithm also incorporates

leaf segmentation, leading to the generation of more complex trees (Gu

et al., 2020). Consequently, LGBM may experience issues of

overcomplexity and overfitting during operation. Therefore, it is
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crucial to reduce model complexity and prevent overfitting by

limiting the tree depth and number of leaves.

2.3.4 Model establishment and evaluation
The remote sensing inversion of SPM concentrations involves

three steps: training set construction, model training, and model

inversion. In this study, 80% of the samples (40) were utilized to

train the model, while 20% of the samples (11) were used for testing

purposes. When constructing different machine learning model

parameters, initial values are first set according to the

characteristics of each model. Subsequently, a grid search method

is util ized to optimize the hyperparameters. Through

hyperparameter optimization, the optimal parameters for different

machine learning algorithms are obtained. Based on these optimal

parameters, various machine learning models are constructed. The

optimal parameters for the six machine learning models are

presented in Table 4. Initially, 19 variables (12 single-band

variables and 7 water index variables) were input into six

machine learning models for training. The optimal prediction

model was subsequently determined based on the coefficient of

determination (R2) and root mean square error (RMSE). To

evaluate the impact of different variable characteristics on SPM

modeling, different variable combinations were established.

Through comparisons of different variable combinations, the

optimal input variable was identified to enhance the accuracy of

the SPM concentration estimation.

The performance of the model was evaluated using the R2

coefficient and RMSE. R2 represents the degree of fit between the

predicted and measured values. Higher R2 values indicate better fit

and greater accuracy. On the other hand, the RMSE gauges the

deviation between the predicted and measured values, with lower

deviations indicating higher model accuracy (Tan et al., 2023). The

formula for the RMSE is as follows:

R2 = 1 −o
n
i=1(yi − ŷ i)

2

on
i=1(yi − �yi)

2 (1)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − ŷ i)
2

n

s
(2)

where yi is the observed value of the water quality parameter

concentration at the sampling point, �yi is the average value of the

water quality parameter concentration at the sampling point, and ŷ i
TABLE 4 Hyperparameters of different machine learning models in this study.

Machine learning model learning_rate
epsilon

min_samples_leaf
min_child_weight

Gamma
random_state

max_depth
max_features

n_estimators
n_neighbors

KNNR NA NA NA NA 5

ABR 0.01 NA 0 NA 50

RF NA 5 0 15 100

GBR 0.10 1 NA 1 100

XGBR 0.10 3 0.1 5 150

LGBM 0.05 20 NA 2 100
TABLE 3 Water indices details.

Indices Features Formulas References

NDWI Normalized Difference
Water Index

(B3−B8)/
(B3+B8)

McFeeters (1996)

MNDWI Modified Normalized
Difference Water Index

(B3 – B11)/
(B3+ B11)

Xu (2006)

EWI Enhanced Water Index (B3-B8-B11)/
(B3+B8+B11)

Luo (2015)

RNDWI Revised Normalized
Difference Water Index

(B11 – B4)/
(B11+ B4)

Luo (2015)

NDTI Normalized Difference
Turbidity Index

(B4-B3)/
(B4+B3)

Lacaux
et al. (2007)

SR Simple Ratio B4/B8 Birth and
McVey (1968)

SRWC Simple Ratio Water Color B4/B2 Zarco-Tejada and
Ustin (2001)
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is the predicted value of the water quality parameter concentration

at the sampling point.
3 Results

3.1 Modeling results, assessment
and comparison

Figure 4 and Table 5 illustrate the accuracy evaluation results of

the SPM inversion using the six machine learning algorithm models.

The six machine learning models utilized 19 input variables,

including 12 single-band variables and 7 water body indices. By

comparing the R2 and RMSE values, it becomes apparent that the

XGBR model exhibits the best fit among the six machine learning

models, with R2 values above 0.9042 in both the training and testing

stages. The LGBM was the second most common model for fitting
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(R2 = 0.8258, RMSE=4.0813 mg/L). The GBR also demonstrated a

good fitting effect (R2 = 0.8023, RMSE=4.3477 mg/L). Although the

ABR model exhibited a high R2 (R2 = 0.9761) during the training

phase, the R2 (R2 = 0.5420) during the testing phase fell short of

expectations. Additionally, RF and KNNR performed poorly, with R2

values of 0.6569 and 0.7146, respectively.

This study employs the XGBR machine learning model to test

the accuracy of three different input variables: single-band variables,

water index variables, and all variables. As indicated in Table 6, both

the R2 values of the single band variable (F1) and the water index

variable (F2) exceeded 0.7144. Among them, the single-band input

variable (R2 = 0.7321) slightly outperforms the water index variable

(R2 = 0.7144), indicating that both the single-band variable and the

water index variable can be employed to predict the SPM

concentration in this study area. By integrating the single band

index and water index (F3) into the XGBR model, the model

exhibited the strongest fit and enhanced the prediction accuracy
FIGURE 4

Performances of the six different models for SPM estimation on the training set (blue) and test set (red).
TABLE 5 Accuracy comparison results of different models.

Machine learning model
Training set (80%) Testing set (20%)

R2 RMSE (mg/L) R2 RMSE (mg/L)

K-nearest neighbor regression (KNNR) 0.6530 6.5783 0.7146 5.2235

Adaboost regression (ABR) 0.9761 1.7274 0.5420 6.6170

Random forest (RF) 0.4452 8.3185 0.6569 5.7270

Gradient boosting regression (GBR) 0.9610 2.2067 0.8023 4.3477

Extreme gradient boosting regression (XGBR) 0.9489 2.5233 0.9042 3.0258

Light generalized boosted regression (LGBM) 0.9835 1.4364 0.8258 4.0813
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of the XGBR model for the SPM concentration in the study area (R2

= 0.9042, RMSE=3.0258 mg/L).
3.2 Variable importance

The XGBR algorithm possesses a unique capability to discern

the significance of input variables, where a higher importance of a

variable translates into a more pronounced contribution to the

inversion of SPM concentration. In this study, we incorporated all

input variables into the XGBR model to thoroughly analyze and

evaluate the importance of each feature variable during the SPM

concentration inversion process. The features are sorted in

descending order according to the intensity of importance, with

their contribution represented by the F score. The results, displayed

in Figure 5, reveal that the 5 variables with the highest contributions

to the SPM concentration inversion model are all single-band

variables: B12, B4, B11, B3, and B6, which span visible light and

the NIR to the SWIR. The subsequent variable of importance is the

NDTI, which denotes the normalized turbidity index. Notably,

among the top ten variables in terms of importance, nine are

single-band variables, indicating their substantial contribution to

the SPM concentration inversion model.
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3.3 Spatio-temporal evolution of the
SPM concentration

For comparative analysis of the trends in SPM concentrations,

we divided the eight images obtained between 2021 and 2023 into

three groups based on dry season characteristics. Then, using the

SPM inversion model constructed based on the XGBR algorithm,

we calculated the pixel averages for Sentinel-2 during the dry

seasons of 2021, 2022, and 2023, respectively, and plotted the

average SPM concentration distribution map for the dry seasons

in the study area from 2021 to 2023 (Figure 6). As shown in

Figure 6, the SPM concentration in the study area ranges from 1 to

50 mg/L, with most areas having concentrations below 10 mg/L.

The average SPM concentration during the dry season increased

from 3.06 mg/L in 2021 to 3.96 mg/L in 2022, and further rose to

4.85 mg/L in 2023, showing a significant upward trend overall. In

terms of spatial distribution, the SPM concentration generally

decreases gradually from the inner bay to the outer bay. The

study results indicate that in 2021, the SPM concentration in

most areas was below 3 mg/L, which was relatively low overall;

specifically, the SPM concentration in the inner sea of Maowei Sea

was slightly higher than that in the outer bay, while higher

concentrations were observed in the water bodies near oyster
TABLE 6 Performance of the XGBR model using different numbers of variables.

Input variables
Training set (80%) Testing set (20%)

R2 RMSE (mg/L) R2 RMSE (mg/L)

Individual spectral bands (F1) 0.9442 2.7747 0.7321 4.0403

Water indices (F2) 0.9346 2.9201 0.7144 5.0341

All indices (F3) 0.9489 2.5233 0.9042 3.0258
FIGURE 5

Order of selected variable importance of SPM in this study area.
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rafts. By 2022, the general trend of SPM concentration was a

decrease from north to south, with higher concentrations

observed at the mouths of the Qin River and Dalan River, as well

as along the coastal areas of Fangchenggang Industrial Zone,

basically maintained within the range of 5 to 6 mg/L. In 2023, the

SPM concentration fluctuated significantly, with concentrations in

nearshore areas higher than those in offshore areas; particularly, the

SPM concentration at the mouth of the Qin River increased

significantly, generally exceeding 10 mg/L, and even reaching

above 30 mg/L in upstream areas of the river mouth.

To further investigate the changes in SPM concentration across

the different zones, we selected three estuary areas of the Maowei

Sea estuary and five areas affected by the Pinglu Canal for analysis.

These included the Qin River estuary, Dalan River estuary, Maoling

River estuary, marine protected area, mangrove natural area, fishing

area, tourist area, and urban sea area (Figure 1D). The SPM

concentration in each partition was calculated as the average

value of all the effective grid data in that partition, as shown in

Figure 6. Figure 7 illustrates the trend of the annual SPM

concentration changes in each zone. From 2021 to 2023, the SPM

concentration in all zones, except for the marine protected area,

exhibited an upward trend. Among the subregions, the Qin River

Estuary experienced the largest change in SPM concentration from

2022 to 2023, with an increase from 3.55 mg/L in 2021 to 26.71 mg/

L in 2023, representing an annual increase of nearly 20 mg/L.
4 Discussion

4.1 Selection and importance analysis of
the feature parameters

With the advancement of multispectral remote sensing satellites,

numerous scholars have developed models to estimate SPM

concentrations based on band information from satellite data

sources such as MODIS (Feng et al., 2014), GOCI (Chu et al.,

2022), and Landsat-8 (Wang et al., 2018). However, relying solely
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on input variables of the same category may not capture all necessary

information, resulting in suboptimal model performance (Chen et al.,

2022). For instance, Maniyar et al. (2023) developed a water body

index based on the Sentinel-2 band to estimate the total suspended

sediment concentration in the Belize coastal lagoon, achieving an

accuracy of R2 = 0.82. Wu et al. (2023) employed 13 bands of

Sentinel-2 images as input variables in a machine learning model but

achieved less satisfactory results (R2 = 0.534). The accuracy of models

utilizing a single category of input variables is lower than that of the

results of this study (Table 6). When adding various water indices to

the machine learning model on the basis of adding a single band, the

uncertainty caused by using one index is avoided, and the predictive

ability of the model is improved (Gao et al., 2022). Fang et al. (2019)

opted to include exponential indicators in their modeling based on a

single band and discovered that the collective involvement of multiple

variables enhanced the model’s accuracy, confirming our findings.

Based on the importance results of the input variables in this study

(Figure 5), it is evident that the single band variable is themost sensitive

to the inversion of the SPM concentration. Among the top ten

important variables, nine are single-band variables, with only one

being the water index variable. The five contributing variables are B12,

B4, B11, B3, and B6, indicating that the shortwave infrared reflectance

(SWIR), red reflectance (R), green band (G), and near-infrared band

(NIR) of the water in this study are sensitive to the SPM concentration.

E. Knaeps et al. (2015) established an inversion model through the

SWIR band and successfully generated a map of the total suspended

matter concentration. Novoa et al. (2017); Din et al. (2017), and

Qing et al. (2017) also noted that using the SWIR band can, to some

extent, help obtain the distribution characteristics of SPM

concentrations. These studies further demonstrated the usefulness of

the SWIR band for inverting SPM concentrations, supporting the

conclusions of this study. Yin et al. (2022); Zhang et al. (2023), and

Yang et al. (2023) used red light, green light, and near-infrared bands to

establish SPM inversion models and found that the models had good

accuracy, which is consistent with the results of this study. In most

cases, the emission peaks in the measured spectra are located in the G,

R, and NIR bands and are strongly correlated with SPM. Therefore,
FIGURE 6

Spatio-temporal distribution of SPM concentration.
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these bands are more sensitive to changes in SPM concentration and

have a good ability to predict SPM concentrations in the study area.

Additionally, the NDTI in the water index contributed to the inversion

of the SPM concentration (Figure 5). Using the water index as an input

variable improved the accuracy of the model (Table 6). NDTI is an

index that utilizes the reflectance of R and G. As turbidity increases, the

reflectance of R increases, while the reflectance of G decreases, allowing

for qualitative determination of turbidity levels (Virtanen et al., 2020).

This process significantly contributed to the model inversion, possibly

due to the close correlation between turbidity and SPM, with higher

turbidity indicating higher SPM concentrations (Chen et al., 2023).
Frontiers in Marine Science 12
Sankaran et al. (2023) used the spectral bands of Sentinel-2 data and

combined them with water indices such as the NDTI to confirm the

ability of these indices to plot SPM concentrations in bay waters.
4.2 Selection of the machine
learning model

Currently, although many studies utilize linear models to

forecast SPM concentrations (Chen et al., 2015; Gao et al., 2019),

linear models are ineffective at predicting SPM concentrations in
FIGURE 7

Trend chart of SPM concentration changes in various zones from 2021 to 2023.
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areas heavily impacted by human activities, such as estuaries, rivers,

and lakes (Chen et al., 2022). With the advancement of computers,

machine learning algorithms have been employed in the inversion

of SPM concentrations in lakes and nearshore waters due to their

ability to handle complex nonlinearities (Liu et al., 2021; Wang

et al., 2022b). Different machine learning algorithms and input

variables have varying effects on SPM concentration inversion

(Maniyar et al., 2023). In this study, we employ six machine

learning methods to estimate SPM concentrations based on

single-band and water index variables. Based on the inversion

results (as depicted in Figure 4 and Table 5), the XGBR model

demonstrated the best fitting effect during inversion (R2 = 0.9042,

RMSE=2.0258 mg/L). The conclusion that XGBR outperforms

other algorithms, such as RF, support vector machines, XGBR,

and deep neural networks, in the global inversion of coastal and

inland water SPM, as reported by Cao et al. (2022), is consistent

with our findings. Additionally, from Figure 4 and Table 5, it can be

observed that the XGBR model exhibits the least change in accuracy

when evaluating model performance using the test set, suggesting

its strong robustness. The XGBR model is an enhancement of the

traditional GBDT algorithm, and it has undergone extensive

optimization during the specific training process, resulting in

higher accuracy, improved flexibility, and superior performance

(Chen and Guestrin, 2016). The R2 of this model surpasses that of

Ding et al. (2022), who estimated the accuracy of suspended matter

inversion in the Maowei Sea and its estuary using a cubic

polynomial regression algorithm (R2 = 0.88). This indicates that

the XGBR model is more suitable for total suspended matter

inversion in our study area. According to Table 6, compared to a

single variable combination, combining single-band and

exponential-band variables can enhance the accuracy of SPM

remote sensing inversion and yield superior results, which aligns

with the research findings of Saberioon et al. (2020) and Fang et al.

(2019) The results of this study demonstrate the high performance

of XGBR in estimating SPM concentration, and this model holds

significant potential for application, providing a new research

direction for SPM concentration estimation.
4.3 Analysis of the spatiotemporal
evolution of the SPM concentration

Numerous studies have demonstrated that the SPM

concentration is influenced by factors such as runoff flow (Gong

et al., 2017), tidal currents (Zhang et al., 2015), and human activities

(Zhou et al., 2021). In this study, the XGBR model was used to

analyze the data, which revealed a consistent year-to-year increase in

SPM concentration, particularly near the mouth of the Qin River.

Moreover, compared with those of other areas, urban sea area and

tourist area intersected by the Pinglu Canal Channel exhibited greater

increases in SPM concentrations. These findings suggest that the

construction of the Pinglu Canal may have contributed to the

increase in SPM concentration. The Pinglu Canal commenced full-

scale construction in August 2023, with dredging being the primary

construction method in the urban segment of Qin River and the

offshore segment of the estuary. During the construction period, grab
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dredgers, chain dredgers, and cutter-suction dredgers were mainly

used for dredging and debris removal operations. Studies have shown

that activities such as channel dredging, sediment transfer, and

hydraulic fill overflow can increase the concentration of SPM in

surrounding water bodies (Xu et al., 2010). For the study area, the

volume of dredging, excavation, and hydraulic fill operations

involved in the construction of the Pinglu Canal is expected to

exceed 3000000 m3. This large-scale engineering activity has led to

a significant increase in SPM concentrations in the study area,

especially in the three key areas crossed by the Pinglu Canal—the

Qin River estuary, tourist area, and urban sea area. Mangrove wetland

ecosystems are among the sensitive areas affected by the construction

activities of the Pinglu Canal. As clearly shown in Figures 6, 7, the

SPM concentrations in the mangrove nature reserve, particularly in

the mangrove growth areas around the estuaries of the Qin River and

the Dalan River in Maowei Sea, have also increased. Fortunately, the

concentration values in these areas basically remain below 9 mg/L.

This phenomenon indicates that effective control of SPM diffusion

was implemented during the construction of the Pinglu Canal

channel, resulting in relatively minor negative impacts on the

mangrove ecosystem. The Chinese government attaches great

importance to the protection of coastal ecological environments.

The construction of the Pinglu Canal project must comply with

relevant environmental protection laws, regulations, and policy

requirements, and coordinate with relevant plans such as watershed

ecological protection plans, channel plans, or overall port plans.

According to the requirements of the “Approval Principles for

Environmental Impact Assessment Documents of Waterway

Construction Projects,” if activities such as dredging, hydraulic fill,

and mud dumping have adverse effects on water quality, specific

control measures for SPM must be clearly proposed for each

construction link. During the construction process of this project,

anti-pollution curtains were installed to effectively control the

diffusion of SPM. Additionally, studies by Capello et al. (2013); He

et al. (2013), and Chen et al. (2014) have shown that the impact of

dredging-induced SPM diffusion is limited in range and diminishes

with distance. The zone experiencing a significant increase in SPM

concentration in this study corresponds to the Qinzhou estuary

where Pinglu Canal dredging is taking place. As the distance from

the construction site increases, the magnitude of the increase in SPM

concentration decreases, ultimately leading to a negligible impact,

which aligns with the findings of previous researchers.
4.4 Uncertainty of the model evaluation
results and future research directions

The results obtained from the application of the XGBR model

for estimating SPM concentrations reveal certain spatial distribution

characteristics. Specifically, the SPM concentration exhibited a

decreasing trend as one moved from the estuary to the inner sea

of the Maowei Sea and finally to the outer bay. These findings differ

slightly from the results obtained by Ding et al. (2022), who used

optical images and microwave data to analyze the Maowei Sea. One

potential reason for the discrepancy between these two sets of results

could be the recent construction of the Pinglu Canal. This
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construction has resulted in an increase in the SPM concentration in

the Qin River and Dalan River. Furthermore, based on the XGBR

inversion model, this study revealed that the SPM concentration

along the coast of the Maowei Sea is mostly less than 10 mg/L, which

is lower than the SPM concentration in the coastal waters of Guangxi

reported by Li et al. (2020) via empirical models (20 mg/L). It is

important to note that the differences in remote sensing inversion

methods, sampling periods and collection locations could also

contribute to the variations observed in the results. Hence, it is

evident that the evaluation results of the model are influenced not

only by machine algorithms but also by external factors. Figure 4A

demonstrates that the XGBRmodel underestimates the prediction of

higher concentrations of SPM. This suggests that the applicability of

the XGBR model for inverting SPM at different concentrations may

vary, in accordance with the research findings of Maniyar et al.

(2023). Moreover, the prediction accuracy of the XGBR model in

this study (R2 = 0.9042) is lower than that of Si (2022) research,

which utilized unmanned aerial vehicle hyperspectral data in

combination with the XGBR machine algorithm (R2 = 0.93). This

indicates that different spatial resolutions can impact the accuracy of

the XGBR model. Additionally, the limited sampling point data used

in this study, along with the potential inconsistency between the

sampling time and image acquisition time, undermines the accuracy

of SPM estimation. Future research should focus on improving the

following areas: (1) increasing the number of SPM samples to

provide more authentic and reliable data; (2) collecting in situ

spectral data to reduce uncertainty resulting from inconsistent

sampling times and image acquisition times; (3) integrating

Sentinel-2 data with higher resolution image data to minimize

errors attributed to traditional spatial resampling methods; and (4)

fine-tuning and optimizing the XGBR algorithm to enhance

prediction accuracy.
5 Conclusions

This study examined the accuracy of six machine learning

algorithms, namely, KNNR, ABR, RF, GBR, XGBR, and LGBM,

in estimating the concentration of SPM in the Pinglu Canal estuary

ocean. This study also analyzed the spatiotemporal distribution

characteristics of the SPM concentration.
Fron
1. Among the six machine learning models, the XGBR model

demonstrated the highest accuracy in estimating SPM

concentration, with an R2 value of 0.9042 and an RMSE of

3.0258 mg/L. The LGBM (R2 = 0.8258, RMSE=4.0813 mg/L)

and the GBR (R2 = 0.8023, RMSE=4.3477 mg/L) models also

exhibited reasonably good accuracy. However, the ABR, RF,

and KNNRmodels perform poorly in terms of fitting effects.

2. Furthermore, incorporating both F1 and F2 as input

variables into the XGBR model significantly improved its

fitting ability. The R2 value increases from 0.7321 for F1 and

0.7144 for F2 to 0.9042 when utilizing both F1 and F2 (F3).

3. Regarding the contribution of the input variables in the

XGBR model, F1 demonstrated a relatively high importance.
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The SWIR and R variables rank highest in terms of

importance. Conversely, the contribution of F2 was

relatively small, with the NDTI being the most influential.

4. The inversion results of the XGBR model reveal that the

SPM concentration in the study area exhibited an upward

trend from 2021 to 2023. The spatial distribution pattern

indicates a decrease in concentration when the estuary

moves to the inner sea of the Maowei Sea to the outer

bay. Specifically, the SPM concentration increased from

3.06 mg/L to 4.85 mg/L over the course of 2021 to 2023.

Notably, the mouth of the Qin River experienced the largest

change, with an increase of nearly 20 mg/L.
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