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Introduction: Coastal tourism has become an important pillar of economic

growth in China's coastal regions, yet no quantitative research has analyzed the

relationship between coastal tourism and marine pollution.

Methods: This study, within a multivariate framework, comprehensively examines

the impact of coastal tourism on marine pollution by employing various

econometric techniques and focusing on four different types of marine pollutant

discharges: chemical oxygen demand (COD), petroleum (PET), ammonia nitrogen

(NHN), and total phosphorus (TP).

Results and discussion: Panel cointegration tests confirm a long-term

relationship between coastal tourism and these four types of marine pollutant

discharges. In the long run, coastal tourism has a significantly negative impact on

COD, NHN, and TP. The results of Pooled Mean Group (PMG), Fully Modified

Ordinary Least Squares (FMOLS), and Dynamic Ordinary Least Squares (DOLS)

estimators show that for every 1% increase in coastal tourism revenue (TOUR),

COD decreases by 0.734%, 0.536%, and 0.952% respectively; NHN decreases by

0.746%, 0.340%, and 1.633%; and TP decreases by 5.169%, 0.899%, and 0.334%

respectively. However, the impact of coastal tourism on PET is not significant.

The Dumitrescu-Hurlin (D-H) panel causality test results indicate different

causality patterns between coastal tourism and various marine pollutant

discharges. Specifically, there is a bidirectional causality between coastal

tourism and COD, NHN, and a unidirectional causality between coastal tourism

and PET, TP. Moreover, heterogeneity analysis reveals that coastal tourism does

not significantly reduce all marine pollutant discharges in low-and middle-

income coastal regions. Furthermore, compared to the central and southern

coastal regions, the coastal tourism of northern regions has not significantly

reduced marine pollution. This study can provide policymakers with references

for developing coastal tourism and reducing marine pollutant discharges.
KEYWORDS

coastal tourism, marine pollution, pollutant discharges, quantitatively analyze, long-
term relationship
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1 Introduction

In regional economic development and citizens’ lives, the

importance of tourism is increasingly prominent (Zhang and

Xing, 2023). Coastal tourism, as a significant branch of tourism

activities, has become an important pillar industry for the economic

development of China’s coastal regions, owing to its superior

resource endowment and proactive policy guidance (Liu et al.,

2020; Ji and Wang, 2022; Wang P. et al., 2023). China boasts an

18,000-kilometer coastline, with many famous scenic spots and

beautiful coastal landscapes along its coastal regions (Wang et al.,

2022). In 2019, China’s coastal tourism industry maintained steady

growth, achieving an added value of 1.757 trillion yuan for the year,

accounting for 50.6% of the added value of major marine industries

(MNRC, 2019). As the largest contributor to the added value of

marine industries, coastal tourism has driven the development of

the marine economy in China’s coastal regions. In the future,

coastal tourism is expected to expand the recreational use of

oceans and coasts, bringing more positive economic benefits to

coastal regions (Yang et al., 2021).

With the continuous expansion and rapid development of

coastal tourism in China, significant environmental pressures

have inevitably emerged, leading to an increasing conflict between

coastal tourism and the environment (Liu et al., 2017; Wang et al.,

2022). Previous domestic and international studies have highlighted

that coastal tourism has caused multiple forms of damage to coastal

ecosystems and the environment. Specifically, excessive

development in coastal regions has resulted in metal pollution on

beaches (Vetrimurugan et al., 2017) and degradation of beach

ecosystems (Buzzi et al., 2022). Activities such as snorkeling and

diving disrupt and damage marine habitats (Beeharry et al., 2021),

while littering by tourists harms the beach environment (Maione,

2021). The disposal of solid waste, such as plastics, indirectly

damages ecosystems (Ronda et al., 2023). Additionally, the

massive consumption of energy alters atmospheric greenhouse

effects, contributing to climate change (Saenz-de-Miera and

Rosselló, 2014; Robaina et al., 2020; Gao and Zhang, 2021). The

increase in tourist numbers has also led to the deterioration of water

quality in coastal regions (Nuzula et al., 2017; Kurniawan et al.,

2023). Therefore, coastal regions are facing a significant challenge in

balancing coastal tourism with environmental pollution, making

exploring the relationship between the two particularly urgent.

The deterioration of the marine environment is closely related to

various factors such as extensive economic development (Shao, 2020;

Wang Z. et al., 2020), technological innovation (Shao, 2020),

urbanization (Xu and Zhang, 2022), industrial structure (Wang S.

et al., 2020; Wang Q. et al., 2023), and human activities (Crain et al.,

2009). However, coastal tourism, one of the frequent human

activities, may also impact the marine environment, though this

issue remains inconclusive and lacks systematic research. Some

scholars have explored the potential impact of coastal tourism on

the marine environment from a qualitative perspective. Kocasoy

(1989) investigated the potential link between coastal tourism,

marine pollution, and public health by surveying coastal tourist

destinations in Turkey. The study pointed out that tourism is

considered a major source of pollution in coastal regions. Beeharry
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et al. (2021) also analyzed the impact of coastal tourism activities on

the marine environment in Mauritius through a questionnaire

survey. The results showed a significant negative linear relationship

between tourism activities and the marine environment. Specifically,

operators of recreational activities and tourists believed that fuel-

powered maritime activities caused significant harm to the ocean.

Additionally, recreational tourism activities can disrupt natural

marine habitats and lead to the loss of marine biodiversity, one of

the most apparent negative impacts on the marine environment.

Burak et al. (2004) conducted a comprehensive assessment of the

effects of coastal tourism on Turkey’s coastal regions. Expanding

economic activities such as tourism development and resort projects

directly damaged coastal regions’ ecological environment and cultural

assets. Zahedi (2008), through a review of research related to tourism

and the environment, summarized the impacts of coastal tourism on

the coastal environment. The study highlighted that eco-tourism in

coastal areas does not necessarily benefit the ecosystem, as

governments often prioritize economic development over

environmental sustainability. Tourism’s uncontrolled and rapid

growth poses a risk of gradual degradation to coastal ecosystems.

Exploring the relationship between coastal tourism and marine

pollution from a qualitative perspective is not sufficiently

comprehensive, making it essential to conduct quantitative

analyses. Approximately 80% of pollutants in the marine

environment originate from land-based activities such as industry,

agriculture, and urbanization (Hildering et al., 2009). These land-

based pollutants enter the ocean either through direct discharge or

via rivers, posing significant threats to marine ecosystems (Liu et al.,

2011; Zhao et al., 2020). For instance, organic pollutants can deplete

dissolved oxygen in seawater through aerobic decomposition,

endangering marine life (Lim et al., 2006). Additionally, marine

eutrophication can lead to frequent red tides, ocean acidification,

and hypoxia (Fan et al., 2019). Therefore, monitoring pollutant

discharge in estuarine areas is crucial for effectively preventing

marine pollution. In China, direct marine discharge outlet

monitoring has revealed that the primary pollutants discharged

into major estuarine areas include COD, PET, NHN, and TP (Chen

and Qian, 2020). Based on the pollution levels and data availability

of these pollutant discharges in the surrounding oceans of China,

this study selects these four types of marine pollutant discharges to

investigate whether and to what extent coastal tourism impacts

marine pollution. To achieve this objective, we obtained data on the

major pollutants from direct ocean discharge sources from the

Bulletin of Marine Ecology and Environment Status of China and

employed various econometric methods to quantitatively analyze

the relationship between coastal tourism and marine pollution.

First, we conducted the CD test to examine whether there is

cross-sectional dependence among all variables. The results rejected

the null hypothesis at the 1% significance level, indicating that

shocks in one province affect other provinces. Next, we applied

panel unit root tests to assess the stationarity of the variables. The

results showed that some variables were non-stationary at the level,

but all variables became stationary after first-order differencing.

Subsequently, we performed panel cointegration tests to determine

whether there is a long-term relationship between the variables.

The results indicated a long-term relationship between coastal
frontiersin.org
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tourism and the four types of marine pollutant discharges. Given

the cointegration relationship among the variables, we further used

PMG, FMOLS, and DOLS estimators to estimate the coefficients of

the respective variables. The findings suggest that coastal tourism

has a significant long-term negative impact on COD, NHN, and TP,

implying that developing coastal tourism helps reduce these three

pollutant discharges and mitigate marine pollution. However,

coastal tourism did not significantly impact TP, primarily related

to the main sources of petroleum pollutants in the ocean.

Additionally, we applied the D-H panel causality test to analyze

the causal relationships between these variables. The study revealed

different causality patterns between coastal tourism and various

marine pollutant discharges. We also considered the heterogeneity

of the impact of coastal tourism on marine pollution. The results

indicated that coastal tourism in low- and middle-income coastal

regions does not have a significant negative impact on all marine

pollutant discharges as it does in high-income coastal regions.

Furthermore, the heterogeneity analysis based on geographic

regions showed that the northern coastal regions did not

significantly reduce marine pollution. In contrast, the central and

southern coastal regions demonstrated more favorable outcomes.

This study makes significant contributions to the existing

literature in three key areas. First, we are among the first to

employ econometric methods to quantitatively analyze the impact

of coastal tourism on marine pollution, providing robust empirical

support for exploring the relationship between the two. Second, we

delve into whether this relationship varies across different types of

marine pollutant discharges, offering a new perspective on the

impact of coastal tourism on various pollutant discharges. Finally,

this study examines the heterogeneity of the impact of coastal

tourism on marine pollution by categorizing coastal regions based

on income levels and geographical location. By identifying these

differences, our research provides scientific evidence for local

governments and relevant authorities to formulate more precise

and effective environmental policies and development plans,

helping to address marine pollution issues better.
2 Methodology

2.1 Data and variable description

This study aims to explore the impact of coastal tourism on

marine pollution. We analyzed of 11 coastal regions in China,

including Zhejiang, Tianjin, Shanghai, Shandong, Liaoning, Jiangsu,

Hebei, Hainan, Guangxi, Guangdong, and Fujian. These coastal

regions cover 1.302 million square kilometers, accounting for

13.57% of China’s total land area (Central People’s Government

of the People’s Republic of China, n.d.). In 2019, the total

population of these coastal regions was 613.22 million,

representing 45.02% of China’s total population. The combined

GDP of these regions amounted to 52,193.677 billion yuan,

accounting for 52.97% of China’s total GDP (NBSC, 2020). This

highlights the critical role coastal regions play in China’s overall

development and global economic competitiveness (Wang Z. et al.,

2020). Additionally, in 2019, the total wastewater discharge from
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direct ocean discharge sources in China’s coastal regions reached as

high as 8.011 billion tons (MNRC, 2019). Therefore, to better

promote the coordinated development between coastal tourism

and the marine ecological environment in coastal regions, this

study selected these 11 coastal regions as the research sample for

in-depth analysis. The study areas are shown in Figure 1.

This study covers the period from 2006 to 2019. In 2020, the

COVID-19 pandemic spread rapidly. The Ministry of Culture and

Tourism of China issued a notice on January 26, 2020, suspending

all tourism activities to address the pandemic. This measure directly

led to a severe blow to China’s tourism industry, causing a sharp

decline in tourism revenue (WuW. et al., 2021; Wang C. et al., 2022;

Ran et al., 2023). Due to the impact of COVID-19, data from 2020

onwards are difficult to reflect the normal state of economic

activities. Therefore, considering data availability and consistency

in statistical standards, this study analyzes data from 2006 to 2019.

The dependent variable in this study is marine pollution,

measured using the discharges of four major pollutants directly

discharged into the ocean from coastal regions in China. Land-

based pollution is the primary source of marine pollution

(Hildering et al., 2009; Wang Z. et al., 2020), and monitoring

direct marine discharge outlets allows for a more intuitive and

effective assessment of the degree of marine pollution. In China’s

marine pollution context, the main pollutants directly discharged

into the ocean include COD, PET, NHN and TP (Yuan and Xiang,

2018; Chen and Qian, 2020). The discharge data for these pollutants

have been widely used in various research analyses (Zhang et al.,

2017; Yuan and Xiang, 2018; Chen and Qian, 2020; Peng et al.,

2023). Although the Bulletin of Marine Ecology and Environment

Status of China also covers various pollution sources such as

riverine sources, deposition of atmospheric pollutants, and

marine litter and microplastics, these were not included in this

study due to data availability and discontinuity in time series.

This study considers coastal tourism revenue as an independent

variable. Referring to Liu et al. (2017), we used the ratio of total

tourism revenue to GDP in coastal cities as a proxy variable for

coastal tourism. To ensure the accuracy and rigor of the research,

we compiled and aggregated the total tourism revenue data from

coastal cities in 11 coastal provinces, representing the coastal

tourism revenue of each province. The data is sourced from the

China Statistical Yearbook.

This study employs four control variables. First, the Gross

Ocean Product (GOP) represents the final output of marine

economic activities in coastal regions within a certain period. It is

obtained by summing the added value of three types of marine

industries and effectively reflects the level of marine economic

development in coastal regions. Referring to Shao et al. (2021),

we used per capita GOP with data from the China Marine Statistical

Yearbook. The population variable is derived by summing the

populations of coastal cities within each coastal province with

data from the China Statistical Yearbook. Strict environmental

regulations can effectively control pollutant discharges and

improve marine environmental quality (Sun et al., 2023).

Therefore, this study uses the proportion of industrial pollution

control investment to GDP as the environmental regulation

variable, following Liu et al. (2021). Technological innovation can
frontiersin.org
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alleviate the ecological pressure on the marine environment (Shao,

2020; Ren and Ji, 2021). Based on the study by Su et al. (2021), we

used the number of personnel engaged in scientific and

technological activities in marine R&D institutions as the

technological innovation variable, with data from the China

Marine Statistical Yearbook. To ensure comparability and

robustness in the panel data analysis, all variables used in this

study have been ln-transformed to mitigate the impact of different

dimensions. Table 1 presents the variable sources and descriptions,

while Table 2 presents the descriptive statistics.
2.2 Empirical model

This study employs the STIRPAT model (Stochastic Impacts by

Regression on Population, Affluence, and Technology) developed

by Dietz and Rosa (1994) and York et al. (2004) to determine the

selection of variables. This model is widely used to assess the impact

of driving forces on ecological environmental changes and can

estimate the causal effects represented by the model coefficients

(Wei, 2011). The basic formula of the STIRPAT model is:

Ii,t = a � Pb
i,t � Ac

i,t � Td
i,t � mi,t

where I represents the environmental impact caused by

humans, P denotes the population size, A stands for affluence, T

signifies the level of technology. And a represents the model’s

constant coefficient, b, c, and d denote the underestimated

parameters, and m signifies the error term. After taking the
Frontiers in Marine Science 04
logarithm of the model, it can be rewritten as:

lnIi,t = a + blnPi,t + clnAi,t + dlnTi,t + mi,t

The STIRPAT model allows for the estimation of various

coefficients as parameters and the appropriate decomposition of

each factor. However, the basic model no longer meets the complex

demands of modern research. Therefore, based on the

characteristics and content of the study, we can incorporate

additional factors into the basic STIRPAT model to explore their

impact on environmental stress (Wang et al., 2017; Wu R. et al.,

2021). To comprehensively analyze the impact of coastal tourism on

marine pollution, this study expands the basic STIRPAT model,

drawing on and referencing previous literature to meet the design

requirements of this research. Referring to Liddle (2014); Koçak

et al. (2020) and Ahmad and Ma (2022), we incorporated coastal

tourism as an affluence factor into the STIRPAT model. Following

Liu et al. (2019) and Song et al. (2020), we include environmental

regulation variables in the model. The dependent variables of this

study are four types of marine pollutant discharges. Therefore, the

expanded formula is as follows:

lnCODi,t = a0 + a1lnTOURi,t + a2lnPOPi,t + a3lnGOPi,t

+ a4lnTECHi,t + a5lnERi,t + ei,t

lnPETi,t = b0 + b1lnTOURi,t + b2lnPOPi,t + b3lnGOPi,t

+ b4lnTECHi,t + b5lnERi,t + ei,t
FIGURE 1

Study areas.
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lnNHNi,t = g 0 + g 1lnTOURi,t + g 2lnPOPi,t + g 3lnGOPi,t

+ g 4lnTECHi,t + g 5lnERi,t + wi,t

lnTPi,t = l0 + l1lnTOURi,t + l2lnPOPi,t + l3lnGOPi,t

+ l4lnTECHi,t + l5lnERi,t + ri,t

In the four models mentioned above, the dependent variables

are four types of marine pollutant discharges: COD, PET, NHN,

and TP. The independent variable is coastal tourism revenue

(TOUR), and the control variables include Environmental

Regulation (ER), GOP, Technological Innovation (TECH), and

Total Population (POP). The parameters ax , bx , gx and lx
represent the coefficients for the corresponding variables in each
Frontiers in Marine Science 05
of the four models, respectively. The variable t denotes time, and i

represents the provinces. The terms ei,t , ei,t , wi,t and ri,t represent
the error terms in each of the four models, respectively.
2.3 Econometrics procedure

2.3.1 CD test
Due to spillover effects, spatial effects, or unobserved common

factors, cross-sectional dependence may exist in panel data models,

leading to estimation errors (Liddle, 2012; Rahman et al., 2021). In

the context of China’s macroeconomic development and regional

connections, there are close links between provinces. When one

province experiences a shock, it inevitably impacts other provinces.
TABLE 2 Descriptive statistics.

Variables Mean Median Maximum Minimum SD Skewness Kurtosis Jarque-Bera Probability

COD 1080.999 751.983 14867.285 56.839 1448.137 6.071 55.309 1.9E+04 0.000

PET 6.763 2.959 226.963 0.000 18.954 10.330 119.915 9.0E+04 0.000

NHN 98.004 56.232 635.797 0.163 112.381 2.105 8.115 281.700 0.000

TP 16.330 8.954 242.917 0.462 25.409 5.444 44.082 1.2E+04 0.000

TOUR 0.096 0.086 0.307 0.008 0.067 0.667 3.098 11.490 0.003

ER 0.001 0.001 0.006 0.000 0.001 1.830 8.458 277.000 0.000

GOP 210.310 174.673 708.400 37.387 133.809 1.105 3.869 36.180 0.000

TECH 1648.279 1650.000 6750.000 69.000 1198.850 1.187 5.335 71.130 0.000

POP 2310.000 1785.800 6747.000 582.830 1509.534 1.230 3.962 44.770 0.000
TABLE 1 Variable source and description.

Variables Symbols Specification Data source

Chemical oxygen demand COD Chemical oxygen demand discharge from direct marine
pollution sources/total population of coastal cities (tons per
ten thousand persons)

Bulletin of Marine Ecology and Environment Status of
China by the Ministry of Ecology and Environment of the
People’s Republic of China

Petroleum PET Petroleum discharge from direct marine pollution sources/
total population of coastal cities (tons per ten
thousand persons)

Bulletin of Marine Ecology and Environment Status of
China by the Ministry of Ecology and Environment of the
People’s Republic of China

Ammonia nitrogen NHN Ammonia nitrogen discharge from direct marine pollution
sources/total population of coastal cities (tons per ten
thousand persons)

Bulletin of Marine Ecology and Environment Status of
China by the Ministry of Ecology and Environment of the
People’s Republic of China

Total phosphorus TP Total phosphorus discharge from direct marine pollution
sources/total population of coastal cities (tons per ten
thousand persons)

Bulletin of Marine Ecology and Environment Status of
China by the Ministry of Ecology and Environment of the
People’s Republic of China

Coastal tourism revenue TOUR Total tourism revenue of coastal cities/GDP (%) China Statistical Yearbook by the National Bureau of
Statistics of China

Environmental regulation ER Completed investment in industrial pollution treatment/
GDP (%)

China Statistical Yearbook by the National Bureau of
Statistics of China

Gross ocean product GOP GOP/total population of coastal cities (ten thousand yuan
per person)

China Marine Statistical Yearbook by the National Marine
Data and Information Service

Technological innovation TECH Number of personnel engaged in scientific and
technological activities in marine R&D Institutions (person)

China Marine Statistical Yearbook by the National Marine
Data and Information Service

Total population POP Total population of coastal cities (ten thousand persons) China Statistical Yearbook by the National Bureau of
Statistics of China
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Therefore, to prevent biases in the statistical analysis of panel data

in this study, we use the CD test proposed by Pesaran (2004) to

examine whether there is cross-sectional dependence in the panel

data. Conducting the CD test is a necessary step before panel data

analysis. This test analyzes whether there is cross-sectional

dependence in the error terms by eliminating the mean during

the computation process (Khan et al., 2019). Typically, the null

hypothesis is that the error terms in the panel data are cross-

sectionally independent (Saqib and Benhmad, 2021). It is worth

noting that this test can effectively identify cross-sectional

dependence in the data even when the dependence is weak and

can handle non-normally distributed random errors (Perone, 2024).

The equation for the CD test used in this study is as follows:

CD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T

N(N − 1)

r
o
N−1

i=1
o
N

j=i+1
r̂ ij

 !

N represents the cross-sectional units, T denotes the time

dimension, and i and j respectively stand for the elements of the

connection matrix. The r̂ ij represents the pairwise correlation of the

residuals obtained from OLS estimation. Even when the sample size

N and time T are small, the CD test can still provide robust and

accurate results for small samples (Islam et al., 2022; Perone, 2024).

To ensure the accuracy of subsequent analysis results, this study

employs tools and techniques that can yield robust results even in

the presence of cross-sectional dependence.

2.3.2 Panel unit root tests and panel
cointegration tests

Before conducting the cointegration tests, we need to check

whether all variables have unit roots. To ensure the robustness of

the test results, this study employs both first-generation and

second-generation panel unit root tests. Since first-generation

panel unit root tests are not suitable for situations with cross-

sectional dependence, which may lead to spurious regression (Iqbal

et al., 2023), we use the second-generation panel unit root test, the

CIPS test proposed by Pesaran (2007), to address this issue. The

CIPS test can detect and eliminate cross-sectional dependence in

our panel data (Bangake and Eggoh, 2011). The null hypothesis of

the CIPS test is that all variables in the panel data are non-stationary

(Bildirici, 2017), and its equation is expressed as follows:

Dzit = ai + bizi,t−1 + riT +o
n

j=1
dijDzi,t−1 + eit

Among them, zit represents the variables, r represents the

deterministic components, d represents the significance level, and

e represents the error term. The statistical equation for the CIPS test

is as follows, where ti(N ,T) represents the t-statistic of bi.

CIPS(N,T) =
1
No

N

i=1
ti N,Tð Þ

The panel cointegration test is used to examine whether there is

a long-term convergence relationship between two or more non-

stationary time series variables (Muye and Muye, 2017). The panel

cointegration tests by Kao (1999) and Pedroni (1999) are
Frontiers in Marine Science 06
commonly used methods, but they require cross-sectional

independence. If cross-sectional dependence exists, it can lead to

biased results (Islam et al., 2022). In contrast, the Westerlund and

Edgerton (2007) and the Westerlund ECM cointegration tests can

avoid this issue. This study focuses on the Westerlund ECM

cointegration test, and its error correction equation is presented

as follows:

DYit = j
0
idt + ti(Yi,t−1 − b

0
iXi,t−1) +o

k

j=1
sijDYi,t−j +o

k

j=0
pijDXi,t−j + eit

Among them, ti represents the coefficient of the error

correction term. To test for cointegration among the variables,

there are two sets of statistical data: two panel statistics and two

group-mean statistics. The Gt and Ga statistics are used to

determine the existence of cointegration in a cross-sectional unit.

The equations for these statistics are as follows:

Gt =
1
No

N

i=1

∂̂ i

Se(∂̂ i)

Ga =
1
No

N

i=1

T∂̂ i

1 −ok
j=1∂̂ ij

The Pt and Pa statistics are used to determine the existence of

cointegration across the entire panel. The equations for these

statistics are as follows:

Pt =
∂̂

Se(∂̂ )

Pa = T∂̂
2.3.3 Estimation methods
Pesaran et al. (1999) developed the PMG estimator to estimate

the short-term and long-term impact coefficients between variables.

The unique feature of PMG is that it allows for different intercepts,

short-term coefficients, and error variances across different groups,

while assuming that the long-term coefficients are the same across

all cross-sections (Cetin et al., 2022; Saidmamatov et al., 2023). This

characteristic limit the homogeneity of long-term relationships

among provinces in panel data while allowing for heterogeneity

in short-term relationships (Iqbal et al., 2023). Compared to DOLS

and FMOLS, a significant advantage of PMG is its ability to assess

short-term dynamics in the model. Moreover, PMG is applicable

regardless of whether the variables used in the analysis are I(0) or I

(1) (Hongxing et al., 2021).

The PMG estimator assumes that all variables in the model have

a long-term relationship. Additionally, PMG is based on the ARDL

(p, q) model, where p is the lag order of the dependent variable, and

q is the lag order of the independent variables. Therefore, the

equation for PMG in the form of error correction mechanism is

expressed as follows:

Dyit = ECTit +op−1
j=1 g

i
jDyi,t−j +oq−1

j=0 d
i
jDXi,t−j + eit
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Where ECTit = j i½yi,t−1 − (b i
0 + b i

1Xi,t−1)�, ECTit represents the

error correction term, j i defines the speed of adjustment, b
represents the long-term coefficients, g i

j and d i
j represent the

short-term coefficients for the dependent and independent

variables, respectively, and eit is the error term.

When there is a cointegration relationship among the variables

in the panel series, issues of autocorrelation and endogeneity

can lead to biased coefficients obtained by OLS estimation.

FMOLS and DOLS estimators can correct these biases, ensuring

the accuracy of the estimates. Additionally, these two estimators can

maintain the robustness of the results even with small sample sizes

(Rahman et al., 2021).

The FMOLS estimator, as proposed by Pedroni (2000), uses a

non-parametric approach by integrating semi-parametric

corrections into the OLS estimation to address biases caused by

endogeneity and serial correlation. The equation for the FMOLS

estimator is expressed as follows:

b̂*GFM = N−1o
N

i=1
b̂*FM,i

b̂ *GFM represents the parameter estimated using FMOLS for

each individual in the panel data. The equation for the

corresponding t-statistic is expressed as follows:

tbb*GFM = N−1=2o
N

i=1
tbb*FM,i

The DOLS estimator, as developed by Kao and Chiang (2000),

uses a parametric approach by incorporating the lagged and lead

values of the explanatory variables to eliminate issues of endogeneity

and serial correlation. Monte Carlo simulations have shown that,

compared to OLS and FMOLS, the parameter estimation bias of

DOLS is smaller (Khan et al., 2019; Rahman et al., 2021). The

equation for the DOLS estimator is expressed as follows:

yit = ai + bixit + o
qi

j=−qi

cijDxit+j + vit

Where, qi and − qi represent the number of lagged and lead

terms, respectively.
2.3.4 D-H panel causality test
The above panel estimators do not fully confirm the causality and

its direction between the variables. Therefore, we adopt the panel

causality test by Dumitrescu and Hurlin (2012) to evaluate the

causality between coastal tourism and four types of marine

pollutant discharges. The unique advantage of the D-H causality

test is that it performs well even in the presence of cross-sectional

dependence among provinces, making it widely regarded as an

advanced version of the Granger causality test (Iqbal et al., 2023).

The equation for the D-H panel causality test is expressed as follows:

yit = ai +o
k

j−1
mj
iyi,t−j +o

k

j−1
g jixi,t−j + eit

Where, mj
i represents the autoregressive parameters, and g j

i

represents the regression coefficients. The null hypothesis of the
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D-H causality test is that there is no causality across all cross-

sections, while the alternative hypothesis is that there is at least one

causal relationship in the panel data.
3 Empirical results

3.1 Pre-analysis testing

To explore the relationship between coastal tourism and marine

pollution, a series of pre-analysis tests, including the CD test, panel

unit root tests, and panel cointegration tests, need to be conducted.

First, the results of the CD test in Table 3 indicate that the null

hypothesis of no cross-sectional dependency is rejected for all

variables at the 1% significance level, supporting the alternative

hypothesis of the existence of cross-sectional dependency among

the variables. This suggests that there is cross-sectional dependence

and interrelation among the variables within the same period,

which further ensures the reliability of subsequent tests and

analysis results.

The unit root test requires that the data be stationary at level or

first-order difference. Due to the limitations of each testing method,

we employed both first-generation unit root tests, including LLC,

IPS, ADF-Fisher, and PP-Fisher, as well as the second-generation

unit root test, CIPS. The null hypothesis for all five different types of

unit root tests is that all panels contain a unit root. The results of the

unit root tests in Table 4 show that some variables are non-

stationary at the level. However, after taking the first-order

differencing, all variables reject the null hypothesis of having a

unit root, indicating that all variables are stationary after the first-

order differencing.

This study uses the Pedroni (1999), Kao (1999), Westerlund

and Edgerton (2007), and Westerlund ECM cointegration tests to

examine whether there is a long-term relationship between the

analyzed variables in the four models. The null hypothesis for all

four cointegration tests is the absence of a cointegration

relationship. Table 5 reports the results of the cointegration tests.

The results of the Pedroni (1999) cointegration test show that for

different dependent variables in the four models, the null hypothesis
TABLE 3 Results of the cross-sectional dependence test.

Variable CD-Test p-value

lnCOD 18.022*** 0.000

lnPET 10.496*** 0.000

lnNHN 16.539*** 0.000

lnTP 13.155*** 0.000

lnTOUR 17.716*** 0.000

lnER 12.644*** 0.000

lnGOP 25.682*** 0.000

lnTECH 17.659*** 0.000

lnPOP 20.413*** 0.000
*** denote statistical significance at 1%.
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of no cointegration relationship is rejected at the 1% significance

level. The panel cointegration test results of Kao (1999) similarly

indicate that the null hypothesis is rejected for all four models,

supporting the alternative hypothesis of the existence of a panel

cointegration relationship. The cointegration test results of

Westerlund and Edgerton (2007) reveal a long-term relationship

among the estimated variables in the four models. In the

Westerlund ECM cointegration test, the null hypothesis of the Gt

and Ga statistics is that there is no cointegration relationship for all

cross-sectional units, while the null hypothesis of the Pt and Pa

statistics is that there is no cointegration relationship for the entire

panel. The results indicate that there is a cointegration relationship

in the four models, both for the entire panel and for individual

cross-sectional units. In summary, all four cointegration tests

demonstrate the existence of a long-term equilibrium relationship

among the analyzed variables in these four models.
3.2 Regression results

The panel cointegration test can determine whether there is a

long-term relationship between variables. However, it cannot

ascertain the specific coefficients of the variables in the long-term

relationship. Therefore, we employed the PMG, FMOLS, and DOLS

estimators to estimate the corresponding variable coefficients. These

three estimators require that the variables are stationary after first-

order differencing and that the variables have a cointegration

relationship. After meeting these conditions, this study aims to

estimate the long-term impact coefficient of coastal tourism on
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marine pollution. The PMG estimator can estimate short-term and

long-term coefficients in the model, while the FMOLS and DOLS

estimators rigorously examine the long-term effects. The coefficient

estimates for each variable across the four models are presented in

Table 6. Most of the estimators show similar results regarding the

signs and statistical significance of the coefficients.

For the PMG estimator, the error correction coefficients for the

four models are -0.772, -1.207, -0.579, and -0.421, respectively, all

significant at the 1% level. This indicates that when other variables

deviate from the long-term equilibrium, the error term will pull the

deviation back towards the long-term equilibrium state at an annual

rate of 0.772, 1.207, 0.579, and 0.421, respectively. In the short term,

the impact of coastal tourism on these four types of marine

pollution discharges is not significant, as marine pollution is a

cumulative process that does not manifest its effects in the short

term. Additionally, the control variables do not have a significant

short-term impact on marine pollution.

The regression results of Model 1 indicate that, according to the

PMG, FMOLS, and DOLS estimators, TOUR has a significantly

negative long-term impact on COD, with a 1% increase in TOUR

leading to a reduction in COD by 0.734%, 0.536%, and 0.952%,

respectively. Conversely, GOP positively impacts on COD, with a

1% increase in GOP resulting in an increase in COD by 0.346%,

4.004%, and 1.030%, respectively. Additionally, TECH shows a

significantly negative impact on COD. In the results of Model 2,

TOUR does not significantly affect PET for any of the three

estimators, though TECH among the control variables exhibits a

suppressive effect on PET. The results of Model 3 demonstrate that

TOUR reduces NHN, with a 1% increase in TOUR leading to a
TABLE 4 Stationarity of the variables.

Variable

LLC IPS ADF-Fisher PP-Fisher CIPS

I (0) I (1) I (0) I (1) I (0) I (1) I (0) I (1) I (0) I (1)

lnCOD -4.843***
(0.000)

-14.373***
(0.000)

-1.187
(0.118)

-9.559***
(0.000)

66.217***
(0.000)

58.630***
(0.000)

58.378***
(0.000)

241.965***
(0.000)

-2.354*** -4.177***

lnPET -6.810***
(0.000)

-17.776***
(0.000)

-5.623***
(0.000)

-12.473***
(0.000)

61.916***
(0.000)

52.273***
(0.000)

90.347***
(0.000)

375.319***
(0.000)

-3.002*** -4.613***

lnNHN -5.159***
(0.000)

-9.961***
(0.000)

-1.844**
(0.033)

-5.235***
(0.000)

41.300***
(0.008)

64.891***
(0.000)

15.678(0.832) 196.909***
(0.000)

-2.557*** -3.226***

lnTP -2.361***
(0.009)

-10.184***
(0.000)

0.399(0.655) -6.358***
(0.000)

59.716***
(0.000)

64.578***
(0.000)

27.952(0.177) 177.559***
(0.000)

-2.072*** -3.835***

lnTOUR -2.889***
(0.002)

-7.708***
(0.000)

1.366(0.914) -3.589***
(0.000)

33.331*
(0.057)

46.392***
(0.002)

7.353(0.999) 117.131***
(0.000)

-0.604 -2.053***

lnER -3.038***
(0.001)

-13.121***
(0.000)

-1.037
(0.150)

-8.756***
(0.000)

62.602***
(0.000)

73.578***
(0.000)

29.317(0.136) 138.109***
(0.000)

-2.313*** -4.282***

lnGOP -2.459***
(0.007)

-9.505***
(0.000)

1.451(0.927) -5.084***
(0.000)

61.848***
(0.000)

44.308***
(0.003)

147.750***
(0.000)

93.130***
(0.000)

-2.022*** -2.064***

lnTECH -2.008**
(0.022)

-9.886***
(0.000)

1.011(0.844) -5.534***
(0.000)

47.551***
(0.001)

47.852***
(0.001)

24.706(0.311) 142.528***
(0.000)

-0.643 -3.086***

lnPOP -0.990
(0.161)

-6.078***
(0.000)

3.427(1.000) -2.475***
(0.007)

30.418
(0.109)

53.212***
(0.000)

39.166**
(0.014)

47.225***
(0.001)

0.593 -1.703**
fron
(1) The value in bracket is p-value; (2) For CIPS, we only list the value of statistics, and the significance is given by comparing it with the critical values -1.53, -1.67, and -1.91 (at the 10%, 5%, and
1% significance level).
***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively.
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reduction in NHN by 0.746%, 0.340%, and 1.633%, respectively.

While POP positively impacts NHN, increases in TECH and GOP

contribute to reductions in NHN. Similarly, the results of Model 4

reveal that TOUR has a significantly negative impact on TP across

all three estimators, with a 1% increase in TOUR leading to a

reduction in TP by 5.169%, 0.899%, and 0.334%, respectively. In

contrast, both GOP and POP have positive effects on TP.
3.3 D-H panel causality test results

The previous section explored the cointegration relationships

between the variables and the estimation of the associated

coefficients, but it did not consider the direction of causality

between the variables. The panel causality test by Dumitrescu and

Hurlin (2012) effectively investigates the direction of causality

between variables. In Table 7, we can see that TOUR exhibits a

bidirectional causal relationship with COD and NHN, while it

shows a unidirectional causal relationship with PET and TP.

Regarding the control variables, ER has a unidirectional causal

relationship with TP and no causal relationship with the other three

pollutant discharges. GOP has a unidirectional causal relationship
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with COD, NHN, and TP, but a bidirectional causal relationship

with PET. TECH shows no causal relationship with COD, PET, or

TP, but only has a unidirectional causal relationship with NHN.

POP has a unidirectional causal relationship with all four

pollutant discharges.
3.4 Heterogeneity analysis results

This section will explore heterogeneity analysis based on income

levels and geographic regions, with the specific regional divisions

presented in Table 8. Compared to the PMG estimator, FMOLS

remains applicable even in small sample sizes (Rahman et al., 2021).

Additionally, FMOLS is a parametric method that corrects for

endogeneity and serial correlation errors to obtain results, whereas

DOLS is merely a parametric approach (Doğanalp et al., 2023).

Therefore, due to the accuracy and robustness of FMOLS, we used

this estimator for the heterogeneity analysis.

The results of the heterogeneity analysis are presented in

Figure 2. Overall, TOUR exhibits significant heterogeneity in its

impact on various pollutant discharges across different income

levels and geographic regions. Specifically, while TOUR has a
TABLE 5 Panel cointegration tests results.

Model Model 1 Model 2 Model 3 Model 4

Pedroni (1999) cointegration

Statistic p-value Statistic p-value Statistic p-value Statistic p-value

Modified Phillips-Perron t 4.115*** 0.000 3.996*** 0.000 4.329*** 0.000 4.758*** 0.000

Phillips-Perron t -8.370*** 0.000 -11.685*** 0.000 -8.233*** 0.000 -6.969*** 0.000

Augmented Dickey-Fuller t -8.585*** 0.000 -10.746*** 0.000 -5.965*** 0.000 -5.651*** 0.000

Kao (1999) cointegration

Statistic p-value Statistic p-value Statistic p-value Statistic p-value

Modified Dickey-Fuller t -3.153*** 0.001 -3.774*** 0.000 -3.097*** 0.001 -1.578* 0.057

Dickey-Fuller t -4.828*** 0.000 -6.987*** 0.000 -1.649** 0.050 -1.891** 0.029

Augmented Dickey-Fuller t -1.517* 0.065 -2.918*** 0.002 -1.595* 0.055 -2.492*** 0.006

Unadjusted modified Dickey-Fuller t -6.581*** 0.000 -10.500*** 0.000 -4.030*** 0.000 -3.724*** 0.000

Unadjusted Dickey-Fuller t -6.062*** 0.000 -9.359*** 0.000 -2.006** 0.022 -2.892*** 0.002

Westerlund and Edgerton (2007)

Statistic p-value Statistic p-value Statistic p-value Statistic p-value

Variance ratio -1.692** 0.045 -1.537* 0.062 -1.425* 0.077 1.303* 0.096

Westerlund ECM cointegration

Value p-value Value p-value Value p-value Value p-value

Gt -2.630*** 0.000 -3.573*** 0.000 -2.641*** 0.000 -2.393*** 0.000

Ga -1.576 0.948 -7.460*** 0.004 -3.033 0.713 -4.539 0.296

Pt -7.201*** 0.000 -9.812*** 0.000 -4.596*** 0.006 -6.244*** 0.000

Pa -3.447*** 0.003 -7.923*** 0.000 -4.738*** 0.000 -4.886*** 0.000
f

***, **, and * denote statistical significance at 1%, 5%, and 10%, respectively.
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significantly negative effect on COD across high-, middle-, and low-

income coastal regions, the magnitude of the coefficients varies

considerably. For high- and middle-income coastal regions, a 1%

increase in TOUR reduces COD by 1.467% and 1.672%,

respectively. However, for low-income coastal regions, COD

decreases by only 0.277%. Additionally, there are noticeable

differences in TOUR ’s impact on COD across different

geographic regions, with the largest coefficient observed in the

southern coastal regions, followed by the central coastal regions,

and the smallest effect in the northern coastal regions, where the

coefficient is only 0.179. TOUR’s impact on PET remains largely

insignificant across different income levels and geographic regions,

consistent with the previous regression results. The only exception

is that TOUR significantly negatively affects PET in high-income

coastal regions. TOUR’s impact on NHN is also negative across

provinces of varying income levels. However, it is noteworthy that a

1% increase in TOUR in low-income coastal regions leads to only a

0.061% reduction in NHN. Moreover, TOUR has no significant

effect on NHN in the northern coastal regions, while the southern

coastal regions show the largest coefficient. TOUR does not

significantly impact TP in middle- and low-income coastal

regions but shows a significantly negative effect in high-income

coastal regions. From a geographic perspective, TOUR has no
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significant impact on TP in the northern coastal regions. In

contrast, in the central and southern coastal regions, a 1%

increase in TOUR reduces TP by 0.273% and 0.296%, respectively.
4 Discussion

4.1 Discussion of regression results

Coastal tourism has a negative impact on the discharge of

pollutants such as COD, NHN, and TP, indicating that the

development of coastal tourism contributes to the reduction of

marine pollution. By enhancing economic benefits and raising

environmental awareness, coastal tourism reduces pollutant

discharge into the ocean on two levels, thereby effectively

improving and protecting the marine environment (Song, 2016).

Specifically, on the one hand, coastal tourism generates significant

fiscal revenue for both local communities and governments, which

can be used to protect and manage sensitive marine environments

(Davenport and Davenport, 2006; Liu et al., 2017; Wang S. et al.,

2020). For example, revenue from tickets for marine recreational

activities such as yachting, sailing, diving, snorkeling, and water

parks, as well as franchise fees paid by companies involved in these
TABLE 6 Estimation of long-term and short-term influence coefficients of COD.

Model Model 1 Model 2 Model 3 Model 4

Variables PMG FMOLS DOLS PMG FMOLS DOLS PMG FMOLS DOLS PMG FMOLS DOLS

Long-run estimation

lnTOUR -0.734***
(0.162)

-0.536***
(0.157)

-0.952***
(0.103)

0.186
(0.147)

-0.002
(0.194)

0.119
(0.095)

-0.746***
(0.262)

-0.340***
(0.130)

-1.633***
(0.167)

-5.169***
(0.689)

-0.899***
(0.073)

-0.334***
(0.084)

lnER 0.173***
(0.026)

-3.638***
(0.188)

-0.105
(0.195)

0.135***
(0.044)

-2.304***
(0.233)

-1.026***
(0.180)

-0.040
(0.043)

-4.626***
(0.156)

0.938***
(0.264)

0.515***
(0.109)

-7.698***
(0.088)

-0.165
(0.133)

lnGOP 0.346***
(0.099)

4.004***
(0.404)

1.030***
(0.310)

-0.793***
(0.095)

1.467***
(0.499)

-1.040***
(0.286)

-0.968***
(0.165)

-2.588***
(0.334)

-1.100**
(0.439)

0.621**
(0.296)

11.066***
(0.188)

1.073***
(0.220)

lnTECH -0.070
(0.096)

-3.104***
(0.332)

-2.160***
(0.226)

-0.192*
(0.100)

-4.354***
(0.410)

-0.201
(0.209)

-0.300***
(0.108)

-1.643***
(0.274)

-0.874***
(0.318)

1.250***
(0.300)

-11.529***
(0.188)

-2.514***
(0.160)

lnPOP -3.383*
(1.805)

2.300***
(0.333)

2.298***
(0.224)

-4.388***
(1.293)

4.299***
(0.411)

0.782***
(0.207)

1.062
(1.767)

1.872***
(0.275)

2.442***
(0.291)

8.866**
(4.441)

2.773***
(0.155)

1.000***
(0.146)

Short-run estimation

Error
Correction

-0.772***
(0.121)

-1.207***
(0.158)

-0.579***
(0.135)

-0.421***
(0.091)

DlnTOUR 1.732
(1.599)

0.720
(1.056)

0.126
(2.458)

1.087
(1.903)

DlnER -0.082
(0.070)

-0.016
(0.105)

0.213
(0.166)

-0.028
(0.123)

DlnGOP -0.055
(0.417)

-1.765***
(0.500)

-0.402
(0.650)

-1.302**
(0.638)

DlnTECH 1.093
(0.852)

0.690
(0.530)

0.551
(0.895)

-1.084***
(0.364)

DlnPOP 10.003
(9.656)

-5.458
(14.615)

25.993
(17.671)

-20.477
(18.541)
fron
(1) Standard errors are in bracket; (2) ***, **, * represent statistical significance at 1%, 5%, 10% level.
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TABLE 7 Dumitrescu-Hurlin causality test.

Model 3 Model 4

ection Null
Hypothesis

Z-
statistics

Direction Null
Hypothesis

Z-
statistics

Direction

R→PET TOUR≠NHN 2.306**
(0.021)

TOUR↔ NHN TOUR≠TP 3.280***
(0.001)

TOUR→TP

NHN≠TOUR 2.580***
(0.010)

TP≠TOUR 0.933
(0.351)

PET ER≠NHN 0.745
(0.456)

ER-NHN ER≠TP 1.976**
(0.048)

ER→TP

NHN≠ER -0.719
(0.472)

TP≠ER 1.520
(0.129)

P↔ PET GOP≠NHN 4.671***
(0.000)

GOP→NHN GOP≠TP 1.993**
(0.046)

GOP→TP

NHN≠GOP 0.012
(0.990)

TP≠GOP -1.188
(0.235)

H-PET TECH≠NHN 3.423***
(0.001)

TECH→NHN TECH≠TP 0.547
(0.584)

TECH-TP

NHN≠TECH -0.660
(0.509)

TP≠TECH -0.426
(0.670)

→PET POP≠NHN 5.328***
(0.000)

POP→NHN POP≠TP 2.432**
(0.015)

POP→TP

NHN≠POP -0.566
(0.572)

TP≠POP -0.384
(0.701)

epresent statistical significance at 1%, 5%, 10% level.
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Model 1 Model 2

Null
Hypothesis

Z-
statistics

Direction Null
Hypothesis

Z-
statistics

Di

TOUR≠COD 3.036***
(0.002)

TOUR↔ COD TOUR≠PET 1.838*
(0.066)

TO

COD≠TOUR 1.901*
(0.057)

PET≠TOUR 1.565
(0.118)

ER≠COD 0.308
(0.758)

ER-COD ER≠PET 1.058
(0.290)

ER

COD≠ER 0.667
(0.505)

PET≠ER -0.174
(0.862)

GOP≠COD 2.486**
(0.013)

GOP→COD GOP≠PET 5.920***
(0.000)

GO

COD≠GOP 1.068
(0.285)

PET≠GOP 5.932***
(0.000)

TECH≠COD 1.355
(0.175)

TECH-COD TECH≠PET 1.563
(0.118)

TE

COD≠TECH -0.290
(0.772)

PET≠TECH 0.381
(0.703)

POP≠COD 5.028***
(0.000)

POP→COD POP≠PET 4.745***
(0.000)

PO

COD≠POP -0.179
(0.858)

PET≠POP -0.669
(0.504)

(1) →, ↔, -, shows unidirectional, bidirectional and no causality, respectively; (2) P values are in bracket; (3) ***, **, *
r

U

-

C

P

r
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activities, provide ample financial support for government efforts in

marine environment management and pollution control. On the

other hand, coastal tourism effectively raises public environmental

awareness (Chen et al., 2023). Through frequent interaction with

the ocean and beaches, tourists gradually recognize the importance

of marine environmental protection, value marine resources more

highly, and actively participate in conservation efforts. For

residents, coastal tourism not only brings economic benefits but

also encourages them to consciously maintain the environment and

actively promote environmental awareness, creating a positive cycle

of marine environment protection. However, coastal tourism has no

significant impact on PET, suggesting that the development of

coastal tourism has not effectively reduced PET into the ocean.

With the growing global demand for oil, activities related to oil

extraction, refining, and maritime transportation are becoming

increasingly frequent. During these processes, leakage incidents

from oil wells, pipelines, drilling platforms, or transport tankers

are common, leading to an increase in oil spills, which directly cause
Frontiers in Marine Science 12
severe harm to the marine environment (Barakat et al., 1999; Xue

et al., 2015). Because coastal tourism has limited direct influence on

these PET-related activities, it has not significantly impacted PET.

Stricter environmental regulations and increased investment in

pollution control, although considered effective in improving marine

environmental quality and reducing pollutant discharges, do not

significantly or consistently impact the discharge of the four types of

marine pollutants, according to our research findings. This indicates

that China’s investment in marine environmental pollution control

remains insufficient, and there is a need for greater investment in

marine environmental management in coastal regions in the future.

This conclusion aligns with the findings of Liu et al. (2022). The study

also found that the GOP has a positive impact on COD and TP,

indicating that the development of China’s marine economy has

exacerbated the discharge of these pollutants, consistent with the

findings of Peng et al. (2020). Conversely, the impact of GOP on PET

and NHN is mostly significantly negative, suggesting that the

development of the marine economy has, to some extent, alleviated
TABLE 8 Grouping of the 11 Chinese coastal regions by income levels and geographic regions.

Categories Classification standard Level Regions

Income levels Average value of per capita GDP from
2006 to 2019

High-income Shanghai, Jiangsu, Tianjin,
Zhejiang, Fujian

Mid-income Guangdong, Shandong, Liaoning

Low-income Hainan, Hebei, Guangxi

Coastal geographic regions Northern, central, and southern
coastal regions

Bohai Rim Region Liaoning, Hebei, Tianjin, Shandong

Yangtze River Delta Shanghai, Jiangsu, Zhejiang

West coast of the Taiwan Strait and
South China Sea region

Fujian, Guangdong, Guangxi, Hainan
FIGURE 2

Results of heterogeneity analysis based on income level and geographical regional comparison.
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the environmental pressure caused by these pollutant discharges, a

result consistent with Shao (2020). Furthermore, the research shows

that marine technological innovation exhibits a strong negative

correlation with marine pollution when using FMOLS and DOLS

estimators, indicating that technological innovation positively

reduces marine pollution. Promoting technological innovation can

facilitate low-pollution production, thereby helping to improve

marine pollution. This conclusion is consistent with the findings of

Wang et al. (2019) and Shao (2020). Regarding the population

variable, most results show a positive correlation between

population size and marine pollution. This suggests that as the

population of coastal cities grows, pollutant discharges also

increase, placing greater pressure on the marine environment, the

conclusion consistent with the findings of Li et al. (2019).
4.2 Discussion of D-H panel causality
test results

The following bidirectional causal relationships exist between

coastal tourism and COD, NHN. A decline in environmental

quality directly reduces tourist destinations’ attractiveness, while

tourism’s economic benefits provide local governments with more

funds for environmental protection and pollution control (Zhang

and Gao, 2016). Regarding PET and TP, there is a unidirectional

causal relationship with coastal tourism, indicating that the

development of coastal tourism impacts their discharge into the

ocean. This finding is consistent with the study by Ahmad and Ma

(2022). Regarding environmental regulation, we found a

unidirectional causal relationship only with TP, suggesting that

increased investment in governance can effectively reduce marine

pollution by improving pollutant treatment facilities and promoting

ecological restoration (Zeng et al., 2019; Chen and Qian, 2020).

However, there is no causal relationship between environmental

regulation and the other three marine pollutant discharges,

indicating that current environmental governance efforts are

insufficient to control the discharges of these pollutants effectively

(Liu et al., 2022). There is a bidirectional causal relationship

between GOP and PET, suggesting that marine economic

activities affect pollutant discharges, while changes in the marine

environment, in turn, influence the development of the marine

economy (Li et al., 2023). For example, maritime transport,

aquaculture, and energy development increase marine pollution,

while the deterioration of the marine environment leads to sea-level

rise, ecosystem destruction, and energy depletion, thereby

impacting economic development. Additionally, there are

unidirectional causal relationships between GOP and the other

three pollutant discharges, with many studies providing ample

evidence that marine economic development has a direct or

indirect significant impact on marine pollution (Shao, 2020;

Ren and Ji, 2021; Shao et al., 2021; Wang et al., 2021). There is a

unidirectional causal relationship between marine technological

innovation and NHN, indicating that technological advancements

are important in reducing marine pollution (Shao, 2020; Zheng

et al., 2020). For instance, improvements in pollutant treatment

technology, ecological restoration technology, and clean energy
Frontiers in Marine Science 13
technology can more efficiently control and manage marine

pollution. Finally, there is a unidirectional causal relationship

between coastal population and these marine pollutant discharges,

indicating that as population size increases, pollution issues worsen,

placing greater pressure on the marine environment (Li et al., 2019).
4.3 Discussion of Heterogeneity
analysis results

4.3.1 Heterogeneity analysis of high-, mid-, and
low-income coastal regions

In high-income coastal regions, coastal tourism has a significant

long-term negative impact on marine pollution. These regions

typically possess more abundant financial resources, enabling

them to implement more effective measures for controlling

marine pollution. The economic benefits generated by coastal

tourism can be effectively channeled into protecting and

managing the marine environment, thereby reducing marine

pollution issues over the long term. In contrast, the impact of

coastal tourism on marine pollution in middle- and low-income

coastal regions is inconsistent and does not uniformly exert

a negative influence on all types of marine pollutant discharges.

Due to the relatively limited financial resources and environmental

management capabilities in middle- and low-income coastal

regions, marine environmental protection facilities are often

not at a high level. Additionally, environmental awareness

regarding marine protection in these regions is relatively weak.

As a result, the effectiveness of coastal tourism in reducing marine

pollution in these regions is less evident than in high-income

coastal regions.
4.3.2 Heterogeneity analysis of northern, central,
and southern coastal regions

In the northern coastal regions, coastal tourism development

has not significantly reduced marine pollution. Liaoning, Hebei,

Tianjin, and Shandong are key industrial provinces in China,

playing a crucial role in heavy industries such as steel, machinery,

and manufacturing. Due to the large number of pollutants typically

emitted by industrial activities, the environmental management

revenue generated by coastal tourism is insufficient to offset the

negative impact of industrial pollution on the marine environment

in these areas. In contrast, coastal tourism has been more effective in

reducing marine pollutant discharges in the central and southern

coastal regions, with the southern coastal regions standing out.

Provinces like Fujian and Guangdong have more mature coastal

tourism industries, which generate more significant economic

benefits. With more abundant financial resources, the southern

coastal regions can invest more in constructing marine

environmental protection facilities and pollution control, thereby

significantly reducing pollutant discharges and improving the

quality of the marine environment. Furthermore, environmental

awareness is stronger in the southern coastal regions, where greater

emphasis is placed on sustainable development, and environmental

pollution is more strictly and effectively regulated. Additionally, the
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southern coastal regions are at the forefront nationwide in applying

environmental and clean energy technologies, which help to more

efficiently treat pollutants and reduce the discharge of harmful

substances into the ocean. In comparison, the central coastal

regions have relatively lower technological levels in this regard,

resulting in less effective pollutant reduction efforts than in the

southern coastal regions.
5 Conclusions and policy implications

This study utilizes data on four different types of marine

pollutant discharges from 11 coastal provinces in China from

2006 to 2019 to quantitatively analyze the relationship between

coastal tourism and marine pollution. The research findings can be

summarized into the following three points.
Fron
1. Coastal tourism has a significant negative impact on COD,

NHN, and TP, indicating that the development of coastal

tourism can reduce the discharge of these three types of

pollutants into the ocean. This effect can be attributed to

the economic benefits brought by coastal tourism to coastal

regions, and the heightened public awareness of

environmental protection. However, the impact of coastal

tourism on PET is not significant, as it is related to the

primary sources of petroleum pollution in the

marine environment.

2. The control variables show varying degrees of significant

correlation with marine pollution. Environmental

regulation does not significantly and consistently impact

marine pollution, indicating that China’s investment in

marine environmental pollution management is still

insufficient. The influence of GOP on different pollutant

discharges varies; while its development alleviates the

environmental pressure from some pollutant discharges,

it also exacerbates the emission of other pollutants. Marine

technological innovation exhibits a strong negative

correlation with marine pollution, suggesting that

technological advancements contribute to reducing

marine pollution. In contrast, the impact of population

size on marine pollution is positive, as population growth

leads to an increase in pollutant discharges.

3. The heterogeneity analysis based on income level

differences reveals that in high-income coastal regions,

coastal tourism has a significant negative impact on

marine pollution. However, in middle- and low-income

coastal regions, coastal tourism does not significantly

reduce all types of marine pollutant discharges. This

indicates that, due to the limited economic development

and financial resources in middle- and low-income coastal

regions, marine pollution control and environmental

protection have not yet reached high standards. The

heterogeneity analysis based on geographic region

comparison shows that coastal tourism in the northern

coastal regions has not significantly reduced marine
tiers in Marine Science 14
pollution. The primary reason is that these provinces are

key industrial bases where industrial activities cause

substantial pollution to the marine environment.

Although coastal tourism generates revenue for

environmental management, it is insufficient to offset the

negative impacts of industrial activities on the marine

environment. In contrast, coastal tourism in the central

and southern coastal regions demonstrates a more

significant effect in reducing marine pollutant discharges.
Based on the above research findings, we propose the following

policy recommendations.
1. To vigorously develop coastal tourism and achieve

sustainable development, the government should provide

sufficient financial support to coastal regions. This could be

done by establishing special funds primarily for

infrastructure construction, initiating ecological protection

projects, and improving environmental protection facilities.

In addition, appropriate policy incentives would also help

promote the simultaneous development of coastal tourism

and marine environmental improvement. For example,

financial subsidies could be offered to enterprises

implementing environmental protection measures or

reducing pollution, encouraging more coastal businesses to

participate in environmental protection efforts. At the same

time, raising public environmental awareness is crucial. Local

governments and relevant departments should enhance

environmental awareness and education within businesses

and communities, increasing the environmental

consciousness of employees and residents. To achieve

broader awareness, media, environmental education

programs, and promotional activities can be utilized to

enhance public environmental consciousness, encouraging

them to actively participate in marine environmental

protection and minimize the negative impact on the

marine environment during tourism activities.

2. Despite the varying impacts of environmental regulations on

different marine pollutant discharges, strengthening and

optimizing the enforcement of these regulations remains

the most direct and effective means of protecting the

marine environment. To achieve this, the government

should consider implementing differentiated environmental

regulatory measures tailored to specific pollutant discharges,

thereby enhancing the precision and effectiveness of related

policies. Furthermore, increasing financial investment in

marine environmental protection and management is

particularly critical, especially in heavily polluted areas, as it

can significantly improve local marine ecosystems.

Simultaneously, promoting the green development of the

marine economy will facilitate industrial upgrading and

effectively reduce the proportion of high-pollution

industries. The government should also emphasize marine

technological innovation by supporting and advancing the

research and application of new marine technologies,
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particularly in pollution control and environmental

monitoring. This approach will provide more advanced

and effective tools for protecting the marine environment.

3. Compared to high-income coastal regions, the development

of coastal tourism inmiddle- and low-income coastal regions

has not yet effectively alleviated marine pollutant discharges.

Governments and relevant departments in these regions

should actively seek financial support from provincial

governments, national bodies, or international

environmental organizations. These funds can be utilized

not only for implementing marine environmental protection

projects and building environmental protection facilities but

also for technological research and development to improve

the efficiency of marine pollution control. Moreover, the

coastal tourism resources in middle- and low-income coastal

regions remain underdeveloped. Governments should

consider vigorously promoting marine eco-tourism

projects, making full use of local natural resources. This

approach would help increase local revenue and promote

local efforts to protect the marine environment. Additionally,

northern coastal regions should focus on adjusting and

upgrading their industrial structures. The government can

guide the region’s industries to transition from high-

pollution heavy industries to low-pollution sectors such as

high-tech and coastal tourism. This transition would increase

tourism revenue while reducing the negative impact on the

marine environment, achieving a win-win situation for

economic development and ecological benefits.
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