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Forecasting typhoon waves during typhoons is crucial. In this paper, the

numerical wave model SWAN was enhanced through integration with two

machine learning methods: the Back Propagation Neural Network and

Random Forest. This integration facilitated the development of two distinct

models, namely SWAN-BP and SWAN-Tree. Through correlation analysis, key

input features were identified for the machine learning models. The forecasts

from the SWAN model were subsequently utilized as inputs to enhance further

wave prediction. These hybrid models were validated using data from Typhoon

Doksuri (2023) and Typhoon Nesat (2017). The results indicated significant

improvements in predicting typhoon-induced wave heights with both the

SWAN-BP and SWAN-Tree models compared to the original SWAN model.

Specifically, the SWAN-BP model demonstrated a 33% improvement in

accuracy for the Typhoon Doksuri, whereas the SWAN-Tree model exhibited a

24% improvement. For Typhoon Nesat, the accuracy improvements were 23%

for the SWAN-BP model and 21% for the SWAN-Tree model. These findings

demonstrate that integrating wave numerical models with machine learning

techniques can significantly enhance the predictive accuracy of numerical

models. This approach offers a cost-effective means to improve the existing

wave forecasting database. Traditionally, the direct use of meteorological and

oceanographic data for typhoon wave prediction might be compromised by

biases inherent in the numerical wave models. However, the SWAN-BP and

SWAN-Tree models effectively reduce these biases, thereby providing more

accurate and robust predictions. In conclusion, this paper enhances the

predictive accuracy of the SWAN model and establishes a crucial foundation

for more precise typhoon wave forecasting through the application of machine

learning techniques.
KEYWORDS

typhoon waves, SWAN model, machine learning, back propagation neural network,
random forest, optimization
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1 Introduction

Marine hazards, especially catastrophic waves, storm surges, sea

ice, and tsunamis, pose a great threat to coastal countries around the

globe, and China, as one of the countries most affected by these

natural hazards, faces increasing risks (Hou et al., 2020). These risks

are further amplified with the intensification of economic

construction in coastal areas. Catastrophic waves, particularly

those caused by typhoons, cold air, and cyclones, and most

notably typhoon waves, have a profound impact on human life

and activities due to their immense destructive power. Waves exert

a substantial influence on offshore structures. Effective scour

protection methods around monopile foundations are crucial in

studying wave dynamics and their impact on these structures. Tang

et al. (2023) investigated the efficacy of collars as local scour

countermeasures, providing valuable insights into their

performance under various flow intensities. Therefore, accurately

understanding and predicting typhoon wave patterns is crucial.

Currently, the forecasting of typhoon waves is mainly done by

numerical wave models. Three popular models are SWAN (Booij

et al., 1999), WAVE-WATCH III (Tolman, 1991), and WAM

(Willemsen, 1997).

Numerical wave models are a common method for predicting

typhoon waves today. Booij et al. (1999) analyzed and validated

wave distribution in the German and Dutch seas using the first-

generation SWAN model. In their study, they found that the RMSE

of the SWAN simulations was about 10%, a result that validates the

reliability of the SWAN model in predicting wind, swell, and mixed

waves. The SWAN model provides reliable simulations in various

ocean environments, and its accuracy can be improved by adjusting

the model parameters. This applicability extends to both deep-sea

and shallow-sea areas (Ortiz-Royero and Mercado-Irizarry, 2008;

Afzal and Kumar, 2022; Majidi et al., 2023). Wornom et al.

(Wornom et al., 2001, 2002a) employed SWAN and WAM nested

models to analyze and simulate Typhoon Luis in 1995, verifying the

effectiveness of the SWAN wave model. However, they also

highlighted that the current version of the SWAN model is

inefficient in parallel operation. To address this issue, Wornom

et al. (2002b) implemented an MPI interface to enable parallel

computation, significantly enhancing the computational speed of

the SWAN model. Additionally, Ou et al. (2002) demonstrated that

using a nested grid scheme improves the accuracy of nearshore

water simulations by employing the SWAN model to simulate

waves in the Taiwan sea area. Feng and Chen (2021); Umesh and

Behera (2021), and Li et al. (2023) obtained similar results based on

the ERA5 and ERA-Interim reanalysis of the wind field, confirming

that ERA5 significantly outperforms ERA-Interim in typhoon

simulation, although it may underestimate wind speeds overall.

Additionally, a study by Gao and Zheng (2018) demonstrated that

using CCMP as the driving wind field for the SWAN model can

achieve higher accuracy. Considering the significant influence of

wind speed input on the results of SWAN simulations of typhoon

waves (Akpinar and Ponce de León, 2016), Li et al. (2021) simulated

typhoon waves off the coast of Zhejiang using the reanalysis wind

fields ERA5 and CCMP. They found that the simulation results

from ERA5 outperformed those from CCMP. Due to the low wind
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speeds in the available wind field data, Ma and Wei (2024)

investigated the impact of various combinations of maximum

wind radius and Holland B parameters on the simulated wave

heights in SWAN, using the wind field model proposed by Holland.

These studies employed a numerical wave model to thoroughly

analyze the wave characteristics of the region and explored the main

factors influencing wave forecasts with the aim of achieving more

accurate predictions.

In recent years, the emergence of machine learning and deep

learning techniques has sparked significant advancements in

various fields. In marine science, deep learning models have

demonstrated their ability to predict effective wave heights with

high accuracy by utilizing multiple layers of neurons to model

complex nonlinear relationships (Malekmohamadi et al., 2011).

Rizianiza and Aisjah (2015) employed backpropagation neural

networks to predict wave heights in the Java Sea, achieving mean

results with root mean square errors of 0.06 m and 0.07 m. James

et al. (2018) developed a machine learning framework for wave

height prediction. Additionally, Shamshirband et al. (2020) and Luo

et al. (2023) investigated the effectiveness of multiple machine

learning methods for wave height prediction, using the output

from numerical models as input data for the machine learning

models. Gong et al. (2022) proposed a hybrid model that combines

a multi-layer perceptron with a genetic expression programming

model. This model performs well in predicting significant wave

heights. All of the aforementioned studies primarily used the results

of numerical models as inputs to machine learning models for

single-point, short-term wave prediction. This approach can

introduce bias due to errors inherent in the simulation results

themselves (Londhe and Panchang, 2018). The wave field is

essentially a dynamic two-dimensional field, and its prediction

challenge lies not only in handling time-series data but also in

addressing complexities in the spatial dimension. In wave

prediction, predicting wave height at a single point involves

extracting relevant information from the entire wave field and

considering the influence of surrounding points on the predicted

point. Addressing this issue, Zhang et al. (2024) utilized a

Convolutional Neural Network (CNN) to extract wind and wave

feature information from various locations in the study area. They

also considered the influence of other points on the predicted point

and developed a CNN-LSTM model to more comprehensively

account for dynamic changes in both space and time. Despite the

progress made by the CNN-LSTM model in capturing spatial

features, the inherent bias of the numerical model may still affect

the prediction results of the machine learning model. To address the

issue of inaccurate machine learning wave forecasting databases,

this study proposes integrating BP neural networks and random

forests with the SWAN model, resulting in the SWAN-BP and

SWAN-Tree models. This integrated approach aims to optimize the

output of the SWAN numerical model using the powerful

capabilities of machine learning, thereby reducing biases caused

by numerical simulation errors. It offers a cost-effective method to

improve the existing wave forecasting database.

It's crucial to note that this optimization approach using

machine learning should be considered only after other methods

to enhance the physical model have been explored without yielding
frontiersin.org
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significant improvements. For instance, Hoque et al. (2020)

implemented nested grids in the Canadian Beaufort Sea,

accounting for bottom friction and nonlinear ternary interactions

within the SWAN model. Despite these adjustments, they did not

observe substantial enhancements in model performance. This

context underscores the importance of turning to machine

learning techniques as a last resort, particularly when traditional

methods fail to deliver the desired improvements in accuracy

and reliability.

The remainder of the paper is organized as follows: Section 2

focuses on the study area, detailing the typhoon and buoy

information used, the construction of the synthetic wind field,

and the configuration of the model employed. Section 3 presents

the validation of the wind speed and the SWAN model. Section 4

focuses on the comparative analysis of the results using various

machine learning models. Section 5 summarizes the conclusions

drawn from the previous sections.
2 Materials and methods

2.1 Study area, typhoons, and Buoy data

In this paper, Typhoons Doksuri (2023) and Nesat (2017) were

selected for model validation due to their significant impacts.

Typhoon Doksuri made landfall along the Fujian Province coast

on July 28, 2023, with maximum winds at landfall reaching 50 m/s,

classifying it as a strong typhoon. It also recorded a minimum

central pressure of 945 hPa. Typhoon Nesat made its initial landfall

on the eastern coast of Taiwan Province on July 29, 2017, followed

by a subsequent landfall on the Fujian coast on July 30, with

maximum winds of 33 m/s at landfall and a minimum central
Frontiers in Marine Science 03
pressure of 975 hPa. The trajectories of these two typhoons are

shown in Figure 1, offering a visual representation of their paths and

the areas impacted by their landfalls.

The buoys shown in Figure 1 are situated in the East and South

China Seas, near the Chinese mainland, and include buoys #1, #2,

#3, #4, #5, HX1, and HX2. The wave and wind speed observational

data are obtained from the large buoy observational data of the

Fujian Provincial Marine Forecasting Station. The buoy is 10m

high, with a diameter of 10m, and data is recorded at 10-minute

intervals. Detailed information about these buoys, including their

longitude, latitude, and water depth, is shown in Table 1.
2.2 Typhoon models and data

2.2.1 Reanalysis wind field data
In this paper, the selection of reanalysis wind field data

encompasses two internationally recognized datasets: the ERA5

dataset and the Cross-Calibrated Multi-Platform (CCMP) dataset.

The ERA5 dataset is provided by the European Union's Copernicus

Climate Change Service (C3S) and its partner institutions. The CCMP

dataset has been developed by the Physical Ocean Data Center

(PODC) at the National Aeronautics and Space Administration

(NASA) in the United States. Detailed characteristics of the datasets,

including specific attributes and applications, are presented in Table 2.
2.2.2 Parameterized typhoon model (Holland)
Holland (1980) introduced the Holland typhoon model, which

builds upon the model proposed by Schloemer by incorporating the

typhoon shape parameter B. The Holland typhoon wind field is

calculated as:
FIGURE 1

Water depth, buoy position, and typhoon paths (red represents Doksuri, blue represents Nesat).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1472047
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Chen et al. 10.3389/fmars.2024.1472047
p(r) = pc + (pn − pc) −
Rmax

r

� �B

(1)

Vg(r) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(pn − pc)

B
ra

Rmax

r

� �B

exp  −
Rmax

r

� �B

+
rf
2

� �2
s

−
rf
2

(2)

Where pc is the air pressure at the center of the typhoon, pn is

the air pressure at the periphery, Rmax is the radius of the maximum

wind speed, ra is the air density, f is the Koch force parameter, r is

the distance from the center of the typhoon, and B is the shape

factor of the typhoon.

The calculation for Rmax and B is as follows:

Rmax = 28:52tanh ½0:0873(j − 28)�+
12:22 exp Pc−1032:2

33:86

� �
+ 0:2nf + 37:22

(3)

B = 1:5 + (980 − Pc)=120 (4)

In numerical wave simulations, the accuracy of the simulation is

highly dependent on the computational precision of the wind field

data utilized. However, existing reanalysis wind field data often

underestimate the wind speed at the center of the typhoon. To

address this issue, the Holland model can be utilized to more

accurately simulate the wind speed at the center of the typhoon,

thereby compensating for the shortcomings in the reanalysis wind

field data. By introducing a weighting factor, Carr and Elsberry

(1997) integrated the results of the Holland model with reanalyzed

wind field data to create a synthetic wind field. This approach

enhances the overall reliability of the reanalyzed wind field and

improves the simulation accuracy near the maximum wind speed

regions of the typhoon. The construction relationships and

weighting coefficients are calculated as:
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Vnew = (1 − e)Vm + eVen (5)

e =
c4

1 + c4
, c =

r
nRmax

(6)

Where Vnew is the synthetic wind field, Vm is the Holland wind

field, Ven is the reanalyzed wind field, e is the weighting factor, and n

is taken as 9.

Principles of synthetic wind fields: the Holland Typhoon Model

is used for the center of the typhoon, while the reanalysis wind field

is used for the periphery. The synthetic wind field is shown

in Figure 2.
2.3 SWAN model

In this paper, the third-generation numerical ocean wave model,

SWAN 41.45, is employed for the study. This model represents an

advanced numerical simulation method, grounded in ocean

dynamics and wave theory, that describes and simulates wave

motions in the ocean using mathematical equations and physical

principles. The SWAN model is solved numerically by using

computer technology to simulate various physical properties of

waves, such as wave heights, periods, directions, and wave spectra.

The SWANmodel represents random waves by means of a two-

dimensional kinetic spectral density, and when the driving element

includes tidal conditions, the interaction between waves and

currents leads to a conservation of the kinetic spectral density but

not the wave energy spectral density, the kinetic spectral density and

the wave energy spectral density are calculated as:

N(s , q) = E(s , q)=s (7)

Where N denotes the kinetic spectral density, E denotes the

energy spectral density, and s and q denote the relative frequency

and wave direction, respectively. Expanding the control equation to

the spherical and right-angle coordinate systems, the control

equation is calculated as:

∂

∂ t
N +

∂

∂ l
ClN +

∂

∂j
CjN +

∂

∂s
CsN +

∂

∂ q
CqN =

S
s

(8)

∂

∂ t
N +

∂

∂ x
CxN +

∂

∂ y
CyN +

∂

∂s
CsN +

∂

∂ q
CqN =

S
s

(9)

Where s is the relative frequency of the wave, q is the wave

direction perpendicular to the crest line in the spectral component,

Cx ,Cy are the wave propagation speeds in the X and Y directions in
TABLE 2 The time range, time resolution, spatial range, and spatial resolution of ERA5 and CCMP.

Dataset Name Time Range Temporal Resolution Spatial Range Spatial Resolution

ERA5 from 1959 to the present 1h global coverage 0.25°×0.25°

CCMP from 1987 to the present 6h
78.375°S~78.375°N, 180°

W~180°E
0.25°×0.25°
TABLE 1 Buoy Information.

Location Longitude Latitude Water
Depth

#1 118.20°E 23.61°N 39.17m

#2 119.43°E 24.50°N 70.27m

#3 120.32°E 25.54°N 54.46m

#4 120.60°E 26.30°N 64.30m

#5 121.03°E 27.02°N 42.07m

HX1 122.52°E 26.16°N 103.65m

HX2 119.00°E 22.60°N 71.54m
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the direct coordinate system, Cl ,Cj are the wave propagation

speeds in the l and j directions in the spherical coordinate

system, Cs ,Cq are the wave propagation speeds in the s and q
directions. the first term on the left hand side of the equation is the

change rate of momentum spectral density N with time t in different

coordinate systems. the 2nd and 3rd terms are the rates of change of

momentum spectral density N propagating in spatial positions in

different coordinate systems. the 4th term is the frequency shift,

refraction and shallowing change of N in frequency space s caused

by changes in the flow field and water depth. The 5th term is the

propagation of N in the direction q of the spectral distribution. S on
the right side of the equation is the spectral density source and sink

terms, including energy dissipation terms such as wind field input,

wave-wave nonlinear interactions, and bottom friction dissipation,

the equation is calculated as:

S = Sin + Sds,b + Snl4 + Sds,br + Sds,w + Snl3 (10)

Where Sin denotes the wind input term, Sds,b denotes the bottom

friction effect, Snl4 denotes the fourth-order wave interaction, Sds,br
denotes the wave breaking due to the change in depth, Sds,w denotes

the white crown dissipation effect, and Snl3 denotes the third-order

wave interaction.
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2.4 Model settings

The computational domain of the model encompasses the

entire coast of Fujian, extending from 116°E to 128°E in

longitude and from 18°N to 28°N in latitude. It employs an

unstructured grid, comprising a total of 44,274 grids and 86,213

nodes. The bathymetric data were sourced from the ETOPO2022

global topographic dataset, featuring a resolution of 15 arc seconds.

Shoreline data were derived from the GSHHS dataset.

The SWAN model incorporates several source terms, including

the wind input method, wave breaking term, bottom friction term,

whitecapping dissipation, and interactions involving three and four

waves. After multiple attempts, the optimal parameter settings are

shown in Table 3.
2.5 Machine learning model

2.5.1 Correlation analysis
The output parameters from the SWAN model settings include

predicted wave height, time, averaging period for first-order moment

calculations (TM01), averaging period for second-order moment
FIGURE 2

Doksuri July 28, 0:00 Wind Field, (A) parametric typhoon wind field, (B) reanalysis wind field, (C) synthetic wind field.
TABLE 3 Model Parameter Settings.

Parameter Name Value Description

Wind Input Method JANSSEN The wind input method is set to JANSSEN.

Coefficient for Determining the Rate of
Whitecapping Dissipation

3.5 The coefficient used to determine the rate of whitecapping dissipation.

Proportionality Coefficient of the Rate
of Dissipation

1 The proportionality coefficient for the rate of dissipation in wave breaking.

Breaker Index 0.78 The breaker index used for wave breaking.

Bottom Friction Selection JONSWAP
The bottom friction coefficient is chosen as JONSWAP with cjion=0.038, as it performs best

according to Feng and Chen (2021).

Maximum Number of Iterations 40 The maximum number of iterations for the model.

Iteration Convergence 2 The SWAN model converges to the required accuracy after 2 iterations.

Time Step 10 min The time step is set to 10 minutes.
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calculations (TM02), wind speed in the X-direction (X-Wind), wind

speed in the Y-direction (Y-Wind), wave direction (Dir), and spectral

peak wave direction (PkDir). If wave heights computed solely by the

SWAN model are utilized as input features for machine learning,

achieving high accuracy is unlikely. A correlation analysis between

the SWAN output parameters and measured wave heights is

conducted to evaluate the degree of correlation and to inform the

selection of input features for machine learning.

Spearman's correlation coefficient was used in this study and the

formula was calculated as:

r = 1 −
6o d2i

n(n2 − 1)
(11)

Where di denotes the difference between two data orders, n

denotes the amount of observed data samples.

The Spearman correlation coefficient plot between the

measured wave height and each parameter output from the

SWAN model is shown in Figure 3. It is evident that the

correlation coefficients for Dir and PkDir are below 0.3,

indicating a weak correlation with the measured wave heights.

Consequently, these parameters can be excluded. The parameters

demonstrating a high correlation (Predicted wave height, Time,

TM01, TM02, X-Wind, and Y-Wind) should be considered as input

features for machine learning.
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2.5.2 Backpropagation neural network
A BP neural network is a multilayer perceptron (MLP) that uses

the back propagation algorithm (BP) to update the parameter

gradient (Ibukahla et al., 1997). It is a multilayer feedforward

network trained according to the error back propagation

algorithm (BP). It is a multilayer feed-forward network trained

according to the error back propagation algorithm, the essence is to

take the quadratic of the network error as the objective function, use

the gradient fastest descent method to calculate the minimum value

of the objective function, and end the training when the error

between the actual output of the neural network and the ideal

output is reduced to the set expectation and reach the prediction

accuracy, or reach the pre-set number of generation selection.

The model is set as a neural network with three layers, each

containing 10 neurons, using the ReLU activation function, with

a maximum of 1000 iterations. The schematic structure is shown

in Figure 4.

2.5.3 Random Forest
Random Forest (Breiman, 2001) randomly divides the training

data into N sets of samples, and each set of samples is divided into

the data used for training called "inside the bag'' and the data not

included is called "outside the bag" This constructs a decision tree,

and each decision tree is independently and identically distribution.
FIGURE 3

Spearman correlation coefficient heatmap.
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The "out of bag" is used to evaluate the training results of each

decision tree to minimize the Root Mean Square Error (RMSE) of

each decision tree, and finally take the average value of each

decision tree. The ''MinLeafSize'' for each decision tree is set to 4,

which means the minimum number of samples per leaf node is

4.The schematic structure is shown in Figure 5.

2.5.4 Dataset partitioning
In this paper, wave height simulations for Typhoon Doksuri

(2023) were conducted using the SWAN model. These simulations

computed wave parameters at seven buoy locations, collecting

critical data for each site. These collected data were subsequently

analyzed for correlations to identify the most influential parameters

for wave prediction. The parameters selected as input features for

the machine learning model included simulation time, TM01 (mean

wave period based on the first moment), TM02 (mean wave period
Frontiers in Marine Science 07
based on the second moment), X-Wind (wind component in the X

direction), and Y-Wind (wind component in the Y direction). These

parameters were chosen to effectively capture the intricate dynamics

between the typhoon-induced waves and the influencing

meteorological and oceanographic variables. These features were

selected due to their high correlation with wave height. Using these

features as inputs can aid in examining the complex relationships

between waves and other factors.

In constructing the machine learning dataset, the data of buoys

#1, #2, #3, #4, HX1 and HX2 are compiled into the training set for

training the machine learning models. Whereas, the data with buoy

#5 is divided into a test set for evaluating the generalization ability

and prediction accuracy of the model. This data division method

helps to verify the performance of the model on unseen data and

ensure that the model can provide reliable predictions in real

applications. The specific divisions are shown in Table 4.
FIGURE 5

Random forest structure diagram.
FIGURE 4

BP Neural Network Structure Diagram.
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2.5.5 Evaluation metrics
This study evaluates the model's performance in predicting typhoon

waves and validating wind speeds using three key metrics: MAE, RMSE,

and R2.MAE is the mean absolute error and RMSE is the root mean

square error, and the closer they are to 0 means the more accurate the

result is. R2 is the correlation coefficient, and the closer it is to 1means the

stronger the correlation is. The evaluation indexes are calculated as:
FIGURE 6

Comparison of results from four wind field datasets used by buoys #1 (A), #2 (B), #3 (C), #4 (D), #5 (E), HX1 (F), and HX2 (G) with measured
wind speeds.
TABLE 4 Machine learning dataset split.

Dataset Time Range Buoy

Training
Set

From July 24, 2023, at 00:00 to July 30, 2023,
at 00:00

#1,#2,#3,#4,
HX1,HX2

Test Set
From July 24, 2023, at 00:00 to July 30, 2023,

at 00:00
#5
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MAE =
1
No

N
i=1 yi

0 −yi
�� �� (12)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1(yi

0 −yi)
2

r
(13)

R2 = 1 −o
N
i=1(yi

0 −yi)2

oN
i=1(yi − �y)2

(14)

Whereyi
0 denotes thepredictedvalue,yi denotes theobservedvalue,

�y denotes the observed mean, and N denotes the size of the sample.
3 Model validation

3.1 Wind speed verification

To assess the accuracy of both synthetic and reanalyzed wind

fields, this study utilizes observational data and simulation results

for Typhoon Doksuri, covering the period from July 24 to July 30,

2023, for comparative analysis. This study employed two reanalysis

datasets, ERA5 and CCMP, which were integrated with the Holland

typhoon model to generate four distinct wind field datasets: ERA5,

CCMP, ERA5+Holland, and CCMP+Holland.

Figure 1 illustrates that buoys #1, #2, and HX2 are positioned

nearer to the typhoon's center, in contrast to the other buoys which

are located further away. In Figures 6A–G, the wind speed

measurements derived from both the ERA5 and ERA5+Holland

datasets exhibit considerable overlap, similarly to those from the

CCMP and CCMP+Holland datasets. This overlap indicates that

there are no significant differences between the synthetic and

reanalyzed wind fields for buoys situated farther from the

typhoon's center. Moreover, this study conducts a detailed

analysis of error metrics for the four datasets. The analysis

concerning buoys #1 and #2 is shown in Tables 5 and 6, while

the analysis for HX2 is shown in Table 7.
3.2 SWAN model validation

A comparison of wave height simulations using the SWAN

model integrated with the synthetic wind field (Holland+ERA5)

against actual measurements from various buoy locations during

Typhoon Doksuri is shown in Figure 7. Error indicators are shown in

Table 8. The simulations show close alignment with the measured

wave heights, especially at the extremes, which highlights the model's
Frontiers in Marine Science 09
high accuracy. The correlation coefficients, as shown in Table 7, range

from 0.80 to 0.93, confirming a strong correlation between the

predictions of the SWAN model and the observed data. Despite the

general proximity of simulated results to the measured values across

most buoys, the root mean square errors (RMSE) for buoy #2 and

buoy HX2 are notably higher, recorded at 0.69 and 0.80 respectively.

This increased error is likely due to the direct passage of Typhoon

Doksuri's center over these buoys, exacerbating discrepancies under

extreme weather conditions. Capturing such dynamic changes in

wave heights accurately poses a significant challenge for any model,

particularly when complex, nonlinear dynamic processes

are involved.
4 Discussion

4.1 Effect of using different wind field
datasets on wind speed

To explore the impact of reanalyzing both synthetic and

reanalyzed datasets of wind fields on wind speed measurements,

this study utilizes four distinct wind field datasets: ERA5, CCMP,

ERA5+Holland, and CCMP+Holland for comparative analysis

against the empirical wind speed data recorded during

Typhoon Doksuri.

The error metrics for buoy #1, derived from each wind field

dataset, are shown in Table 5. The metrics for buoy #2 are shown in

Table 6, and those for buoy HX2 are shown in Table 7. These tables

indicate that ERA5 generally exhibits lower root mean square error

(RMSE) and mean absolute error (MAE) compared to CCMP.

However, as shown in Table 9, CCMP outperforms ERA5 in

simulating the maximum wind speeds of typhoons. This

observation is consistent with findings from Li et al. (2021), who

evaluated different wind field datasets in the East China Sea and

noted that despite ERA5's lower error rates, it tends to
TABLE 5 Verification results of four types of wind field datasets on
Buoy #1.

Dataset Name MAE RMSE R2

ERA5 1.49 2.16 0.74

CCMP 2.15 3.01 0.72

ERA5+Holland 1.34 1.79 0.88

CCMP+Holland 2.12 2.83 0.74
TABLE 6 Verification results of four types of wind field datasets on
Buoy #2.

Dataset Name MAE RMSE R2

ERA5 2.69 3.38 0.42

CCMP 2.89 3.77 0.59

ERA5+Holland 2.32 2.88 0.65

CCMP+Holland 2.96 3.92 0.52
f

TABLE 7 Verification results of four types of wind field datasets on
Buoy HX2.

Dataset Name MAE RMSE R2

ERA5 2.16 4.84 0.52

CCMP 1.98 3.22 0.83

ERA5+Holland 1.56 2.82 0.86

CCMP+Holland 1.86 2.72 0.86
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underperform in capturing the very high wind speeds associated

with typhoons.

Further analysis reveals that the incorporation of the synthetic

wind field significantly reduces the root mean square error (RMSE)

for both the ERA5 and CCMP datasets, as evidenced by the data

shown in Tables 5–7. This reduction indicates that the synthetic

wind field effectively enhances the accuracy of wind data,
Frontiers in Marine Science 10
compensating for ERA5's limitations in capturing the extreme

wind speeds of typhoons. Consequently, the ERA5+Holland

synthetic wind field has been selected as the primary driving field

for this study. This approach serves as a benchmark for future

typhoon wave forecasting and wind field dataset selection in Fujian

waters and provides valuable guidance for selecting wind fields in

other maritime regions.
FIGURE 7

Comparison of simulated wave heights and measured wave heights for buoys #1 (A), #2 (B), #3 (C), #4 (D), #5 (E), HX1 (F), and HX2 (G).
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4.2 Effect of using different machine
learning models to optimize SWAN results
(SWAN-BP, SWAN-Tree)

In this study, the BP neural network and random forest

algorithm were employed to enhance the accuracy of wave

predictions by the SWAN model, resulting in the development of

two hybrid models: SWAN-BP and SWAN-Tree. These machine

learning-enhanced models significantly improved the precision of

the numerical wave model predictions, demonstrating their efficacy

in refining wave forecasting techniques.

During the optimization phase, the SWAN-BP model required

58 seconds to complete, whereas the SWAN-Tree model only

needed 8 seconds, demonstrating a significant advantage in

computational efficiency for the SWAN-Tree model. Furthermore,
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as shown in Figures 8A and 9A, the performance metrics from the

training set indicate that the SWAN-BP model achieved an RMSE

of 0.20 and an MAE of 0.15. In comparison, the SWAN-Tree model

recorded a lower RMSE of 0.16 and an MAE of 0.12, suggesting that

the SWAN-Tree model not only operates more efficiently but also

provides slightly better accuracy during the training phase.

Although the SWAN-Tree model demonstrates superior

computational efficiency and training performance, the SWAN-

BP model exhibits better performance on the test set, indicating

greater robustness in generalizing to unseen data. Notably, the

SWAN-BP model more accurately simulated the maximum wave

height, achieving a value of 3.9 meters, as presented in Figure 8B,

which is closer to the actual measured maximum wave height of 4.0

meters. In contrast, the SWAN-Tree model predicted a maximum

wave height of 3.4 meters, as shown in Figure 9B. This disparity

underscores the SWAN-BP model's enhanced accuracy, particularly

in predicting extreme wave heights, highlighting its utility in

scenarios requiring precise forecasts of severe marine conditions.

In simulating Typhoon Doksuri using the SWAN model, the

RMSE recorded at buoy #5 was initially 0.45. Upon applying the

SWAN-BP and SWAN-Tree models to optimize the simulation, the

RMSE was reduced to 0.30 and 0.34, respectively. This

improvement translates to a 33% enhancement in the accuracy of

wave height predictions with the SWAN-BP model and a 24%

improvement with the SWAN-Tree model. The specific error

metrics for each model are detailed in Table 10, illustrating the

effectiveness of these optimizations in refining the accuracy of wave

height predictions during typhoon conditions.
TABLE 8 SWAN model accuracy evaluation metrics.

Location R2 RMSE

#1 0.85 0.54

#2 0.80 0.69

#3 0.87 0.47

#4 0.93 0.36

#5 0.87 0.45

HX1 0.86 0.43

HX2 0.86 0.80
TABLE 9 Maximum wind speeds simulated by ERA5, ERA5+Holland, CCMP, CCMP+Holland (Units: m/s).

Buoy
Measured
wind speed

ERA5 ERA5+Holland CCMP CCMP+Holland

#1 26.3 16.7 26.5 24.4 23.1

#2 30.1 21.8 29.7 24.2 23.2

HX2 46.5 20.4 45.2 26.3 41.9
FIGURE 8

Training set (A) and testing set (B) for the SWAN-BP model (Typhoon Doksuri).
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For Typhoon Nesat (2017), the pre-existing SWAN-BP and

SWAN-Tree models, initially developed and refined using data

from Typhoon Doksuri (2023), were applied to retrospectively

analyze wave heights, as shown in Figure 10. This application of

the models to different typhoon allows for an assessment of their

generalizability and effectiveness across varied meteorological

conditions. This approach helps evaluate whether the models

maintain their predictive accuracy when faced with different

typhoon characteristics and conditions.

According to Table 11, utilizing the SWAN-BP model for

wave height prediction results in a 0.14 reduction in RMSE

compared to the standard SWAN-only model, marking a 23%

enhancement in predictive accuracy. Similarly, the SWAN-Tree
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model also demonstrates improved performance, achieving a 0.13

decrease in RMSE, which corresponds to a 21% improvement in

accuracy relative to the SWAN-only model. These results confirm

that although these machine learning models were initially trained

using data from Typhoon Doksuri, they are still effectively

applicable to predicting wave heights for other typhoons, such as

Nesat. This highlights the adaptability and robustness of the models

across different typhoon scenarios.

Integrating machine learning techniques with traditional

numerical models significantly enhances the prediction of extreme

wave heights and their fluctuations, also bolsters the models'

generalization capabilities across various typhoon. This methodology

demonstrates the substantial potential of machine learning in elevating

the accuracy of numerical ocean wave models. By combining

conventional physical modeling with advanced machine learning

strategies, wave height predictions can be effectively optimized. This

approach addresses inherent biases in numerical models that might

otherwise compromise the accuracy of using direct meteorological

ocean data as input for forecasting wave heights. This synergy between

machine learning and physical modeling is a promising avenue for

refining predictive models in oceanography.
FIGURE 9

Training set (A) and testing set (B) for the SWAN-Tree model (Typhoon Doksuri).
FIGURE 10

Validation of SWAN (A),SWAN-BP (B), and SWAN-Tree (C) models (Typhoon Nesat).
TABLE 10 Error comparison of different models at buoy #5 (Doksuri).

Model Typhoon Buoy RMSE MAE R2

swan Doksuri #5 0.45 0.36 0.86

Swan-bp Doksuri #5 0.30 0.24 0.91

SWAN-Tree Doksuri #5 0.34 0.28 0.88
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5 Conclusion

This analysis assesses the impact of different wind field datasets

on wind speed predictions, particularly during typhoon. Synthetic

wind fields, such as ERA5+Holland and CCMP+Holland, are found

to outperform their reanalyzed counterparts (ERA5 and CCMP) in

simulating maximum typhoon wind speeds. The use of synthetic

wind fields significantly reduces prediction errors, highlighting their

capacity to provide more accurate data for extreme weather.

Consequently, for applications that require high precision in wind

field data, the adoption of synthetic wind field datasets is strongly

recommended. This method enhances the reliability of forecasts and

analyses in meteorological studies, particularly in scenarios

involving severe atmospheric conditions.

This study delves into the application of machine learning

models to enhance wave height prediction models. By integrating

the BP neural network and the random forest algorithm with the

SWAN model, and testing these enhanced models using historical

data from Typhoon Doksuri (2023) and Typhoon Nesat (2017),

notable improvements in prediction accuracy have been observed.

The resulting models, SWAN-BP and SWAN-Tree, demonstrated

enhanced performance in wave height predictions. Notably, the

SWAN-BP model exhibited superior robustness and accuracy,

particularly in predicting extreme wave heights. This suggests that

machine learning can significantly refine the capabilities of

traditional wave prediction models, offering more reliable and

precise forecasts for critical weather events.

The results of this study significantly enhance the existing wave

post-report database. SWAN-BP and SWAN-Tree, by integrating

machine learning techniques, effectively address the biases present

in the SWAN model and improve the accuracy of typhoon wave

predictions. These models are better equipped to handle complex

marine and meteorological conditions. The improved predictive

data contributes to more accurate disaster warning information,

thereby strengthening safety and emergency response capabilities in

coastal regions.
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