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This study introduces an innovative water depth estimation method for complex

coastal environments, focusing on Yantian Port. By combining Random Forest

algorithms with a Coordinate Attention mechanism, we address limitations of

traditional bathymetric techniques in turbid waters. Our approach incorporates

geographical coordinates, enhancing spatial accuracy and predictive capabilities

of conventional models. The Random Forest Lon./Lat. model demonstrated

exceptional performance, particularly in shallow water depth estimation,

achieving superior accuracy metrics among all evaluated models. It boasted

the lowest Root Mean Square Error (RMSE) and highest coefficient of

determination (R²), outperforming standard techniques like Stumpf and Log-

Linear approaches. These findings highlight the potential of advanced machine

learning in revolutionizing bathymetric mapping for intricate coastal zones,

opening new possibilities for port management, coastal engineering, and

environmental monitoring of coastal ecosystems. We recommend extending

this research to diverse coastal regions to validate its broader applicability.

Additionally, exploring the integration of additional geospatial features could

further refine the model’s accuracy and computational efficiency. This study

marks a significant advancement in bathymetric technology, offering improved

solutions for accurate water depth estimation in challenging aquatic

environments. As we continue to push boundaries in this field, the potential for

enhanced coastal management and environmental stewardship grows, paving

the way for more sustainable and informed decision-making in coastal

zones worldwide.
KEYWORDS

water depth inversion, random forest, coordinate attention, bathymetric mapping,
turbid waters
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1 Introduction

Bathymetry, the measurement of water depth, is a critical

component in coastal and marine management. Accurate

bathymetric data is essential for a wide range of applications,

including maritime navigation safety, coastal engineering, marine

resource management, and ecological conservation (Liu et al., 2015;

Li et al., 2021). Traditional bathymetry methods, such as ship-based

echo sounding and LiDAR surveys, while highly accurate, are often

time-consuming, expensive, and limited in spatial coverage

(Vahtmae and Kutser, 2016). These limitations have driven the

search for alternative methods that can provide efficient, cost-

effective, and large-scale bathymetric mapping.

The advent of satellite remote sensing technology has

revolutionized the field of bathymetry, offering unprecedented

opportunities for wide-area water depth estimation (Li et al.,

2019; Alevizos, 2020). Spectrally - derived bathymetry (SDB)

leverages the relationship between water depth and the spectral

properties of light as it interacts with the water column and seafloor

(Agrafiotis, 2024). This approach enables rapid, repeatable, and

cost-effective mapping of large nearshore areas, complementing

traditional survey methods and providing valuable data for areas

where in-situ measurements are challenging or impossible

to obtain.

The development of SDB models has seen significant progress

over the past few decades. Early approaches relied on empirical

models, such as the band ratio method proposed by Stumpf et al

(Stumpf et al., 2003). and the linear transform technique by Lyzenga

(Lyzenga, 1978, 1985). These models, while simple and widely

applicable, often struggle in complex coastal environments with

variable water constituents and bottom types. To address these

limitations, researchers developed semi-analytical models like the

Quasi-Analytical Algorithm (QAA) (Lee et al., 1998; 1999; Lee and

Carder, 2000, 2002; Le et al., 2009; Joshi and D’Sa, 2018), which

attempt to account for the optical properties of water and its

constituents. However, even these more sophisticated models face

challenges in turbid or optically complex waters.

Recent advancements in machine learning and artificial

intelligence have opened new avenues for improving SDB

accuracy and robustness (Misra et al., 2018; Benshila et al., 2020;

Shen et al., 2023; Zhou et al., 2023; Agrafiotis, 2024; Chan et al.,

2024; Gupta et al., 2024; Qin et al., 2024). Machine learning

algorithms, particularly Random Forest (RF), have demonstrated

remarkable capabilities in handling non-linear relationships and

complex environmental variables (Liu et al., 2015; Wu et al., 2021;

Gülher and Alganci, 2023; Janowski et al., 2024). These data-driven

approaches can capture intricate patterns between satellite-derived

spectral information and water depth, often outperforming

traditional empirical and semi-analytical models in diverse

coastal settings.

The integration of spatial information into SDB models

represents another significant development. Techniques such as

geographically weighted regression (GWR) (Vinayaraj et al., 2016;

Chybicki, 2018) and spatial attention mechanisms (Kim et al., 2019;

Liu et al., 2020) have been employed to account for the spatial

heterogeneity of coastal environments. These approaches recognize
Frontiers in Marine Science 02
that the relationship between spectral reflectance and water depth

can vary spatially due to factors like water quality, bottom type, and

local bathymetric features.

Multi-sensor and multi-temporal approaches have also gained

traction in recent years (Sagawa et al., 2019; Lowell and Hermann,

2024). Researchers have explored the synergistic use of data from

different satellite sensors, as well as the integration of satellite imagery

with other data sources such as LiDAR (Ma et al., 2020). These multi-

source approaches aim to leverage the strengths of different sensors

and overcome the limitations of single-sensor methods.

Despite these advancements, challenges remain in deriving

accurate bathymetry in complex coastal environments, particularly

in areas with high turbidity, variable bottom types, or rapidly

changing conditions. The port of Yantian, a major deep-water port

in China, exemplifies these challenges (Wu et al., 2021; Li et al., 2024).

Its complex underwater topography and dynamic water conditions

make it an ideal test case for developing and evaluating advanced

SDB methods.

In light of these challenges and recent developments, this study

proposes a model to SDB that combines the strengths of Random

Forest algorithms with a Coordinate Attention mechanism. This

integration seeks to improve the model’s capacity to capture two key

aspects: the intricate non-linear relationships between spectral data

and water depth, and the inherent spatial dependencies in coastal

bathymetry. The proposed method will be applied to the challenging

environment of Yantian Port, with the goal of improving bathymetric

mapping accuracy in complex coastal waters.

This study aims to advance satellite-derived bathymetry (SDB)

techniques by developing an integrated Random Forest-Coordinate

Attention model framework, specifically tailored for complex

coastal environments like Yantian Port. The research objectives

encompass training and validating the model using multispectral

satellite imagery and in-situ depth measurements (Chen et al., 2019;

Abdul Gafoor et al., 2022), comparing its performance against

traditional SDB approaches (Huang et al., 2017; Garcia et al.,

2020), and analyzing key factors influencing model performance,

such as water turbidity, bottom type variability, and spatial

heterogeneity (Li et al., 2017; Barnes et al., 2018; Li et al., 2018).

By addressing these goals, this research seeks to contribute to the

ongoing improvement of SDB techniques, with potential significant

implications for port management, coastal engineering, and

environmental monitoring worldwide. The study aims to offer a

more accurate and efficient method for bathymetric mapping in

complex coastal waters, thereby enhancing our understanding and

management of these critical environments.
2 Experimental data collection

2.1 Experimental site and data acquisition
for bathymetric analysis

This study focuses on the coastal waters adjacent to Yantian

Port in Shenzhen City, Guangdong Province (22°33’32”N, 114°

17’24”E). Despite high maritime traffic, the area boasts exceptional

water clarity, The overall terrain effect of the survey area is higher in
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the northwest and lower in the southeast. In the northwest of the

survey area is the Marine police wharf (A), with a shallow water

depth of about 1.5 meters on average. The water depth limit of the

survey area is obvious, and the water depth on the side close to the

embankment is shallow (area B, the average water depth is about 10

meters). There are obvious traces of artificial dredging channel, and

some areas have shallow points, so there are hidden dangers and

easy stranding of ships in safe navigation, which is ideal for

bathymetric research.

Our analysis utilizes Sentinel-2 satellite imagery captured on

December 12, 2021(S2B_MSIL1C_20211212T025119_N0500_R13

2_T50QKL_20221224T054712.SAFE). We processed these images

to derive remote sensing reflectance (Rrs or Rw) using the advanced

ACOLITE software (Python 20190326.0 version) (Lyzenga, 1985;

Stumpf et al., 2003), developed by the Royal Belgian Institute of

Natural Sciences. This software provides Rrs data (sr-1) across all

visible and near-infrared bands, standardized to a 10-meter spatial

resolution (Vanhellemont and Ruddick, 2016; Sagawa et al., 2019).

The bathymetric predictions incorporate multiple spectral

reflectance bands from the Sentinel-2 imagery, specifically bands 1,

2, 3, 4, 5, 6, 8, and 10. To ensure consistency, all spectral images were

resampled to a uniform 10 × 10 meter resolution (Arun Kumar,

2012). Additionally, we employed the S2 view feature in ACOLITE

(Version 20210802.0) to minimize sun glint effects during the

resampling process, as illustrated in Figure 1 (Arun Kumar, 2012).

This comprehensive approach to data acquisition and processing

provides a robust foundation for our bathymetric analysis, leveraging
Frontiers in Marine Science 03
state-of-the-art satellite technology and software to achieve high-

resolution depth estimations in the complex coastal environment of

Yantian Port.
2.2 In-situ data

In-situ depth measurements were conducted on December 10-

11, 2021, in the waters adjacent to Yantian Port. We employed the

WBMS multibeam echo sounder system from NORBIT, Norway,

which can achieve a distance resolution of less than 10 mm under

optimal conditions. The system was mounted on a vessel for ship-

based measurements. During the survey, wind speeds ranged from

2-3 on the Beaufort scale, with wave heights between 0.1-0.3 m,

meeting the basic requirements for satellite-derived bathymetry.

The survey meet the Code for Survey of Water Transport

Engineering (JTS131-2012),Global Positioning System (GPS)

Measurement Specification (GB/T18314-2009),Technical

Requirements for Multi-beam Bathymetry System (JT/T 790-2010).

To facilitate our research, we selected 3 million uniformly

distributed data points within the study area. From this dataset, we

extracted 4,000 points for the training set, ensuring both uniform

spatial distribution and even representation across depth ranges.

Similarly, we selected 1,000 points for the test set to validate the

bathymetry retrievals. This sampling strategy ensures comprehensive

coverage of the study area and robust evaluation of our bathymetric

model performance.
FIGURE 1

(A) The geographical location of the study area; (B) Data collection area where different colors represent variations of in situ depth data.
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3 Methods

3.1 Water depth retrieval models

3.1.1 Stumpf model
The Stumpf model is a widely used remote sensing technique

for estimating water depth (Stumpf et al., 2003). It analyzes water

column light attenuation using satellite imagery to derive

bathymetric data. The model employs a band ratio technique to

compensate for variations in water clarity and light conditions. The

depth estimation formula is:

Z = m1  
ln½nR(l i)�
ln½nR(lj)�

+m0

Where Z is the estimated depth, R(li) and R(lj) are radiances at
two wavelengths, n is 1000, and m1 and m0 are empirically

determined coefficients.

3.1.2 Log-linear model
The Log-Linear model assumes a linear relationship between

the natural logarithm of water-leaving radiance and depth

(Lyzenga, 1978, 1985; Lyzenga et al., 2006). It is expressed as:

Z =   a1 ln½L(li) − L∞(li)� +   a2 ln½L(lj) − L∞(lj)� +   a3

Where L(l i) and L(l j) are measured radiances, L∞(l i) and

L∞(l j) represent radiance in very deep water, and a1, a2, and a3
are coefficients.

3.1.3 Random forests
Random Forest is an ensemble learning algorithm combining

decision trees through bagging and random subspace methods

(Breiman, 2001; Liu et al., 2015; Kumudham and Rajendran, 2018).

It excels at handling complex, nonlinear relationships between

water depth and image reflectance without relying on physical

models or optical parameters (Liaw and Wiener, 2002).The

Random Forest method is an ensemble learning algorithm that

constructs multiple decision trees and outputs the mode of the

classes (for classification problems) or the mean prediction (for

regression problems) of the individual trees. In our study, we used

100 trees in the Random Forest model. The hyperparameters used

for the shown results include 42 for the maximum depth of the tree,

10 for the minimum number of samples required to split an internal

node, and 5 for the minimum number of samples required to be at a

leaf node. These hyperparameters were tuned using grid search with

cross-validation to optimize the model performance.
3.2 Random forests with coordinate
attention mechanisms (RF-Lat./Lon)

This study introduces the innovative RF-Lat./Lon algorithm, a

significant advancement in bathymetric mapping for complex coastal

environments. By integrating a coordinate attention mechanism into

the Random Forest framework, this approach addresses the

challenges of bathymetry by satellites in turbid port waters.
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The RF-Lat./Lon algorithm enhances traditional Random Forest

techniques by incorporating geographical coordinates as key features

alongside spectral reflectance data. This novel approach allows the

model to leverage spatial context, resulting in more accurate depth

estimations across diverse aquatic landscapes.

At its foundation, the algorithm leverages an ensemble of

decision trees, each trained on diverse subsets of input data. The

coordinate attention mechanism dynamically allocates varying

weights to geographical locations throughout the learning process,

empowering the model to adapt to local conditions and nuances in

underwater topography.

Key advantages of the RF-Lat./Lon approach include superior

accuracy in turbid waters, robustness in handling outliers and

missing data, adaptability to different coastal environments, and

computational efficiency for large-scale mapping projects.
3.3 Accuracy evaluation methods

The assessment of bathymetric accuracy relies on several crucial

performance metrics that are fundamental to evaluating the

precision of depth estimations. Key among these are Mean

Absolute Error (MAE), Mean Relative Error (MRE), and Root

Mean Squared Error (RMSE) (Brando et al., 2009). These metrics

play a vital role in quantifying the accuracy of depth measurements.

The formulas for calculating these metrics are as follows:

We employ several performance metrics to assess bathymetric

accuracy:

MAE =   o
n
i=1

Zi−Z
0
ij j

n

MRE =   o
n
i=1

(Zi−Z
0
i)=Z

0
ij j

n

RMSE =  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1
(Zi−Z0

i)
2

n

q

Where Zi represents actual depths and Z ’ i denotes

predicted depths.
3.4 Bathymetry mapping workflow

Our study employs a comprehensive two-stage methodology for

accurate bathymetry mapping in complex coastal environments.

This approach optimizes data utilization and develops a reliable

framework for processing remote sensing data, with a particular

focus on evaluating the effectiveness of our proposed RF-Lon./

Lat. model.

In the first stage, we lay the groundwork for accurate depth

estimation through careful data selection and preprocessing. This

involves selecting remote sensing images with minimal cloud cover

and clear water conditions to ensure optimal visibility. Atmospheric

correction is applied to mitigate atmospheric effects and enhance

the quality of reflectance data for subsequent analysis. Preliminary

water depth estimation is then performed using various bathymetry

algorithms on the corrected reflectance data, generating initial
frontiersin.org
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depth estimates as a foundation for further refinement.

Additionally, tidal correction is accounted for to maintain

consistency in depth estimates, with necessary adjustments based

on reliable tidal data sources.

In the second stage, we focus on data transformation, model

training, and performance assessment. Satellite data is converted

into a tabular format and integrated with spectral information and

in-situ measurements. Traditional bathymetry models are

developed as a baseline, followed by the training of the RF-Lon./

Lat. model, which incorporates spectral band values and

geographical coordinates. Depth predictions are generated using

both traditional and RF models, and tidal corrections are applied to

ensure accuracy across different temporal conditions. Finally, model

performance is evaluated using metrics such as MAE, RMSE, and
Frontiers in Marine Science 05
R², comparing the effectiveness of the RF-Lon./Lat. model against

traditional approaches.
3.5 Methodology overview

Figure 2 provides a visual representation of our bathymetric

method, illustrating the flow of data and processes through both

stages. This diagram highlights the sequential nature of our

approach, from initial data preparation to final model evaluation.

By structuring our methodology into these two distinct yet

interconnected stages, we ensure a thorough and systematic

approach to bathymetry mapping. This framework allows for

efficient processing of remote sensing data while providing a
FIGURE 2

The process diagram of the bathymetric method.
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robust platform for assessing the improvements offered by our RF-

Lon./Lat. model in depth estimation accuracy.
4 Results

In the realm of coastal management and marine navigation,

achieving precise bathymetric mapping remains a formidable

challenge, particularly in complex aquatic environments. This

study conducts a comprehensive evaluation of cutting-edge water

depth estimation models, focusing on their application in the

dynamic setting of Yantian Port. By leveraging high-resolution

Sentinel-2 satellite data across multiple spectral bands, we aim to

push the boundaries of bathymetric accuracy and precision.

Our methodology is grounded in a robust random sampling

technique, ensuring the capture of unbiased and spatially diverse

datasets. This approach provides a solid foundation for our

comparative analysis, allowing us to explore the full spectrum of

bathymetric variations within the study area. Consequently, we

enhance the reliability of our results and ensure their applicability

across a wide range of coastal environments.

The study examines four distinct models, each representing a

different approach to water depth estimation. These include the

traditional Stumpf model, the Log-Linear approach, the Random

Forest (RF) model, and the innovative Random Forest with

Longitude/Latitude (RF-Lon./Lat.) method, which integrates

geospatial context into the estimation process.

To ensure a thorough evaluation, we employ three key

performance metrics: the coefficient of determination (R²), Mean

Absolute Error (MAE), and Root Mean Square Error (RMSE).

These metrics offer complementary insights, allowing us to assess

not only the accuracy of each model but also its precision and

overall reliability in real-world applications.

Our analysis results, visualized in Figure 3, reveal striking

variations in depth estimation accuracy across the different

algorithms. The traditional models demonstrate poor suitability

for the complex aquatic environment of Yantian Port, while the

Random Forest model marks a significant leap forward in

performance. However, the true breakthrough comes with the

exceptional performance of the novel RF-Lon./Lat. model, which

outperforms all others in the study.

To provide a tangible visualization of these results, we generate

water depth maps using each model, as depicted in Figure 4. The

stark contrast between the outputs is immediately apparent, with

the RF-Lon./Lat. model offering the most refined and realistic

representation of the underwater landscape.

The RF-Lon./Lat. model’s superior performance has significant

implications for bathymetric mapping. By effectively merging

geospatial context with powerful nonlinear modeling capabilities,

this approach presents a promising solution for precise and efficient

water depth estimation in turbid waters and port areas. Its success

in the challenging environment of Yantian Port indicates potential

for wide applicability across complex coastal regions globally.

In conclusion, this comparative analysis contributes valuable

insights to the rapidly evolving field of machine learning

applications in bathymetric mapping. By demonstrating the
Frontiers in Marine Science 06
superior accuracy of the RF-Lon./Lat. model, we have paved the

way for enhanced water depth estimation techniques that can

address the complex challenges of modern coastal environments.

As we continue to refine and expand upon these methods, the future

of bathymetric mapping looks increasingly precise, efficient, and

adaptable to the diverse needs of marine and coastal stakeholders

worldwide. This advancement not only promises to revolutionize

port management and navigation safety but also holds the potential

to significantly impact fields such as coastal conservation, climate

change research, and sustainable marine resource management.
5 Discussion

This study aims to develop a novel water depth inversion

method by combining Random Forest algorithms with a

Coordinate Attention mechanism to address the challenges of

satellite-derived bathymetry in complex coastal environments.

Our main research question is: How can we improve the accuracy

and reliability of water depth estimation in turbid waters and

complex topographic conditions? Through a case study in

Yantian Port, we validated the effectiveness of the proposed

method and compared it with traditional approaches. The

following will discuss in detail the main findings of the study,

their interpretations, and significance.
5.1 Advancements in bathymetric
modeling: a comprehensive
performance analysis

In the dynamic realm of oceanography and marine resource

management, precise water depth estimation remains a critical

challenge (Richardson et al., 2024). This study presents a

groundbreaking analysis of four distinct bathymetric models, each

employing a unique approach to depth estimation. As Table 1

shows, our investigation encompasses the traditional Stumpf

model, the Log-Linear approach, the advanced Random Forest

(RF) technique, and our innovative Random Forest with Longitude/

Latitude (RF-Lon./Lat.) method. By meticulously examining their

performance across various depth ranges, we aim to provide

valuable insights into the strengths and limitations of each

approach, ultimately advancing bathymetric mapping techniques.

Our key findings include: The RF-Lon./Lat. model significantly

outperforms traditional methods in overall performance, especially

in shallow water areas (0-20 meters).The introduction of

geographic coordinates as input variables greatly improves spatial

accuracy. The method effectively captures complex non-linear

relationships while considering spatial heterogeneity. The new

method shows lower RMSE and higher R² values across different

depth ranges.

Our methodology leverages high-resolution satellite imagery

combined with precise in-situ measurements, enabling a

comprehensive assessment of model accuracy across different

depth intervals. We employ a suite of performance metrics,

including Root Mean Square Error (RMSE) and detailed error
frontiersin.org
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distribution analysis, offering a nuanced understanding of each

model’s behavior in diverse coastal environments.

The investigation reveals intriguing patterns in model

performance across depth ranges. In shallow waters (5-10m), the

Log-Linear model demonstrates remarkable accuracy, surpassing

more complex models. This success underscores the importance of

considering depth-specific methodologies in bathymetric studies

and challenges the assumption that more complex models always

yield better results.

As we explore mid-range depths (10-15m), a significant shift in

model efficacy becomes apparent. The RF-Lon./Lat. model emerges

as the clear frontrunner, outperforming other approaches. This

superior performance indicates its potential for revolutionizing

bathymetric mapping in coastal areas where traditional methods

often struggle.

In deeper waters (>15m), all models exhibit improved

performance, reflecting the relative stability of optical properties

in these regions. However, the RF-Lon./Lat. model maintains its

edge, achieving the lowest RMSE. This pattern underscores the
Frontiers in Marine Science 07
adaptability of machine learning approaches to varying depth

conditions and highlights the particular strength of the RF-Lon./

Lat. model in deeper coastal waters.

As Figure 5 shows, a detailed analysis of residual error

distributions provides further insights. The Stumpf model exhibits

a symmetrical pattern centered around zero, suggesting balanced

over- and underestimation. The Log-Linear model displays a positive

skew, indicating a tendency to overestimate depths. In contrast, the

RF model demonstrates a more concentrated distribution near zero,

albeit with a slight negative skew. The RF-Lon./Lat. model showcases

the narrowest and most symmetric error distribution, indicating

exceptional precision across various bathymetric conditions.

These findings have profound implications for bathymetric

mapping. The consistent superiority of the RF-Lon./Lat. model,

particularly in mid-range and deep waters, presents a promising

avenue for improving depth estimations in complex coastal

environments. Its ability to maintain high precision across various

depth ranges demonstrates the power of integrating geographical

context into machine learning approaches.
FIGURE 3

Comparative analysis of bathymetric estimation methods. (A) Stumpf Model: Traditional spectral ratio technique; (B) Log-Linear Model: Enhanced
spectral interpretation method; (C) Random Forest Model: Machine learning approach utilizing spectral data; (D) Random Forest with Longitude/
Latitude (RF-Lon./Lat.): Advanced algorithm incorporating geospatial context.
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Moreover, the depth-specific performance variations observed

underscore the importance of tailored approaches in bathymetric

studies. While the Log-Linear model excels in shallow waters, its

performance declines in deeper areas. Conversely, the RF and RF-

Lon./Lat. models maintain relatively consistent accuracy across all

depth ranges, with the latter showing exceptional prowess in

deeper waters.

These insights open up exciting new avenues for future

research. The success of the RF-Lon./Lat. model suggests potential

for further improvements through the integration of additional

geospatial features. Future studies could explore incorporating
Frontiers in Marine Science 08
variables such as coastal morphology, sediment characteristics, or

hydrodynamic patterns to refine depth estimations further.

Additionally, developing hybrid models that combine the

strengths of different approaches for various depth ranges could

lead to even more accurate and comprehensive bathymetric maps.

In conclusion, this comprehensive analysis not only highlights

the varying strengths of different bathymetric models but also points

towards a promising future in water depth estimation techniques.

The remarkable performance of the RF-Lon./Lat. model across

diverse depth ranges paves the way for more accurate and reliable

bathymetric mapping in coastal environments. As we continue to

refine these methods, the potential for improving our understanding

and management of marine ecosystems grows exponentially, offering

exciting prospects for fields ranging from coastal engineering to

marine conservation and climate change research.
5.2 Evaluating uncertainties and
implications in advanced
bathymetric modeling

While our proposed Random Forest and RF-Lon./Lat. models

excel in water depth inversion within the 20 m range of the study

area, it’s crucial to address the inherent uncertainties and challenges

of remote sensing-based bathymetric mapping in Yantian Port’s

complex environment. These factors influence depth retrieval

accuracy and have broader implications for applying such

techniques in similar dynamic aquatic systems.
FIGURE 4

Bathymetric maps of yantian port using various estimation techniques. (A) Stumpf Model: Classic spectral ratio approach; (B) Log-Linear Model:
Advanced spectral interpretation technique; (C) Random Forest Model: Machine learning algorithm utilizing spectral data; (D) Random Forest with
Longitude/Latitude (RF-Lon./Lat.): Innovative method integrating geospatial context.
TABLE 1 A comparison of the RMSE errors for different water depths
and different bathymetry methods.

Training
Method

RMSE

0–5 m
(8
Points)

5–10
m
(96
Points)

10-15
m
(198
Points)

>15m
(199
Points)

Overall
(500
Points)

Stumpf 8.76 5.21 1.81 4.33 3.90

Log-Linear 5.48 2.92 1.52 4.32 3.23

Random
Forest

2.72 2.20 1.82 1.78 1.90

Random
Forest
Lon./Lat.

2.52 2.03 1.22 1.47 1.53
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Yantian Port presents unique challenges for bathymetric modeling.

Its turbid waters exhibit significant variability in optical properties due

to fluctuations in sediment load and water quality. This variability can

disrupt established relationships between water depth and spectral

reflectance, potentially compromising depth estimations. Frequent

cloud cover and precipitation often impede high-quality remote

sensing data acquisition, affecting both model training and validation.

Data processing introduces additional uncertainties. The

atmospheric correction module may not completely eliminate all

atmospheric effects from satellite imagery. Residual errors can

propagate through the analysis, influencing retrieved reflectance

values. Imprecisions in geometric correction can lead to

misalignments between remote sensing data and in-situ

measurements, further complicating depth retrieval.

The port’s dynamic nature presents challenges in data

synchronization. Tidal variations, if not adequately accounted for,

can introduce significant discrepancies between measured and

estimated depths. This temporal mismatch underscores the need for

robust tidal correction methodologies in tidal-influenced waterways.

The accuracy of water depth retrieval is significantly influenced

by the underlying assumptions and parameter selections in

inversion models. Despite their sophistication, these models rely

on simplifications of intricate physical processes and may not fully

encapsulate all factors affecting water depth in such a dynamic

environment (Al Najar et al., 2023).

To address these challenges and enhance bathymetric mapping

reliability in Yantian Port, several avenues for improvement emerge.

Developing robust atmospheric correction techniques tailored to

turbid coastal environments is crucial. Integrating real-time water

quality monitoring data can account for temporal variations in

optical properties. Exploring multi-temporal and multi-sensor data
Frontiers in Marine Science 09
fusion can mitigate cloud cover impact and improve data availability.

Implementing advanced machine learning algorithms capable of

adapting to dynamic conditions and capturing complex, non-linear

relationships is essential. Incorporating high-resolution digital

elevation models and hydrodynamic simulations can improve tidal

corrections and account for morphological changes. Additionally,

developing uncertainty quantification frameworks can provide

confidence intervals for depth estimations.

However, this study also has some limitations: The

generalizability of the model still needs to be validated in a wider

range of coastal environments. The inversion accuracy for extremely

shallow water areas (<5m) still needs improvement. The model’s

adaptability to highly turbid or rapidly changing water conditions

requires further research.

In conclusion, while our proposed models represent a

significant advancement in Yantian Port’s bathymetric mapping,

the path forward requires a holistic approach addressing

multifaceted uncertainties. By refining methodologies, integrating

diverse data sources, and developing sophisticated modeling

techniques, we can enhance water depth retrieval accuracy and

reliability. Such improvements will benefit navigation and port

management and provide valuable insights for bathymetric

mapping in similar challenging aquatic environments worldwide.
5.3 Cross-validation with different water
depth inversion points and
different algorithms

In this section, we present the results of cross-validation using

different sets of water depth inversion points and compare the
FIGURE 5

The histogram map of the residual error obtained from different methods.
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performance of various algorithms, including Deep learning and

Support Vector Machines (SVM). This approach ensures that our

models are robust and generalizable across different datasets

and conditions.

Figures 6A, B depict the performance of the RF model using a

randomly selected training sample of 500 points. The predicted depth

exhibits significant deviation from the actual depth, as evidenced by an

R² value approaching 0, indicating poor predictive capability. The

elevated root mean square error (RMSE) and mean absolute error

(MAE) further underscore the substantial disparity between predicted

and actual depths. In Figures 6C, D, we augment the training dataset to

training 800 samples using the same prediction dataset. The findings

reveal a marginal enhancement in precision, accompanied by slight

reductions in RMSE and MAE values. However, the overall predictive

performance remains suboptimal, as indicated by the diminished R²

value. This suggests that increased sample size benefits the SVMmodel

significantly and renders it better suited for this type of data. This

suggests that while increasing the sample size is beneficial, the model

still struggles to capture the underlying complexity of the dataset.

Figures 7A, B illustrate the Deep Learning Model’s performance

using 500 samples. Compared to the Random Forest (RF) approach,

this model demonstrates a closer alignment with actual in-situ

depths, as evidenced by higher R² values, despite higher RMSE

and MAE. The point density plots reveal tighter clustering around
Frontiers in Marine Science 10
the 1:1 line, suggesting the Deep Learning Model’s enhanced ability

to predict water depths accurately.

Figures 7C, D showcase the Support Vector Machine (SVM)

model’s results, also trained with 500 samples. Performance metrics

indicate further improvement, characterized by reduced RMSE and

MAE. While R² values remain modest, they surpass those obtained

from the RF results. This improvement underscores the potential of

advanced machine learning techniques in enhancing water depth

inversion accuracy.

A comparative analysis between RF and RF with Longitude/

Latitude (RF-Lon./Lat.) across varying sample sizes yields valuable

insights. The standard RFmodels struggle to capture the intricacies of

water depth inversion data, whereas RF-Lon./Lat. shows greater

promise by delivering improved predictive accuracy and reliability.

Increasing the training sample size enhances the performance of both

models; however, the RF-Lon./Lat. consistently outperforms both

Deep Learning and SVMmodels, indicating its superior suitability for

this specific task. The incorporation of geographical coordinates in

the RF-Lon./Lat. model provides a significant advantage, allowing it

to better account for spatial variations in depth patterns. The

consistent superiority of RF-Lon./Lat. across different sample sizes

suggests its robustness and potential for broader application in

diverse coastal environments. While not explicitly mentioned, the

RF-Lon./Lat. model likely offers a good balance between predictive
FIGURE 6

Cross-validation with different water depth inversion points and different algorithms. (A) RF Prediction with 500 Training Samples. (B) RF Prediction
with 500 Training Samples (Lon./Lat.); (C) RF Prediction with 800 Training Samples. (D) RF Prediction with 800 Training Samples (Lon./Lat.).
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power and computational efficiency, making it an attractive option

for large-scale bathymetric mapping projects.

The findings of this study have significant implications for

coastal management and marine science. The improved accuracy in

water depth measurement can: a) Enhance navigational safety and

optimize port operations. b) Provide more reliable data support for

coastal infrastructure development. c) Promote the protection and

study of marine ecosystems. d) Provide more precise baseline data

for climate change impact studies.

While this study presents significant advancements in satellite-

derived bathymetry for complex coastal environments, it is

important to acknowledge several limitations that may affect the

interpretation and generalizability of our results.

Firstly, the sample size, although substantial, represents only a

fraction of the total water area in Yantian Port. This limitation

potentially impacts the model’s stability and generalizability,

particularly in complex coastal environments where depth

variations can be significant over short distances. The restricted

sample size may lead to underrepresentation of certain depth ranges

or bottom types, potentially biasing the model’s performance.

Future studies should aim to increase the sample size and ensure

a more comprehensive coverage of the study area to enhance the

robustness of the bathymetric models.
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Secondly, temporal and seasonal constraints pose another

significant limitation. Due to resource and time restrictions, our

data collection was confined to a single time period, which may not

capture the full range of environmental conditions that affect water

depth and optical properties in Yantian Port. Tidal variations,

seasonal changes in water turbidity, and fluctuations in suspended

sediment loads can significantly influence the relationship between

spectral reflectance and water depth. To address this limitation,

future research should consider multi-temporal data collection

strategies, incorporating measurements across different seasons

and tidal conditions. This approach would enhance the model’s

ability to account for temporal variability and improve its

applicability across diverse environmental conditions.

Thirdly, methodological limitations were observed, particularly

in the performance of our Random Forest model in extremely

shallow waters (depths< 5 meters). The reduced accuracy in these

areas may be attributed to the complex optical properties of shallow

waters, where factors such as bottom reflectance and suspended

particles have a more pronounced effect on spectral signatures.

While the introduction of geographic coordinates as input variables

improved overall spatial accuracy, this approach may be less

effective in areas with rapid terrain changes. Future research

could explore the integration of additional environmental
FIGURE 7

Cross-validation with different water depth inversion points and different algorithms. (A) Deep_learning Model Prediction with 500 Samples; (B)
Deep_learning Model Prediction with 500 Samples(Lon./Lat.); (C) Support Vector Machine Prediction with 500 Samples; (D) Support Vector Machine
Prediction with 500 Samples(Lon./Lat.).
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parameters or the development of depth-specific models to improve

accuracy in challenging shallow water environments.

Fourthly, spectral limitations of our approach should be noted.

The current model primarily utilizes visible and near-infrared

bands from Sentinel-2 imagery. This reliance on a limited spectral

range may underutilize information available in other parts of the

electromagnetic spectrum, such as shortwave infrared bands, which

could provide additional insights into water column properties and

bottom types. Moreover, the model’s performance in highly turbid

waters or rapidly changing environmental conditions remains to be

thoroughly tested. Future studies could explore the integration of

additional spectral bands or the fusion of data frommultiple sensors

to enhance the model’s capability in diverse water conditions.

Lastly, the generalizability of our results to other coastal areas

presents a significant limitation. The model’s performance is based

on the specific environmental conditions of Yantian Port, and its

direct application to other coastal regions may be limited. Different

geographical locations often present unique combinations of

hydrological, geological, and ecological characteristics that can

significantly affect the relationship between spectral reflectance

and water depth. The model’s applicability in temperate or polar

regions, open seas, or complex ecosystems such as coral reefs

remains unverified. To address this limitation, future research

should focus on testing and adapting the model across a wide

range of coastal environments, including different climate zones,

water types, and bottom conditions. This broader validation would

not only enhance the model’s versatility but also contribute to a

more comprehensive understanding of the factors influencing

satellite-derived bathymetry in diverse coastal settings.

In conclusion, this analysis highlights the RF-Lon./Lat. model’s

effectiveness in water depth inversion. Its ability to outperform both

traditional machine learning approaches (SVM) and more complex

deep learning models underscores the importance of incorporating

spatial context in bathymetric mapping. These findings pave the

way for more accurate and efficient depth estimation techniques in

coastal and marine environments, with potential applications

ranging from navigation safety to ecosystem monitoring and

coastal management.
5.4 Practical implementation insights

Bathymetry by satellites in turbid environments, particularly in

harbor areas, presents a complex challenge. While traditional

methods like the Stumpf and Log-Linear models have been

widely used, their performance often falters in waters with high

suspended particulate matter. To address this limitation, we

propose an innovative approach that integrates geographic

information with these conventional techniques.

Our methodology introduces longitude and latitude as key input

variables, enhancing spatial accuracy and precision in depth estimation.

This novel approach aims to capture the nuanced spatial heterogeneity

inherent in the relationship between water reflectance and depth.

The study focuses on Rushikonda Beach, a picturesque c-

shaped bay on India’s east coast. We conducted comprehensive

field data collection, including high-precision water depth
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measurements using a multi-beam echo sounder, accurate

positional data gathered via differential GPS, and multispectral

reflectance data from the Sentinel-2 satellite.

By synthesizing these diverse data sources, we developed a

robust water depth inversion model. The integration of

geographic information methods during model training allowed

us to account for spatial variations in the reflectance-depth

relationship effectively.

At the core of our approach is a Random Forest algorithm

enhanced with a coordinate attention mechanism. This sophisticated

technique enables the capture of complex, nonlinear relationships

between water reflectance and depth. The incorporation of longitude

and latitude information significantly improves the model’s spatial

accuracy and enhances the overall precision of water depth inversion in

turbid environments.

This innovative methodology represents a significant

advancement in bathymetric mapping for challenging aquatic

environments. By leveraging both traditional optical techniques

and modern machine learning approaches, our model offers a more

comprehensive and accurate solution to the long-standing challenge

of depth estimation in turbid waters.

The implications of this research extend beyond Rushikonda

Beach, potentially revolutionizing bathymetric surveys in various

complex coastal and harbor environments worldwide. As we

continue to refine this approach, it promises to enhance our

understanding of underwater topography, crucial for maritime

safety, coastal management, and environmental monitoring.

As Figure 8 shows, the experimental results reveal the superior

performance of the Random Forest model incorporating spatial

information in the turbid environment of Rushikonda Beach, a

picturesque c-shaped bay on India’s east coast. This advanced

approach significantly outperforms traditional Stumpf and Log-

Linear models across various depth ranges.

Key findings include:Lower Root Mean Square Error (RMSE)

and higher R² values across different water depth ranges and

particularly notable improvements in accuracy within the shallow

water range (0-20 meters).

The enhanced performance of this spatial-aware Random

Forest model represents a significant advancement in water depth

inversion techniques for turbid environments. As Figure 9 shows,

its success not only improves the accuracy of bathymetric mapping

but also offers valuable support for coastal management and

navigational safety.

This innovative method addresses longstanding challenges in

estimating water depths in complex coastal areas, where traditional

approaches often fall short. By effectively integrating spatial

information, the model demonstrates its ability to capture the

nuanced relationships between water reflectance, depth, and

geographical location.

As Figure 9 shows, the implications of this research extend

beyond Rushikonda Beach, potentially revolutionizing bathymetric

surveys in various turbid coastal and harbor environments

worldwide. As we continue to refine this approach, it promises to

enhance our understanding of underwater topography, crucial for

sustainable coastal development, maritime operations, and

environmental monitoring.
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Our research demonstrates the significant potential of advanced

machine learning techniques in complex harbor waters, particularly

through the application of the Random Forest algorithm enhanced

with coordinate attention. This innovative approach markedly

improves the accuracy of water depth inversion, outperforming

traditional methods in challenging turbid environments. By

integrating geographical coordinates into the model and utilizing a

Random Forest algorithm with coordinate attention, we’ve been able

to capture complex non-linear relationships between water

reflectance and depth, resulting in significant accuracy

improvements, especially in shallow water ranges.

These advancements not only showcase the capabilities of

machine learning in bathymetric mapping but also provide

valuable references for future applications in similar coastal

environments. The method’s success in Nanshan Port suggests

its potential adaptability to other complex aquatic systems

worldwide. As we continue to accumulate data and optimize the

model, this approach holds broad application prospects beyond

water depth inversion, including water quality assessment in

coastal and inland water bodies, atmospheric research, and

coastal zone management.

The success of this geospatially-enhanced Random Forest

model opens new avenues for interdisciplinary research, bridging

the gap between remote sensing, machine learning, and coastal
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sciences. By providing more accurate and reliable bathymetric data,

this method contributes significantly to maritime safety, coastal

planning, and environmental conservation efforts. As we refine this

technique, its impact on our understanding and management of

complex aquatic environments continues to grow, promising

advancements in both scientific knowledge and practical

applications in coastal and marine sectors.

Our RF-Lon./Lat. model represents a significant advancement

in satellite-derived bathymetry (SDB) for complex coastal

environments. By integrating geographical coordinates through a

Coordinate Attention mechanism, our approach transcends

traditional methods that rely solely on spectral information. This

innovation addresses critical gaps in existing SDB techniques,

particularly in turbid and topographically complex waters where

conventional methods often fall short. The model’s superior

performance, especially in shallow water ranges (0-20 meters),

offers unprecedented accuracy for coastal mapping and monitoring.

The practical implications of this technology are far-reaching.

By providing more precise bathymetric data, our method has the

potential to significantly improve navigational safety, optimize port

operations, and support environmental monitoring efforts. It can

inform coastal infrastructure development, enhance marine habitat

protection, and contribute valuable data to climate change impact

studies. The adaptability of our approach to local conditions and its
FIGURE 8

Comparative analysis of bathymetric estimation techniques. (A) Stumpf Model: Traditional spectral ratio approach; (B) Log-Linear Model: Enhanced
spectral interpretation method; (C) Random Forest Model: Machine learning technique utilizing spectral data; (D) Random Forest with Longitude/
Latitude: Advanced algorithm integrating geospatial context.
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ability to capture nuanced spatial heterogeneity set it apart from

current technologies.

Our dual-stage methodology offers a comprehensive solution

that balances data quality, model sophistication, and practical

applicability. This not only enhances the accuracy of depth

estimations but also provides a scalable framework for future

bathymetric studies in diverse aquatic settings. The computational

efficiency of our approach, coupled with its robust performance

across different depth ranges, makes it particularly suitable for

large-scale bathymetric mapping projects.

As we continue to refine and apply the RF-Lat./Lon algorithm, its

potential to revolutionize our understanding and management of

coastal ecosystems is substantial. By effectively combining advanced

machine learning capabilities with spatial context, our model paves the

way for more precise and reliable bathymetric data. This innovative

approach marks a new era in maritime and coastal science, offering

unprecedented precision and insight in bathymetric mapping, and has

the potential to transform fields such as coastal management, maritime

safety, and marine ecosystem conservation.
6 Conclusions

This study introduces an innovative water depth inversion

method, combining Random Forest algorithms with a Coordinate
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Attention mechanism. Applied to the complex environment of

Nanshan Port, our approach addresses limitations of traditional

bathymetric techniques in turbid, topographically diverse waters.

By integrating geographic coordinates as key input variables, we

significantly enhanced spatial accuracy in depth estimation. The

Random Forest Lon./Lat. model demonstrated superior

performance, particularly in shallow waters (0-20 meters),

achieving the lowest RMSE and highest R² values among

tested methods.

Our approach effectively captures complex nonlinear

relationships between spectral reflectance and coastal water depth,

while accounting for spatial heterogeneity and local variations in

water quality and bottom type. This results in robust and reliable

depth estimates even in challenging aquatic environments.

The study advances satellite-derived bathymetry (SDB) and

offers valuable insights for port management, coastal engineering,

and environmental monitoring. Future research directions may

include applying this method to a wider range of coastal

environment types to verify its universality, exploring the fusion

of multi-source remote sensing data (such as SAR, hyperspectral) to

further improve accuracy, developing adaptive coordinate attention

mechanisms to optimize the depth inversion process in different

environments, studying the combination of this method with water

quality parameter inversion to obtain more comprehensive coastal

environmental information.
FIGURE 9

Bathymetric correlation analysis in rushikonda beach. (A) Stumpf Model: Classical spectral ratio technique; (B) Log-Linear Model: Advanced spectral
interpretation approach; (C) Random Forest Model: Machine learning algorithm utilizing spectral data; (D) Random Forest with Longitude/Latitude:
Innovative method integrating geospatial context.
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As we continue to accumulate data and optimize the model, we

anticipate further improvements in bathymetric mapping accuracy

and efficiency. This research paves the way for enhanced

understanding and management of critical aquatic environments,

with wide-ranging applications in maritime safety, coastal

conservation, and sustainable resource management.
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