Skip to main content

ORIGINAL RESEARCH article

Front. Mar. Sci.
Sec. Ocean Observation
Volume 11 - 2024 | doi: 10.3389/fmars.2024.1471670

Analysis of acoustic field characteristics of mesoscale eddies throughout their complete life cycle

Provisionally accepted
  • Dalian Navy Academy, Dalian, China

The final, formatted version of the article will be published soon.

    Mesoscale eddies exert a profound influence on oceanic temperature and salinity structures, thereby altering the ecological environment and acoustic propagation characteristics. Prior research on acoustic propagation beneath mesoscale eddy effects has predominantly concentrated on fragmented, snapshot-style analyses. In contrast, this study employs a holistic approach by integrating multi-source data to elucidate oceanic temperature and salinity structures, ultimately impacting their ecological environment and acoustic propagation. While the existing paper, this study adopts a more comprehensive and successional methodology. Through the amalgamation of multi-source data, this research introduces an innovative mesoscale eddy tracking algorithm and an enhanced Gaussian eddy model. Utilizing the BELLHOP ray theory model, this investigation scrutinizes the acoustic field characteristics of a cyclonic eddy and a typical anticyclonic eddy (CE-AE) pair exhibiting complete life cycles in the Northwest Pacific. The re

    Keywords: mesoscale eddies, Remote sensing application, Acoustic field simulation, complete eddy life cycle, Bellhop

    Received: 28 Jul 2024; Accepted: 16 Dec 2024.

    Copyright: © 2024 Xiaodong, Zhang, Xu and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Lei Zhang, Dalian Navy Academy, Dalian, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.