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Underwater environments pose significant challenges for image capture due to

factors like light absorption, scattering, and the presence of particles in the water.

These factors degrade the quality of underwater images, impacting tasks like target

detection and recognition. The challenge with deep learning-based underwater

image enhancement methods is their reliance on paired datasets, which consist of

degraded and corresponding ground-truth images. Obtaining such paired datasets

in natural conditions is challenging, leading to performance issues in these

algorithms. To address this issue, we propose an unsupervised generative

adversarial network with edge detection for enhancing underwater images

without needing paired data. First, we introduce the perceptual loss function into

the conventional loss function to better measure the performance of two generative

networks. Second, we propose an edge extraction block based on the Laplacian

operator, an attention module with an edge extraction block, a multi-scale feature

module, a novel upsampling module, and a new downsampling module. We use

these proposed modules to design a new generative network. Third, we use the

proposed multi-scale feature and downsampling modules to design the adversarial

network. We tested the algorithm’s performance on both synthetic and authentic

underwater images. Compared to existing state-of-the-art methods, our proposed

approach better enhances image details and restores color information.
KEYWORDS

underwater image enhancement, generative adversarial networks, image quality, deep
learning, edge extraction
1 Introduction

Underwater images are crucial for acquiring and documenting underwater information

and accurately preserving and exploring underwater resources. However, underwater

images often suffer from low brightness and color distortion caused by water’s selective

light absorption. Additionally, suspended particles in the water can scatter light, reducing
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the contrast and clarity of underwater images. These distortions

make extracting valid information from underwater images

challenging, significantly impacting advanced visual tasks such as

marine object detection (Hua et al., 2023; Xu et al., 2023) and visual

tracking (Li et al., 2023; Cai et al., 2023a). Therefore, enhancing

underwater images is essential to improve the performance of

underwater visual perception.

With the continuous exploration of the marine world,

numerous methods for enhancing underwater images have been

proposed. Traditional underwater image enhancement methods can

be classified into model-free and model-based methods. Model-free

methods improve image quality by adjusting pixels (Zhang et al.,

2022; Muniraj and Dhandapani, 2023). These methods are easy to

implement but often overlook the unique characteristics of

underwater images, resulting in enhanced images with noise and

artifacts. On the other hand, model-based methods establish a

degradation model for underwater images to restore their quality

(Zhang et al., 2023a; Zhou et al., 2023a). While these methods

perform well in specific water conditions due to the selection of

priors, they suffer from poor robustness. Moreover, fixed physical

models struggle to simulate complex and variable underwater

environments, making them inadequate for applications under

different environmental conditions.

With the development of deep learning, numerous learning-

based methods for underwater image enhancement have emerged

in recent years (Shen et al., 2023; Peng et al., 2023). These methods

do not require the construction of physical models and exhibit good

robustness by training networks with large datasets of degraded and

high-quality images (Guan et al., 2024). The Generative Adversarial

Networks (GANs) is a typical deep learning model comprising

generative and adversarial networks. Thanks to the adversarial

learning approach, underwater image enhancement methods

based on GANs generally outperform those based on

convolutional neural networks, making them widely used for this

purpose (Han et al., 2023; Zheng et al., 2023).

However, most deep learning-based methods depend on paired

datasets for training. In practical applications, acquiring many

paired underwater images is challenging, which limits the

performance of these methods. To address this issue and achieve

underwater image enhancement without paired images, we propose

an unsupervised underwater image enhancement method based on

generative adversarial networks with edge extraction.

The main contributions of this paper are summarized

as follows:
Fron
• We designed some modules that include a new edge

extraction block based on the Laplacian operator, a new

attention module with the proposed edge extraction block, a

new multi-scale feature module, a new upsampling module,

and a new downsampling module.

• We designed a novel generative adversarial network using

the above proposed modules to enhance the underwater

image. It contains two generative networks with the same

architecture and two adversarial networks with the same

architecture. It can be training using the unpaired images.
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• We proposed an improved loss function by introducing the

perceptual loss function into the conventional loss function

to better measure the performance of two generative

networks. It can improve the image enhancement

performance of the generative network.
2 Related work

In recent years, With the advancement of marine science

research, many methods for underwater image enhancement have

been proposed. These methods are divided into three categories:

model-free, model-based, and deep learning-based. Model-free

methods mainly use the improved traditional image enhancement

methods to achieve underwater image enhancement, such as

histogram equalization (Ulutas and Ustubioglu, 2021; Xiang et al.,

2023), white balance (An et al., 2024), and Retinex-based methods

(Mishra et al., 2023; Zhang et al., 2023b). Model-free underwater

image enhancement methods are usually effective in correcting

image color and improving image contrast. However, the color

style of the enhanced image is usually unnatural and prone to noise

and artifacts, as well as over-enhancement.

In contrast, the model-based underwater image enhancement

methods establish physical models for the degradation process of

underwater images and use prior knowledge to estimate the

parameters of the model. The model is finally reversed to obtain

the enhanced underwater image (Zhou et al., 2022; Ding et al.,

2022). While these methods demonstrate outstanding performance

in specific environments, they exhibit poor robustness, making

them challenging to adapt to the diverse light and visual

conditions encountered underwater in practical applications.

Furthermore, acquiring precise prior knowledge is challenging

due to the underwater environment’s complexity and variability.

Consequently, the estimation of model parameters may not be

sufficiently accurate, affecting the quality of the enhanced

underwater images.

In recent years, deep learning techniques have achieved great

success. Due to its great nonlinear mapping learning ability, the

convolutional neural network is widely used in the fields of image

dehazing (Ding et al., 2023; Chen et al., 2024), image segmentation

(Wang et al., 2023; Zhang T. et al., 2023), and underwater image

enhancement (Cai et al., 2023b; Zhang et al., 2024a), It learns the

mapping from degraded images to high-quality images through a

large amount of training data, which is more suitable for different

underwater environments. For example, Zhou et al., (2023b)

proposed CVE-Net. This network is based on a cross-domain

learning method for underwater image enhancement, using a

feature alignment module to utilize different temporal features.

The method performs better in detail enhancement and color

correction but is poorly robust for practical applications.

Liu et al., (2023a) proposed MSDC-Net consisting of a color

correction block and an asymmetric multi-scale encoder-decoder.

This network extracts features in both RGB and HSV color spaces,

thus extracting diverse features. The method can improve the
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quality of underwater images, but its color correction effect is

unsatisfactory. These methods significantly improve the quality of

underwater images through convolutional neural networks’

powerful feature extraction capability. However, they rely on

many paired data and have poor generalization ability in

practical applications.

Generative Adversarial Networks have advantages in detail

texture generation and style transfer of images by adversarial

training of two networks. Therefore, it is applied to underwater

image enhancement. Panetta et al., (2022). proposed a cascaded

residual network for underwater image enhancement method for

generating high-quality underwater images. They designed a

cascaded block that consists of three residual blocks and used the

cascaded blocks with convolutions to design the generative network

with U-Net architecture. It has better performance in reducing the

effect of light refraction and attenuation, and color distortion in

enhancing underwater images. However, the use of cascaded blocks

leads to higher model complexity, and it requires pairs of images

during training. Liu et al., (2023b) proposed a weak-strong dual

supervised generative adversarial network for enhancing

underwater images. It included two phases: the weak supervised

learning phase and the strong supervised learning phase. In the

weak supervised learning phase, it used unpaired underwater

images to train the network. In the strongly supervised learning

phase, it used a small amount of paired underwater images to train

the network. Although it reduces the dependence of the training

process on paired images, it still requires a few paired images and

the details of enhanced images are not satisfactory. Besides, it

requires training the model using unpaired and paired images

separately, resulting in difficult model training. Cong et al. (Cong

et al., 2023). proposed a physical model-guided GAN model for

enhancing underwater images. They separately split the generative

network into two sub-networks for physical model parameter

estimation and model-guided image enhancement. The method

also designed dual-discriminative networks for style-content

adversarial constraints to improve the visualization of the image.

The method can achieve effective underwater image enhancement

when there is sufficient prior information. However, it requires

estimation of the physical model parameters of underwater images,

making it challenging to accurately estimate these parameters

without prior information, which directly affects the image

enhancement performance of the algorithm. Additionally, the

physical model parameters vary across different underwater

environments, making it difficult for the pre-trained model to

adapt to underwater image enhancement in varying conditions.

Besides, it also required the paired images to train the module.

Wang et al. (Wang et al., 2024). proposed a novel Self-Adversarial

Generative Adversarial Network. The network uses a self-

adversarial mode to improve the quality of the generated image

by two pairwise image quality discriminators. This method

effectively corrects the image color, but the enhanced image still

suffers from detail blurring. In addition, the method still needs to

utilize pairs of images in the training process. Jiang et al., (2024).

proposed an unsupervised perception-driven unsupervised

generative adversarial network to enhance the underwater images.

They trained a pairwise quality ranking network consistent with
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human visual perception. After that, they used the pre-trained

pairwise quality ranking network as a loss function to improve

the performance of the enhancement network. This method can

improve the visual quality of images. However, the pairwise quality

ranking model still be trained using underwater image pair. Islam

et al. (Islam et al., 2022). proposed a FUnIE-GAN method based on

conditional generative adversarial networks for enhancing

underwater images. They used L1 loss and perceptual loss as the

loss function of the network and supported both paired and

unpaired data training. The network improves the visual quality

of underwater images on the EUVP underwater dataset and has

faster inference rates. However, it is not very effective for enhancing

some degraded and texture-less images and prones to training

instability. Liu et al. (Liu et al., 2022). proposed TACL for task-

oriented underwater image enhancement. The model constructed a

bilateral constrained closed-loop adversarial enhancement module

to realize unpaired training. During the training process, a task-

aware feedback module is employed to enhance the visual quality of

the detected targets in the image. Although this method can achieve

the enhancement of underwater images without the need for

training on pairs of images, the enhanced images still have some

color and texture distortion. They only used VGG-19 as a

perceptual feature extraction network, which is not sufficient for

feature extraction. Yan et al., (2023). proposed UW-CycleGAN.

They used a CycleGAN-based network to estimate the parameters

of the underwater image degradation model to recover the color and

details of underwater images. This method can effectively improve

the accuracy of underwater object detection. It has better

performance in restoring color-distorted and blurred underwater

images and does not require training the model with the paired

underwater images. However, the model requires the estimation of

information such as underwater illumination and depth, making it

difficult to adapt to different underwater environments.

Additionally, the high complexity of the model impacts the speed

of underwater image enhancement.

For the traditional model-free methods, the complexity of

underwater environments makes it difficult to obtain satisfactory

enhanced underwater images in dynamic underwater conditions.

Although conventional deep learning-based underwater image

enhancement methods can achieve better results than traditional

model-free methods, they often suffer from issues of over-

enhancement and require paired training images. The generative

adversarial networks (GANs) are a specialized deep learning

method consisting of generative network and adversarial network.

Compared to conventional networks, GANs offer stronger

underwater image enhancement capabilities, resulting in visually

superior enhanced images. The supervised generative adversarial

networks require paired underwater images during the training

process. The effectiveness of supervised methods depends to some

extent on the quality of the paired data sets, which are typically

synthesized using a priori information. However, the synthesized

images can hardly reflect the real conditions of underwater images,

resulting in low generalizability in real-world applications.

Although underwater image enhancement methods based on

unsupervised generative adversarial networks do not rely on

paired data and are more suitable for practical applications,
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existing methods have not fully utilized edge feature information

and lack adequate feature extraction. This results in recovered

images still suffering from some detail and color distortion. To

solve the problems, we proposed an unsupervised generative

adversarial network for underwater image enhancement to

improve the quality of underwater images. This model’s training

does not rely on paired underwater images, making it more suitable

for practical applications. The network consists of our proposed

multi-scale feature module, attention module, upsampling module,

and downsampling module. Additionally, to better restore object

edge details, we proposed first extracting image edges using the

Laplacian operator, then fusing the extracted edge image with the

original image, followed by feature extraction and recovery on the

fused image.
3 Proposed method

To enhance underwater images in the absence of paired

underwater images, we proposed an unsupervised generative

adversarial network with edge detection. The network is based on

the CycleGAN framework with the structure shown in Figure 1,

which contains two generative networks and two adversarial

networks. The generative network G1 enhances the degraded

underwater image, and the adversarial network D1 determines

whether the input is a generative enhanced image or an original

high-quality image. Similarly, the generative network G2 simulates

the degradation process of underwater images, and the adversarial

network D2 is responsible for determining whether the input is a

generated degraded image or an original degraded image. During
Frontiers in Marine Science 04
training, the whole network consists of two branches: the

enhancement-degradation branch and the degradation-

enhancement branch. Each branch consists of two generative

networks constituting a recurrent structure, which is convenient

for constraining network training using the cycle consistency loss.

Meanwhile, the two pairs of generative networks and adversarial

networks have the same structure and share the network parameters

to ensure the efficiency of the training process and the simplicity of

the model. Next, we will introduce the structure of the generative

network and adversarial network and the composition of the

loss function.
3.1 Edge extraction based on Laplacian

Underwater imaging is affected by the absorption and scattering

of water, often resulting in issues such as blurred object edges.

Laplacian edge detection is a classical method that emphasizes

details and edge information in an image through second-order

differential operators, enhancing clarity and contrast. By applying

the Laplacian operator to underwater images for edge detection, the

edges of submerged objects can be highlighted, facilitating

subsequent feature extraction modules to obtain more effective

edge and detail information of underwater objects, ultimately

improving the quality of the enhanced underwater images. Edge

information in images is typically characterized by abrupt changes

in gray values. Consequently, the Laplacian operator is frequently

utilized in underwater image processing to capture the edge and

texture details of an image. In our method, we employ the Laplacian

operator as a convolutional kernel in the convolutional layer to
FIGURE 1

Framework architecture of the proposed method.
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extract edge features from the images. We first apply the Laplacian

operator to the degraded underwater image for edge detection,

resulting in an edge map that exhibits more pronounced edge

features compared to the original image. Next, we perform a

channel-wise concatenation of the edge map with the degraded

underwater image. This concatenated image effectively highlights

object edge features, making it suitable as input for the feature

extraction network. This approach facilitates the extraction of richer

edge characteristics, ultimately enhancing the capabilities of

underwater image enhancement. If f is a second-order

differentiable function in two dimensions, the Laplacian operator

is typically expressed as follows:

∇2f (x, y) =
∂2 f (x, y)
∂ x2

+
∂2 f (x, y)
∂ y2

(1)

where f(x,y) is the gray scale function of the image, ∇2 is the

Laplacian operator, ∂2 f (x,y)
∂ x2 and ∂2 f (x,y)

∂ y2 are the second-order partial

derivatives of the image function in the horizontal and vertical

directions, respectively. The image function f (x, y) is typically

discrete. Therefore, the second-order partial derivatives are

approximated using the second-order central difference with the

following equations:

∂2 f (x, y)
∂ x2

= f (x + 1, y) + f (x − 1, y) − 2f (x, y) (2)

∂2 f (x, y)
∂ y2

= f (x, y + 1) + f (x, y − 1) − 2f (x, y) (3)

At this point, the Laplacian operator of the image is:

∇2f (x, y) = f (x + 1, y) + f (x − 1, y) + f (x, y + 1) + f (x, y − 1)

− 4f (x, y) (4)
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In the network, edge extraction based on the Laplacian operator

can be achieved through convolution. The Laplacian convolutional

kernel is illustrated in Figure 2. The convolution calculation result is

zero when neighboring pixels have the same gray value. However,

when the convolution kernel slides to the edge part where

neighboring pixels have different gray values, the convolution

calculation result is non-zero. This indicates the extraction of this

edge feature.
3.2 Generative network

3.2.1 Overall introduction of the proposed
generative network

Our proposed generative network is a deep convolutional

neural network based on an encoder-decoder structure. The

structure is shown in Figure 3. The underwater degraded image is

first transformed into a grayscale image before it is imported into

the generative network, and an edge image is generated after the

edge extraction module using the Laplacian operator. This edge

image is concatenated with the underwater degraded image in the

channel dimension and later imported into the encoder network.

The generative network consists of an encoder network and a

decoder network. The encoder network extracts the deep feature

information of the image through downsampling operations. The

decoder network recovers the image size and reconstructs the image

details through upsampling operations.

In the encoder network, we first use a convolutional layer and

LeakyReLU activation function to extract local features and increase

the number of input image channels from 4 to 16. Then, five multi-

scale feature modules and downsampling modules are used to

reduce the feature map size and extract multi-scale features. The

multi-scale feature module extracts the multi-scale features without
FIGURE 2

Laplacian convolution kernel.
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changing the feature map size and the number of channels, which is

convenient for the following operations. Each proposed

downsampling module downsamples the input feature maps to

reduce the size of the output feature maps to half that of the input

feature maps. The number of channels of the output feature maps

for five downsampling operations are 32, 64, 128, 256, and 256,

respectively. Finally, we use four skip connections to transmit the

output feature maps of the proposed downsampling modules to the

decoder network. Each skip connection contains an attention

module to reduce the interference of redundant feature

information. In the encoder network, a small number of

downsampling modules can only extract shallow features from

underwater images. By increasing the number of downsampling

modules, the network can capture more complex features, thereby

enhancing its representational and generalization capabilities.

However, as the number of downsampling modules increases, the

feature dimensions decrease, leading to a less comprehensive

feature extraction and negatively impacting underwater image

enhancement. Additionally, increased network complexity may

cause issues like vanishing or exploding gradients, complicating

the training process. Therefore, the number of downsampling

modules directly affects the enhancement results. Based on our

experimental results, we set the number of downsampling modules

to five, which provides the best enhancement capability for

underwater images. The number of upsampling modules in the

decoder network matches that of the downsampling modules, we

also set the upsampling modules to five.

In the decoder network, we use five proposed upsampling

modules to gradually recover the feature map size and reconstruct

the image content. Each upsampling module uses sub-pixel

convolution to restore the size of the output feature maps to

twice the size of the input feature maps. The number of channels

of the output feature maps for the five proposed upsampling
Frontiers in Marine Science 06
modules is 256, 128, 64, 32, and 16, respectively. Finally, the

feature maps are reconstructed as an enhanced image using a

convolutional layer and a Tanh activation function. To reduce the

negative impact of feature loss during downsampling on the

reconstruction of image content during upsampling, a skip

connection is used between each layer of downsampling and the

corresponding upsampling, and an attention module with edge

extraction is cascaded over the skip connection. This attention

module improves the network’s ability to enhance edge details.

3.2.2 Proposed multi-scale feature module
Extracting multi-scale features can enhance the capability of the

network to perceive details and overall structure across various

scales. Consequently, this enables the network to generate

underwater images with higher quality. Therefore, we proposed a

multi-scale feature module to extract multi-scale information in

images. The structure of the multi-scale feature module is shown in

Figure 4. It consists of residual mapping and identity mapping. The

residual mapping consists of four parts. The first part consists of a

3×3 convolution and LeakyReLU function to extract features

initially. The second part consists of two parallel branches to

extract multi-scale features. The first branch contains a 3×3

convolution, an instance normalization, and a LeakyReLU

function. The second branch contains a 5×5 convolution, an

instance normalization, and a LeakyReLU function. The element-

wise sum operation fuses the output features of the two branches.

The fused features are used as the input feature of the third part.

The third part also consists of two parallel branches to extract

multi-scale features further. Each branch is a residual structure. The

residual mappings are also 3×3 convolution and 5×5 convolution,

respectively. An instance normalization and a LeakyReLU function

follow each convolution. The concation operation fuses the output

features of two branches. The fused feature is used as the input
FIGURE 3

The proposed generative network.
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feature of the final part. Finally, a 1×1 convolutional layer with a

LeakyReLU activation function adjusts the number of feature map

channels. This adjustment is made to facilitate the summation of

subsequent elements. Additionally, residual connections are utilized

throughout the module to facilitate efficient propagation of

gradients in deep networks. This approach helps prevent gradient

vanishing during training and enhances the stability of the network.

In the proposed multi-scale feature extraction module, we primarily

utilize two parallel convolutions: a 3×3 convolution and a 5×5

convolution, to extract multi-scale features. The 3×3 convolution

has a smaller receptive field, while the 5×5 convolution has a larger

receptive field. The smaller receptive field can capture local detail

features in underwater images, such as the edges and textures of

underwater objects. In contrast, the larger receptive field can

capture features over a broader range, such as the overall shape

and structure of underwater objects. Therefore, compared to a

single-scale feature extraction module, the multi-scale feature

extraction module employs convolutions with different receptive

fields to extract both more local and global features of underwater

images. This approach allows for the acquisition of high-quality

underwater images that contain richer detail features.

3.2.3 Proposed downsampling module
A downsampling module has been proposed to mitigate feature

loss from downsampling operations and enhance the network’s

capability to extract diverse features. The structure of the module is

shown in Figure 5. The module consists of two branches. The

bottom branch consists of a basic convolution module and two

pooling sub-branches. The basic convolution module contains a

3×3 convolution, instance normalization, and a LeakyReLU

function. The feature maps extracted through average pooling are

more sensitive to background information, whereas those obtained

through max pooling are more sensitive to texture detail
Frontiers in Marine Science 07
information. The two sub-branches halve the feature map size

using average pooling and maximum pooling, respectively.

Subsequently, the feature maps are fused by channel-wise

concatenation, aiding the network in recovering the image’s color

and details. In addition, the top branch uses two basic convolution

blocks. The first convolution block increases the number of output

feature map channels to twice that of input feature map channels.

The second convolutional block reduces the output feature map size

to half of the input feature maps. The final output feature maps of

the two branches are fused by element-wise summation to

compensate for features lost during downsampling. In the

proposed downsampling module, employing convolution for

downsampling enhances the extraction of more abstract features.

The max pooling operation selects the maximum value within

a local region as the output, preserving the most prominent

and important features in the image. Therefore, downsampling

with max pooling can capture local information in underwater

images, effectively retaining textural features. In contrast, average

pooling obtains the overall features of a local region by calculating

the average value, allowing it to capture global information

and highlight background details. By combining convolution, max

pooling, and average pooling, we can harness their complementary

advantages to extract richer feature information from underwater

images during the downsampling process.

3.2.4 Proposed upsampling module
The upsampling operation in a convolutional neural network is

usually realized by deconvolution. Deconvolution achieves

upsampling by interpolating 0 between pixel values of the feature

maps with learnable parameters. However, the more significant

number of deconvolution parameters increases the model

complexity, and the image reconstructed by the deconvolution

may produce a checkerboard effect. Sub-pixel convolution is a
FIGURE 4

The proposed multi-scale feature module.
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learnable upsampling method with fewer parameters than

deconvolution. Instead of upsampling by interpolating 0

operations, this method utilizes the features of different channels

to reconstruct the relationship between pixels and increase the size

of the feature maps. As a result, sub-pixel convolution can better

preserve the structure and details of the input feature maps, thereby

assisting in producing a clearer output image (Shi et al., 2016). In

sub-pixel convolution, a series of convolution operations are first

applied to generate a feature map of size H×W with r2 channels

(where H and W are the size of the input feature map, and r is the

upscaling factor). Next, the PixelShuffle operation is used to

transform this into a feature map of size (H×r) × (W×r).

Specifically, a low-resolution pixel is divided into r×r smaller

grids and the values from the corresponding positions in the r×r

feature maps are used to fill these small grids according to a set rule.

By filling each of the smaller grids created from low-resolution

pixels in the same manner, the upsampling process is completed.

The core idea of sub-pixel convolution is to obtain a large number

of feature map channels through the network’s convolution layers,

and then rearrange these channels to achieve a predetermined

image size. Since sub-pixel convolution can capture global
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features, the network can utilize more contextual information to

restore more realistic details. This effectively enhances the

representation of underwater image details, thereby improving the

quality of the enhanced underwater images. Based on the above

analysis, we designed an upsampling module based on sub-pixel

convolution. The structure is shown in Figure 6. The module begins

with a basic convolution block that adjusts the number of channels

of the input feature maps to 4 times the target number of channels.

The basic convolution module contains a 3×3 convolution, instance

normalization, and a LeakyReLU function. Sub-pixel convolution

then enlarges the size of the output feature maps to twice the size of

the input feature maps while simultaneously reducing the number

of channels of the feature maps to the target number. Finally, a

residual block consisting of two basic convolution blocks is

employed to further process the upsampled feature map and

extract more features.

3.2.5 Proposed attention module
We designed an attention module to encourage the network to

focus more on features conducive to underwater image

enhancement and effectively enhance the quality of the output
FIGURE 6

The proposed upsampling module.
FIGURE 5

The proposed downsampling module.
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image. The structure of the module is shown in Figure 7. The

module is divided into channel attention and spatial attention.

Channel attention enhances essential features of the channel

dimension. In this section, we employ global maximum pooling and

global average pooling on both branches to extract detailed texture

and background features. We then utilize element-wise summation

for feature fusion. Afterward, the number of channels is adjusted by

a 1×1 convolutional layer, a LeakyReLU activation function, and

another 1×1 convolutional layer. This step enhances the correlation

between channels. Finally, the attention map is generated using a

Sigmoid activation function. The attention map size is 1×1, which

needs to be weighted using the element-wise multiplication

operation after expanding it to the size of the input feature map.

The weighted feature map continues to be used as the input for

spatial attention. The output feature maps of channel attention can

be represented as follows:

f1(x) = x · s conv2 LReLU conv1 avg(x)⊕max(x)ð Þð Þð Þð Þ (5)

where x is the input feature map of channel attention, s is the

Sigmoid activation function, conv is a 1×1 convolutional layer,

LReLU is the LeakyReLU activation function, avg is global

average pooling, max is global maximum pooling.

Spatial attention enhances important features of spatial

dimensions. The spatial attention part of this module introduces

edge extraction to improve the module’s ability to enhance edge

details. In this part, we employ a 1×1 convolutional layer to reduce

the number of feature map channels to 1. Subsequently, it is divided

into two branches. The lower branch utilizes a convolutional layer

to perform spatial feature extraction, while the upper branch

employs a convolutional layer based on the Laplacian operator to

extract image edge features. The outputs of the two branches are

fused by element-wise summation, and the attention map is

generated using the Sigmoid activation function. The number of

channels in the attention map is 1, which needs to be expanded to

the size of the input feature map and then weighted using the

element-wise multiplication operation. The output feature maps of

spatial attention can be represented as follows:

f2(x) = x · s conv2 conv1(x)ð Þ⊕ Lconv conv1(x)ð Þð Þ (6)
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Where x is the input feature map of spatial attention, Lconv

represents convolutional layers using the Laplacian operator. In the

attention module, the channel attention and the spatial attention are

cascaded to enhance essential features in the channel and spatial

dimensions separately.
3.3 Adversarial network

The adversarial network is a crucial component of the

generative adversarial network. It enhances the performance of

the generative network and plays a significant role in underwater

image enhancement. The structure of the adversarial network

we used is depicted in Figure 8. This adversarial network is based

on a Markovian discriminator and contains four proposed

downsampling layers. First, features are extracted using a

convolutional layer followed by a LeakyReLU activation function.

Then multi-scale features are extracted using a designed multi-scale

feature module shown in Figure 4 to enhance the multi-scale

discriminative capability of the network. After that, four

downsampling operations are performed. The downsampling

operation is implemented using a designed downsampling

module shown in Figure 5 to reduce the feature map size and

extract various kinds of feature information. A small number of

downsampling modules can only extract shallow features while

increasing their number allows for the extraction of deeper, more

complex features. However, as the number of downsampling

modules increases, the dimensions of the deep feature maps may

become too small to extract effective features, leading to redundant

features that negatively impact underwater image enhancement.

Additionally, increased network complexity can result in issues

such as vanishing or exploding gradients, making training more

difficult. Based on our experimental results, the network performs

optimally with four downsampling modules in the adversarial

network. Therefore, we set the number of downsampling modules

in the adversarial network to four. Finally, a 1×1 convolutional layer

is used to reduce the number of feature channels to 1 to generate a

judgment score. Based on this score, the network determines
FIGURE 7

The proposed attention module.
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whether the input is an original high-quality or enhanced image

generated by the generative network.
3.4 Loss function

The loss function used in our proposed network consists of four

parts: adversarial loss, cycle consistency loss, Identity loss, and

perception loss. The total loss function can be expressed as follows:

L = LGAN (G1,DY ,X,Y) + LGAN (G2,DX ,X,Y) + Lcyc + Lidt + Lper (7)

w h e r e LGAN (G1,DY ,X,Y) a n d LGAN (G2,DX ,X,Y) a r e

adversarial loss, Lcyc s cycle consistency loss, Lidt is identity loss,

Lper is perception loss. Cycle consistency loss is employed to ensure

that the input image can be reconstructed to the original image after

undergoing two transformations. This aids the network in learning

the image transformation process effectively. Identity loss ensures

that when an image from the target domain is fed into the network,

the output should be identical to the input. This helps the network

maintain the colors and details in the image and prevents

unauthorized changes to the content of the image. Perceptual loss

encourages the network to capture more complex features, leading

to the generation of more realistic and natural images. LGAN () is the

adversarial loss function, which can be expressed as follows:

LGAN (G1,DY ,X,Y)

= EY (jjDY (Y) − 1jj2) + EX(jjDY (G1(X))jj2) (8)

LGAN (G2,DX ,X,Y)

= EX(jjDX(X) − 1jj2) + EY (jjDX(G2(Y))jj2) (9)

where X is degraded images, Y is high quality images, G1 is used

to enhance underwater images, G2 is used to generated the degraded

images, DY is used to determine whether the input image is an

original high quality image or an enhanced image, DX is used to

determine whether the input image is an original degraded image or

a generated degraded image.

The Lcyc can be expressed as follows:

Lcyc = E½jjG2(G1(X)) − Xjj1� + E½jjG1(G2(Y)) − Y jj1� (10)
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where G2(G1(X)) is the generated degraded image. G1(G2(Y)) is

the generated high quality image. Lcyc is used to calculate the

difference between the original image and corresponding

generated image.

The Lidt can be expressed as follows:

Lidt = E½jjG1(Y) − Y jj1� + E½jjG2(X) − Xjj1� (11)

It is used to calculate L1 loss between the input image and the

output image of the generative network.

The Lper can be expressed as follows:

Lper = E½jjf(G1(X)) − f(X)jj2� + E½jjf(G2(Y)) − f(Y)jj2� (12)

where f( · ) are the high-level features extracted by a pre-trained
VGG-19 network.
4 Simulation and discussion

In this section, we train our network using unpaired datasets

and evaluate its effectiveness on synthetic images and real images.

We compare our method with four underwater image enhancement

methods: the CycleGAN method (Zhu et al., 2017), the FUnIEGAN

method (Islam et al., 2022), the TACLmethod (Liu et al., 2022), and

the UW-CycleGAN (Yan et al., 2023) method, respectively. We use

peak signal-to-noise ratio (PSNR), structural similarity (Wang et al.,

2004) (SSIM), and underwater image quality measures (Panetta

et al., 2015) (UIQM) to evaluate the enhancement effects of each

method quantitatively. Finally, we performed an ablation study to

validate the effectiveness of the modules of the method.
4.1 Dataset and metrics

We utilize Enhancing Underwater Visual Perception (EUVP)

datasets (Islam et al., 2022) and the Underwater Image Enhancement

Benchmark (UIEB) (Li et al., 2019), commonly used in existing

underwater image enhancement methods (Yan et al., 2023; Zhou

et al., 2023a; Zhang et al., 2024b), as the training and testing datasets

for various methods in this paper. The EUVP dataset contains Paired

dataset, Unpaired dataset, and Test_samples dataset. The Paired dataset
FIGURE 8

The proposed adversarial network.
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contains 11335 paired training images. The Unpaired dataset contains

6335 unpaired training images, of which 3195 are poor perceptual

quality images and 3140 are good perceptual quality images. The

Test_samples dataset contains 613 paired testing images. The images in

EUVP are captured using seven different cameras over various visibility

conditions during oceanic explorations and human-robot collaborative

experiments in different locations under various visibility conditions.

Additionally, images extracted from a few publicly available YouTube

videos are included in the dataset. The images are carefully selected to

accommodate a wide range of natural variability (e.g., scenes,

waterbody types, lighting conditions, etc.) in the data (Islam et al.,

2022). The UIEB dataset comprises 950 real-world underwater images

collected from various scenes, each with a size of 256×256 pixels. The

400 underwater degraded images and 400 high-quality images, a total

of 800 images constitute the training set named train800. The

remaining 150 degraded images are used as the testing set named

test150. These underwater images in the UIEB are taken under natural

light, artificial light, or a mixture of natural light and artificial light. The

underwater images in the UIEB have diverse color ranges and degrees

of contrast decrease (Li et al., 2019). Both datasets are commonly used

for training and testing underwater image enhancement algorithms

and include underwater images from different scenes and lighting

conditions in regular environments, making them quite representative.

Therefore, this paper selects these two datasets as the training and

testing datasets for the all methods.

All methods are implemented using the PyTorch framework

with the Adam optimizer (b1 = 0:9, b2 = 0:999, weight decay

=0.0001). The batch size is 8 and the number of epochs is 100 for

two training datasets. Firstly, we complete 100 epochs of training on

the Unpaired dataset which is one part of the EUVP dataset with a

learning rate of 0.0002. Secondly, we continue to train the network

for another 100 epochs on the train800 which is one part of the

UIEB dataset with a learning rate of 0.0002. The train800 consists of

400 underwater degraded images and 400 high-quality images.

The UIQM consists of three parts: the underwater image

colorfulness measure (UICM), the underwater image sharpness

measure (UISM), and the underwater image contrast measure

(UIConM). It is expressed as follows:

UIQM = c1UICM + c2UISM + c3UIConM (13)

where c1=0.0282, c2=0.2953, c3=3.5753. The UIQM (Underwater

Image Quality Measure) metric measures the quality of underwater

images by assessing various factors such as color fidelity, contrast,

brightness, and overall clarity. It is designed to evaluate the perceptual

quality of images without requiring a reference image for comparison,

making it particularly useful for underwater imaging scenarios where

ideal reference images may not be available. The larger the UIQM

value, the higher the overall visual quality of the enhanced image.
4.2 Underwater image enhancement on
synthetic images

We evaluate the performance of our proposed method on the

synthetic dataset using the Test_samples subset of the EUVP
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dataset. We randomly selected three underwater degraded images

and the corresponding reference images to show the enhancement

results of the CycleGAN, the FUnIEGAN, the TACL, the UW-

CycleGAN, and our method. The raw images (degraded underwater

images), reference images (high quality images), and underwater

images enhanced by different methods are shown in Figure 9. From

left to right, each row of the figure shows the degraded underwater

image, the high-quality reference image, and the images enhanced

by the CycleGAN method, the FUnIEGAN method, the TACL

method, the UW-CycleGAN method, and our method. Below each

image, there is a partial enlargement with the enlarged area marked

by a red box in the original image. In the first row, the CycleGAN

method corrects the image color, but the enhanced image still

suffers from blurred details. The FUnIEGAN method enhances the

image contrast but fails to correct the color bias.

Additionally, the presence of noise and artifacts in the image

adversely affects its quality. The TACL and UW-CycleGAN

methods effectively enhance the image contrast, but the enhanced

image suffers from overexposure issues. Our method enhances the

image with natural colors and precise details; the visual effect is

closest to the reference image. In the second row, The image

enhanced by the CycleGAN method has blurred details and

artifacts. The FUnIEGAN, TACL, and UW-CycleGAN methods

enhanced images cannot correct the image color effectively, and the

enhanced images still have color bias. In contrast, our method can

effectively correct image color and sharpen image details. In the

third row, The image enhanced by the CycleGAN method has

blurred edge texture and artifacts. The image enhanced by the

FUnIEGAN method still suffers from color bias and low quality.

The TACL and UW-CycleGAN methods can improve the image

contrast but cannot completely correct the image color bias. The

images enhanced by our method have the most natural colors and

sharpest details, and the overall quality is closest to the

reference image.

The CycleGAN method can correct image color but performs

poorly in image detail recovery and denoising. The FUnIEGAN

method can improve the image contrast but cannot correct the

image color effectively. The image details enhanced by the TACL

method are better in quality, but there is still some color bias. The

UW-CycleGAN method effectively enhances image contrast and

sharpens image details, but the color of the enhanced image is not

natural. In contrast, our method performs best in correcting image

color and sharpening image details. Furthermore, The images

enhanced by our method closely resemble the high-quality

reference image.

To quantitatively test the enhancement performance of different

methods, we calculated the PSNR, SSIM, and UIQM of the images

enhanced by different methods using all the paired images in this

test set. The average results are shown in Table 1. The average PSNR

values for the CycleGAN method, the FUnIEGAN method, the

TACL method, the UW-CycleGAN method, and our method are

21.98, 20.85, 24.65, 23.49 and 26.51, respectively. Our method had

the highest PSNR value, followed by the TACL and UW-CycleGAN

methods. The average SSIM values for the CycleGAN method, the

FUnIEGAN method, the TACL method, the UW-CycleGAN
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method, and our method are 0.61, 0.59, 0.73, 0.68, and 0.76,

respectively. Our method had the highest SSIM value, followed by

the TACL and UW-CycleGAN methods. The average UIQM values

for the CycleGAN method, the FUnIEGAN method, the TACL

method, the UW-CycleGAN method, and our method are 2.94,

2.78, 3.07, 2.98, and 3.21, respectively. Our method had the highest

UIQM value, followed by the TACL and UW-CycleGAN methods.

In summary, our proposed method has the highest PSNR, SSIM,

and UIQM on the test_samples subset of the EUVP dataset, which

shows that the method can effectively remove the image noise,

preserve the image content, and improve the visual quality of

the image.
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4.3 Underwater image enhancement on
real images

We also evaluate the performance of our proposed method on the

actual image dataset using the test150 test set. The test set contains 150

degraded underwater images taken from theUIEB dataset.We randomly

selected three underwater degraded images to test the performance of the

CycleGAN, the FUnIEGAN, the TACL, the UW-CycleGAN, and our

method. The raw and underwater images enhanced by different methods

are shown in Figure 10. From left to right, each row of the figure shows

the degraded underwater image and the images enhanced by the

CycleGAN method, the FUnIEGAN method, the TACL method, the
TABLE 1 Performances of underwater image enhancement methods for the synthetic images.

CycleGAN FUnIEGAN TACL UW-CycleGAN Ours

PSNR 21.98 20.85 24.65 23.49 26.51

SSIM 0.61 0.59 0.73 0.68 0.76

UIQM 2.94 2.78 3.07 2.98 3.21
FIGURE 9

Visual comparison among the competing methods on the synthetic underwater images selected from the EUVP dataset. The degraded underwater
images are listed in the first column, and the reference images are in the second column. Columns 3-6 are the enhanced images of comparison
methods, and ours are in the last column.
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UW-CycleGAN method, and our method. Below each image, there is a

partial enlargement with the enlarged area marked by a red box in the

original image. In the first row, The image enhanced by the CycleGAN

method exhibits blurrier texture details.

The FUnIEGAN method introduces artifacts in the image,

severely impacting its quality. The TACL method enhances the

image brightness, but the color correction is unsatisfactory. The

UW-CycleGAN method improves the image contrast, but the color

bias of the enhanced image is obvious. Our method effectively

enhances image brightness and corrects image color. In the second

row, the CycleGANmethod fails to effectively correct the image color,

and the enhanced image exhibits checkerboard artifacts. The image’s

brightness and contrast after enhancement by the FUnIEGAN

method are low. The TACL and UW-CycleGAN methods

corrected the image color but failed to effectively improve the

region’s brightness. In contrast, our method effectively enhances

image brightness and corrects image color. In the third row, The
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image enhanced by the CycleGAN method suffers from color bias

and detail blurring. There are artifacts in the images enhanced by the

FUnIEGAN method. The TACL method effectively corrects the

image color, but the color saturation of the enhanced image was

low. The image enhanced by the UW-CycleGAN method exhibits

low brightness and blurred details. Our method effectively corrects

image color and sharpens image details. The visual quality of the

images obtained by our method is optimal.

In summary, the CycleGAN method is ineffective in correcting

the image color, and the enhanced image still has a color bias.

The images enhanced by the FUnIEGAN method have artifacts that

severely degrade the quality of image details. The TACL method is

not effective in improving image color saturation. The images

enhanced by the UW-CycleGAN method still have a slight color

bias and low brightness. In contrast, our proposed method can

effectively correct image color, sharpen image edge details, and

improve the visual quality of authentic underwater degraded images.
FIGURE 10

Visual comparison among the competing methods on the real underwater images selected from the UIEB dataset. The degraded underwater images
are listed in the first column. Columns 2-5 are the enhanced images of comparison methods, and ours are in the last column.
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To quantitatively test the enhancement performance of different

methods, we calculated the UICM, UISM, UIConM, and UIQM of

the images enhanced by different methods using all images in

test150. The average results are shown in Table 2. The average

UICM values for the CycleGAN method, the FUnIEGAN method,

the TACL method, the UW-CycleGAN method, and our method

are 4.95, 6.15, 6.31, 6.36, and 6.46, respectively. Our method had the

highest UICM value, followed by the TACL and UW-CycleGAN

methods. The average UICM values for the CycleGAN method, the

FUnIEGAN method, the TACL method, the UW-CycleGAN

method, and our method are 6.86, 5.78, 7.02, 6.65, and 7.34,

respectively. Our method had the highest UICM value, followed

by the TACL and CycleGANmethods. The average UIConM values

for the CycleGAN, FUnIEGAN, TACL, and UW-CycleGAN and

our method are 0.20, 0.22, 0.22, 0.21, and 0.23, respectively. Our

method had the highest UIConM value, followed by the TACL and

FUnIEGAN methods. The average UIQM values for the CycleGAN

method, the FUnIEGAN method, the TACL method, the UW-

CycleGAN method, and our method are 2.88, 2.68, 3.03, 2.89, and

3.16, respectively. Our method had the highest UIQM value,

followed by the TACL and UW-CycleGAN methods. In

summary, our proposed method obtained the highest UICM,

UISM, and UIConM, representing that the method performs

better than other comparison methods in terms of color

correction, contrast enhancement, and sharpness enhancement of

images. In addition, our method also obtained the highest UIQM,

confirming the advanced performance of the method in improving

the overall visual quality of underwater images.

To better analyze the complexity of underwater image

enhancement methods and their processing speed, we measured

the algorithms’ FLOPs (Floating Point Operations), parameters,

and FPS. The results are presented in Table 3. From Table 3, it is

evident that the FLOPs and parameters of our proposed method are

lower than those of other methods, except for the FUnIEGAN

method. Additionally, our method achieves a higher underwater

image enhancement speed compared to other methods, again

except for FUnIEGAN. Although the proposed method is

relatively slower in enhancing underwater images compared to

the FUnIEGAN method, the quality of the enhanced underwater

images obtained from our method is better.
4.4 Ablation study

To analyze the contribution of the edge extraction convolution,

the multi-scale feature module, the downsampling Module, the
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upsampling Module, the attention module, and the perceptual loss,

we conducted the following ablation studies:
• w/o-EEC: without the edge extraction convolution;

• w/o-MFM: without the multi-scale feature module;

• w/o-DSM: without the downsampling module;

• w/o-USM: without the upsampling module;

• w/o-AM: without the attention module;

• w/o-Per Loss: without the perceptual loss;
We removed the edge extraction convolution module, attention

module, and perceptual loss from our proposed complete method to

obtain the w/o-EEC method, w/o-AM, and w/o-Per Loss,

respectively. We use the 3×3 convolution instead of the multi-

scale feature module to obtain the w/o-MFM method. We replace

the downsampling and upsampling modules with convolutions and

deconvolutions that have a kernel size of 4, a stride of 2, and a

padding of 1, resulting in the w/o-DSM method and w/o-USM

method, respectively. The parameters of the multi-scale feature

module, downsampling module, upsampling module, and attention

module are shown in Figures 4–7, respectively.

The PSNR, SSIM, and UIQM scores on the test_samples subset

from the EUVP dataset are shown in Table 4. As can be seen from

the table, the PSNR, SSIM, and UIQM obtained by our complete

model are higher than those obtained by all the ablated models. This

result validates the effectiveness of edge extraction convolution,

multi-scale feature module, downsampling Module, upsampling

Module, attention module, and perceptual loss.

4.4.1 Ablation study on EEC
Edge extraction convolution improves the detail sharpness of

the enhanced image by extracting the image edge details. From

Table 4, compared with our method without edge extraction

convolution, our complete method improved the PSNR, SSIM,

and UIQM scores by nearly 2.9%, 2.6%, and 3.1%, respectively. It

is shown that the edge extraction convolution used in our method

improves the detail quality of the images enhanced by the

generative network.

4.4.2 Ablation study on MFM
The multi-scale feature module in the generative network is

designed to enhance the network’s multi-scale feature extraction

ability. From Table 4, compared with our method without multi-

scale feature module, our complete method improved the PSNR,

SSIM, and UIQM scores by nearly 16.0%, 9.2%, and 7.5%,

respectively. It is shown that the multi-scale feature module used
TABLE 2 Performances of underwater image enhancement for different methods on test150.

CycleGAN FUnIEGAN TACL UW-CycleGAN Ours

UICM 4.95 6.15 6.31 6.36 6.46

UISM 6.86 5.78 7.02 6.65 7.34

UIConM 0.20 0.22 0.22 0.21 0.23

UIQM 2.88 2.68 3.03 2.89 3.16
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in our method enhances the ability of the network to extract multi-

scale features, which is positive for color correction and detail

enhancement of underwater images.

4.4.3 Ablation study on DSM
The downsampling module in the generative network is

designed to extract different types of feature information and

reduce feature loss, thus improving the quality of the enhanced

images. From Table 4, compared with our method without the

downsampling module, our complete method improved the PSNR,

SSIM, and UIQM scores by nearly 9.1%, 3.9%, and 4.4%,

respectively. It is shown that the downsampling module used in

our method reduces noise and improves the detail quality of the

enhanced image.

4.4.4 Ablation study on USM
The upsampling module in the generative network uses sub-

pixel convolution to recover the image size, aiming to improve the

detail quality of the reconstructed image by the network. From

Table 4, compared with our method without the upsampling

module, our complete method improved the PSNR, SSIM, and

UIQM scores by nearly 7.0%, 3.9%, and 5.3%, respectively. It is

shown that the upsampling module used in our method can keep

more detailed features while recovering the image size and

improving the image’s detail quality.

4.4.5 Ablation study on AM
The attention module in the generative network is designed to

enhance the network’s focus on essential features that facilitate

underwater image enhancement as well as edge features. From

Table 4, compared with our method without the attention module,

our complete method improved the PSNR, SSIM, and UIQM scores

by nearly 5.5%, 2.6%, and 4.0%, respectively. It is shown that the

attention module used in our method enhances the network’s focus

on details and improves the visual effect of the enhanced image.

4.4.6 Ablation study on per loss
The perceptual loss is added to the total loss function to

improve the enhanced image’s content quality. From Table 4,
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compared with our method without perceptual loss, our complete

method improved the PSNR, SSIM, and UIQM scores by nearly

2.0%, 5.3%, and 9.3%, respectively. It is shown that the perceptual

loss prompts the network to generate images with greater clarity,

detail, and texture visual quality.
5 Conclusion

This paper proposes a new unsupervised generative adversarial

network to enhance underwater images. It can be trained without using

the paired images. It proposes an edge extraction block based on the

Laplacian operator, an attentionmodule with the edge extraction block,

a multi-scale feature module, a novel upsampling module, and a new

downsampling module. It constructs the generative network and

adversarial network using these proposed modules. Besides, it

proposes an improved loss function by introducing the perceptual

loss function into the conventional loss function to better the image

generation capability of two generative networks. Compared to state-

of-the-art methods, the proposed method achieves the highest PSNR,

SSIM, and UIQM values on the synthetic underwater images dataset.

The proposed method improves by 7.5%, 4.1%, and 4.6% over the

second-best method in terms of PSNR, SSIM, and UIQM, respectively.

The proposed method achieves the highest UICM, UISM, UIConM,

and UIQM values on the authentic underwater images dataset. The

proposed method improves by 1.6%, 4.6%, 4.5%, and 4.3% over the

second-best method in terms of UICM, UISM, UIConM, and UIQM

respectively. These prove that the proposed method effectively restores

underwater image color, contrast, and detail information more than

others. In addition, we compare the FLOPs, parameters, and image

enhancement speeds of different methods. The FLOPs and parameters

of our method are only higher than those of the FUnIEGAN method.

The image enhancement speed is only slower than that of the

FUnIEGAN method. An ablation study incorporating several

proposed modules is conducted. Compared with our method

without edge extraction convolution, our complete method improve

the PSNR, SSIM, and UIQM scores by nearly 2.9%, 2.6%, and 3.1%,

respectively. Compared with our method without multi-scale feature

module, our complete method improve the PSNR, SSIM, and UIQM
TABLE 4 Experimental results of the ablation study.

w/o- EEC w/o- MFM w/o- DSM w/o- USM w/o- AM w/o- Per Loss Ours

PSNR 25.74 22.26 24.11 24.65 25.05 25.98 26.51

SSIM 0.74 0.69 0.73 0.73 0.74 0.72 0.76

UIQM 3.11 2.97 3.07 3.04 3.08 2.91 3.21
TABLE 3 Computational complexity and speed of underwater image enhancement methods.

CycleGAN FUnIEGAN TACL UW-CycleGAN Ours

FLOPs(G) 63.57 13.16 87.03 50.07 20.04

Parameters(M) 19.56 10.69 21.29 24.4 18.34

FPS 2.52 21.74 2.17 2.66 13.69
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scores by nearly 16.0%, 9.2%, and 7.5%, respectively. Compared with

our method without the downsampling module, our complete method

improve the PSNR, SSIM, and UIQM scores by nearly 9.1%, 3.9%, and

4.4%, respectively. Compared with our method without the

upsampling module, our complete method improve the PSNR,

SSIM, and UIQM scores by nearly 7.0%, 3.9%, and 5.3%,

respectively. Compared with our method without the attention

module, our complete method improve the PSNR, SSIM, and UIQM

scores by nearly 5.5%, 2.6%, and 4.0%, respectively. Compared with our

method without perceptual loss, our complete method improve the

PSNR, SSIM, and UIQM scores by nearly 2.0%, 5.3%, and 9.3%,

respectively. These results validated the effectiveness of each module.

This paper focuses on underwater image enhancement in

conventional environments. It does not address special conditions,

such as deep water with low light or non-uniform lighting. In future

research, we will collect more underwater images from unconventional

environments. We aim to design a separate illumination feature

extraction module within the network architecture. Additionally, we

will incorporate available prior information to improve the network’s

ability to enhance underwater images under these conditions, thereby

expanding the algorithm’s applicability.
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