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Shallow-water bathymetric maps provide vital geographic information for

various coastal and marine applications such as environmental management,

engineering construction, oil and gas resource exploration, and ocean fisheries.

Recently, satellite-derived bathymetry (SDB) has emerged as an alternative

approach to shallow-water bathymetry, particularly in hard-to-reach areas. In

this research, an innovative approach to bathymetry was introduced. This

method provides a reliable approach for generating high-accuracy and high-

reliability shallow water bathymetry results. By using Sentinel-2 time series

imagery combined with ICESat-2 data, four bathymetry results at different time

points are produced based on four traditional bathymetry methods. For the

results at each location, a statistical method is applied to evaluate the bathymetry

results, remove erroneous data, and generate high-confidence bathymetry

results. The validation results indicated that the accuracy of the proposed

bathymetric method achieved an R² range of 0.96 to 0.99 and an RMSE

between 0.42 and 1.18 meters. When contrasted with traditional methods that

utilize a single temporal image, a notable enhancement in bathymetric accuracy

was observed.
KEYWORDS

satellite-derived bathymetry, ICESat-2, shallow water, time-series images,
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1 Introduction

Coastal, island, and reef regions in shallow waters offer essential

habitats that support biodiversity and the sustainability of marine

ecosystems (Nicholls and Cazenave, 2010; Pacheco et al., 2015).

Bathymetric maps of shallow-water areas provide essential

geographic information for various coastal and marine applications,

such as shallow-sea environmental governance, engineering

construction, oil and gas resource exploration, and aquatic fishing

(Kutser et al., 2020; Xu et al., 2023). Traditional techniques, including

shipborne single- andmultibeam echo sounding and airborne LiDAR

bathymetric systems, are extensively employed for determining water

depth and mapping subaqueous terrain in shallow-water areas

(Wang et al., 2015; Shang et al., 2019; Wu et al., 2024). Although

these techniques provide accurate and high-resolution bathymetric

data, they are limited by external and environmental factors, such as

complex geographical settings, diverse geological features, significant

spatial variability, and geopolitical issues (Westfeld et al., 2017).

Recent advancements in satellite technology have increased the

utilization of multispectral imagery captured by sensors on board

satellites, such as Sentinel-2, WorldView-2, and IKONOS, for

shallow-water bathymetry (Adler-Golden et al., 2005; Yunus

et al., 2019; Manessa et al., 2016; Cahalane et al., 2019). Due to its

ease of use, effectiveness, and affordability, satellite-derived

bathymetry (SDB) has become the prevailing technique for

charting shallow water areas. The extraction of bathymetric

information from multispectral images can be classified into two

groups: models based on physical principles and models based on

empirical observations (Casal et al., 2020).

Physics-based models can be employed to acquire bathymetric

results without “in situ” measurements. However, various

parameters that are usually difficult to acquire (e.g., the inherent

optical properties possessed by water) are required to drive the

models, leading to low accuracy and reliability of physics-based

models (Hedley et al., 2018). In the empirical models, the

attenuation of light and the contributions of the water column

were derived by regression between the band reflectance of images

and in-situ water depth (Monteys et al., 2015). Due to their ease of

use and reasonable accuracy, empirical models remain a widely

utilized and practical method for obtaining bathymetry from

spaceborne multispectral images. Popular empirical models

include the dual-band ratio, linear band models, and advanced

machine learning methods such as support vector regression (SVR)

and random forest (RF) (Lyzenga, 1985; Stumpf et al., 2003;

Lyzenga et al., 2006; Albright and Glennie, 2020; Manessa et al.,

2016; Yang et al., 2022).

Although empirical SDB models using in-situ water depth and

spectroscopic images offer significant advances in shallow-water

bathymetry, two main challenges hinder the progress of

multispectral bathymetry: 1) These models require numerous

high-precision in-situ measurements uniformly distributed across

the study area to capture all seabed and water characteristics.

2) External factors such as sensor performance, atmospheric and

lighting conditions, sea surface foam, inherent optical properties of

the water column, and bottom reflectance impact multispectral
Frontiers in Marine Science 02
images, resulting in lower accuracy and reliability in bathymetric

data from a single image.

The ATLAS instrument aboard ICESat-2 provides a valuable

opportunity for global shallow-water bathymetry research by

utilizing a photon-counting method to collect altimetry data.

Although ICESat-2 was originally designed to observe polar

glaciers, land surfaces, and vegetation, its use of 532 nm green

light has shown significant promise for shallow-water bathymetry

(Markus et al., 2017). According to research findings, ICESat-2 has

the capability to accurately assess depths of up to 38 meters in

transparent aquatic environments (Forfinski-Sarkozi et al., 2016;

Parrish et al., 2019). The corresponding authors have analyzed the

bathymetric errors of ICESat-2, demonstrating that its bathymetric

accuracy (RMSE) is 0.6 meters (Coveney et al., 2021). Additionally,

previous studies have confirmed the feasibility of using ICESat-2

data for satellite-derived bathymetry. Despite the wide spacing

between beam pairs (3.3 km), limiting spatial continuity, the

depth profiles obtained through ICESat-2 can still offer crucial in-

situ data essential for developing satellite-derived bathymetry (SDB)

models (Albright and Glennie, 2020).

Solar energy is significantly attenuated when it passes through

the atmosphere and water, resulting in an extremely weak reflection

of the water bottom. Therefore, the bathymetric results of a single

image are easily affected by various types of noise. The

preprocessing of the image (e.g., atmospheric correction and glint

removal) and the selection of SDB models greatly influences the

bathymetric outcomes derived from an individual image (Warren

et al., 2019; Hedley et al., 2005; Caballero and Stumpf, 2019). One

method to reduce the uncertainty in bathymetric results derived

from a single image is the fusion of time-series images. Relative

methods produce optimal images by fusing time-series images

(Favoretto et al., 2017; Traganos et al., 2018; Chu et al., 2019; Xu

et al., 2021). These methods typically average the bathymetric

results obtained from multi-temporal data as the final result.

Although these composition methods are simple, they offer new

insights into shallow-water bathymetry.

This research introduces a method for shallow-water

bathymetry that utilizes Sentinel-2 time-series imagery in

conjunction with ICESat-2 data. In this method, the SDB results

of the four traditional methods were generated for a single image,

and the final results were produced by the fusion of all bathymetric

results from all time-series images. The validation results suggest

that this approach offers a fresh approach to minimize the

ambiguity of SDB findings, improving the accuracy and reliability

of depth measurements obtained through satellite technology.
2 Methodology

The framework of the proposed method is illustrated in

Figure 1. Following image preprocessing, four traditional models

—band ratio (BR), linear band (LB), support vector regression

(SVR) and random forest (RF) techniques were utilized to derive

SDB results from individual images. For each pixel, a bathymetric

sequence was created by combining the SDB results from all time-
frontiersin.org
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series images. This sequence was then used to generate the final SDB

results and assess their accuracy.
2.1 Data preprocessing

The processing of all ICESat-2 ATL03 ground tracks involved

applying filtering and refraction correction algorithms. The

photons in the ATL03 product were adjusted for various

geophysical effects, such as atmospheric refraction, and

categorized as signal or background photons based on

confidence parameters (Li et al., 2019). However, the confidence

marker parameter is not suitable for underwater photons,

including photons in both in the water column and at the

sediment layer (Ma et al., 2020). Additionally, the displacement

of bottom photons due to refraction was not accounted for in the

ATL03 data. In this study, an adaptive variable ellipse filtering
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bathymetric method (AVEBM) was employed to accurately

differentiate photons originating from the ocean surface and

underwater terrain (Chen et al., 2021). With this algorithm, a

density-based variable elliptical filter was employed to separate

sea-surface and seafloor photons from noisy raw ATL03 photons.

The filtering algorithm included the following steps: 1) the

original photons were divided into segments along the height

direction, and Gaussian curve fitting was applied to capture the

relationship between the center elevation and the number of

photons in the segments. 2) Above-water, water-surface, and

water-column photons were separated based on the parameters

of the fitted Gaussian curve. 3) The parameters of the elliptical

filter were determined, and signal photons were detected. The

detected bottom photons’ coordinates were subsequently adjusted

using a refraction correction technique that relied on ray tracing

and JONSWAP spectra (Joint North Sea Wave Project,

JONSWAP), leading to the creation of a bathymetric profile
FIGURE 1

The framework of the proposed SDB method in this research.
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(Zhang D. et al., 2022). With this algorithm, the air/sea

intersection point was calculated, and the corresponding slope,

incident angle, and refraction angle were determined for each

seafloor signal photon. Furthermore, the refraction displacements

in elevation and along-track and cross-track directions were

corrected to improve bathymetric accuracy.

Preprocessing of the Sentinel-2 time-series images included

atmospheric correction and glint removal. Sen2Cor, the official

processor for Sentinel-2 Level 2A products, was employed for this

purpose. It applies corrections for atmospheric interference, terrain

effects, and cirrus clouds to the Top-Of-Atmosphere Level 1C data.

The sunglint effect was addressed using the Deglint Operator in

Sen2Cor (Ma et al., 2020). The calibration of the SDB models

involved utilizing bands 2, 3, 4 and 8 of the Sentinel-2 products,

which have resolutions of 10 m. The spectral response ranges of

these four bands were 458-523 nm, 543-578nm, 650-680nm and

785-900nm, as well as the central wavelengths were 490.5, 560.5,

665 and 842.5nm, respectively (Le et al., 2022).

Owing to differences in tidal height among the ATL03 data,

Sentinel-2 images, and reference airborne LiDAR bathymetry

(ALB) data (Guo et al., 2022; Schwarz et al., 2019), tidal

correction was conducted using the NAO.99 tide model

(Matsumoto et al., 2000) based on the acquisition times of these

data. The time resolution of the tidal data generated by the tide

model was 1 hour, however, the acquisition time of the Sentinel-2

images was instantaneous. Therefore, the time resolution of the

tidal data was first resampled from 1 h to 1 min using a B-spline

function, and the tide heights at the acquisition time of the Sentinel-

2 images, ICESat-2 data and ALB data were obtained. Furthermore,

variations in the tide heights among the ICESat-2, ALB, and

Sentinel-2 images were acquired. Finally, the alignment of the

Sentinel-2 imagery necessitated adjustments to the water surface

elevation in both the ICESat-2 and ALB data.
2.2 SDB methods for a single image

Several factors would influence the bathymetric accuracy of

the SDB models, including but not limited to the radiation quality

of the image, the form of the model, the utilization of the bands,

and the distribution of the sample data. Therefore, four widely

used SDB models with different forms, different utilization of the

bands, and relatively simple structure were chosen for the

subsequent processing procedures. Two empirical and two

machine learning algorithms were trained on a single

multispectral image to generate bathymetric maps, using

ICESat-2 bathymetric data as ground truth references. The

commonly utilized band ratio and linear band models were

established by Stumpf et al. (1) and (2), respectively (Lyzenga,

1985; Stumpf et al., 2003; Lyzenga et al., 2006).

hw = a0 + a1 �
ln(C � Rw(li))
ln(C � Rw(lj))

(1)

hw = b0 +ok
i¼1bi ln½Rw(li) − R∞(li)� (2)
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The bathymetry, represented as hw, is obtained from the

multispectral image using a constant C to ensure that the logarithm

remains positive in all situations. This proportion results in a depth-

related linear reaction (Caballero and Stumpf, 2019). Rw(li)
and Rw(lj) are the surface reflectance for bands i and j. R∞(li) is

the average deep-water signal. The remaining parameters, a0, a1, b0
and bi, were acquired using linear regression, which minimized the

difference between the ICESat-2 and estimated depths.

SVR and RF are effective machine learning algorithms for

shallow-water bathymetry (Pan et al., 2015; Tonion et al., 2020).

These techniques categorize the identified pixel depths into evenly

distributed training and validation sets, reconstructing bathymetric

maps by analyzing the intricate correlation between remote sensing

reflectance and the depth of water. SVR uses various kernel

functions—such as linear, sigmoid, radial, and polynomial—to

achieve effective regression fitting. In contrast, the RF model

utilizes a collection of decision trees, which work together to

make classifications on new data.
2.3 Fusion of SDB results of time-
series images

For any given remote sensing image and inversion model,

inversion errors are always present, and the distribution of these

errors is not uniform. However, on a global scale, the inversion results

should approach the true values because in situ water depths are used

as sample data to solve for the model parameters during the inversion

process. According to the Law of Large Numbers in statistics, a single

measurement often carries a degree of uncertainty, and repeated

measurements can mitigate the impact of random errors. In this

research, water depths of a 3×3 neighborhood centered on a specific

pixel were extracted, and these depths from all SDB methods and

time-series images were combined to construct a bathymetric

sequence DP, which contains a total of N depth data points. Some

significant outliers usually appear in the bathymetric sequence and

must be removed. The 3-times standard deviation method was

employed to remove outliers using Equation 3, and the processed

bathymetric sequence, DP
0
j was generated. DPmean represents the

mean value of the bathymetric sequenceDP, andDPi denotes the i-th

depth point in the sequence DP.

DP =
DP

0
j ,   abs(DPi − DPmean) < 3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(DPi − DPmean)
2

n

r

Outliers,   abs(DPi − DPmean) > 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(DPi − DPmean)
2

n

r

8>>><
>>>:

(3)

Furthermore, a statistical histogram of the bathymetric

sequence DP
0
j was generated, and Gaussian fitting was performed

using Equation 4, with the frequency plotted on the y-axis and the

water depth represented on the x-axis.

f (x) = AD � exp −
(x − m)2

2s 2

� �
(4)

Where the symbols AD, m, and s represent the Gaussian curve’s

peak amplitude, location, and standard deviation are the respective
frontiersin.org
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factors being considered. These values were accurately estimated

through the least-squares method. The final SDB result for the pixel

was the value of m, while s was used for the subsequent reliability

assessment as described in Equation 5.

Confidence =

superior,                       abs s
m

� �
< 0:1

High,                 0:1 < abs s
m

� �
< 0:2

Medium,         0:2 < abs s
m

� �
< 0:5

Low,                             abs s
m

� �
> 0:5

8>>>>>>>>><
>>>>>>>>>:

(5)
3 Materials

3.1 Study area

Two areas, indicated by solid yellow circles in Figure 2A, were

chosen for this study. The initial research location is located in the
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southeastern region of Long Island, the Bhamas, spanning latitudes

22°48’ to 23°09’ N and longitudes 74°48’ to 75°00’W. Long Island is

a part of the Bahama Islands, which is distributed over an area of

approximately 14,000 square kilometers and consists of 700 islands

and 2400 reefs (Figure 2B). The second research area is the Qilianyu

Islands within the Xisha Islands, covering latitudes 16°54’ to 17°00’

N and longitudes 112°11’ to 112°22’ E. The Xisha Islands, situated

in the South China Sea, comprise various maritime features such as

islands, reefs, and banks (Figure 2C). This group of islands is

comprised of approximately 130 coral islands and reefs, which are

primarily divided into the Dexuan Islands in the northeast and the

Yongle Islands in the west. The total area covered by this region is

estimated to be around 15,000 square kilometers, with a landmass

spanning roughly 7.75 square kilometers.
3.2 Sentinel-2 images

Standard Sentinel-2 Multispectral Instrument products,

including Level-1C and Level-2A, were captured in both study
FIGURE 2

Location of the two study areas. Yellow solid circles in sub-Figure (A) illustrated the rough location, sub-figure (B, C) illustrated the distribution of
islands and reefs around the two study areas. Green rectangles represent the two study areas, Long Island and Qilianyu Islands.
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areas. All images were selected with a cloud cover of less than 10%.

The Level-2A products are images that have undergone

atmospheric correction and are derived from the Level-1C

products (Drusch et al., 2012; Toming et al., 2016). In this

research, the conversion of All Level-1C products to Level-2A was

carried out using Sen2Cor v2.10 (Xie et al., 2024), which was made

available by the European Space Agency (ESA). The Deglint

Operator of Sen2Cor was utilized to correct for sunglint in the

visible bands by estimating and compensating for it using data from

the near-infrared (NIR) band (Hedley et al., 2005). Finally, 16

images from Long Island and the Qilianyu Islands from 2016 to

2022 were selected to composite the time-series images (Table 1).
3.3 ICESat-2 trajectories

This research employed the global geolocated photon product

(ATL03) from ICESat-2 (Song et al., 2024), which integrates

Precision Pointing Determination (PPD) and Precision Orbit

Determination (POD), and unit-converted telemetry to generate

a Level-2 dataset. This collection of data comprises ellipsoidal

heights with geolocation for every photon event tagged with a

specific time from ATLAS (Neumann et al., 2019). ATLAS utilizes

a setup consisting of three sets of laser beams, with each set

positioned at an approximate distance of 3.3 km from one

another. These pairs are further divided into sub-beams,

consisting of both strong and weak components, resulting in a

cumulative count of six distinct sets of data. Each group includes

parameters for one ATLAS ground track scanned by a laser beam

(strong or weak), designated as GT1L, GT1R, GT2L, GT2R, GT3L,

and GT3R.For this study, 15 ground tracks from four ATL03

products were acquired for Long Island, and 12 ground tracks

from seven ATL03 products were acquired for Qilianyu Islands

(Figure 3; Table 2). Ground tracks were evenly distributed across

the study area.
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3.4 Reference data

On September 27, 2017, the Shanghai Institute of Optics and

Fine Mechanics utilized the Mapper-5000’s ALB system to acquire

in-situ water depth measurements for the Qilianyu Islands (He

et al., 2018). This system attains a bathymetric RMSE precision of

0.23 m, functioning with a laser pulse repetition rate of 5 kHz and

employing a wavelength measuring 532 nm. It collected 5056

bathymetric points from raw waveform data in the southeastern

area of the Qilianyu Islands, indicated by the green points in

Figure 3B. Unfortunately, no ALB data are available for Long

Island. Instead, the performance evaluation of SDB derived from

time-series images of Long Island was conducted using bathymetric

data obtained from two ATL03 ground tracks, namely

20200313GT3R and 20210101GT1L. The ground tracks depicted

in Figure 3 illustrate the spatial distribution of these locations. a. To

evaluate the effectiveness of the proposed approach, various metrics

were employed including coefficient of determination (R²), root

mean square error (RMSE), bias, and slope analysis to compare

estimated water depths with reference values.
4 Results

4.1 Detection of signal photons and
bathymetry of ICESat-2

The selected sample area on Long Island, shown as a purple

rectangle in Figure 3A, was used to demonstrate the bathymetric

findings derived from the ATL03 datasets. Within this area, three

ground tracks intersected. Specifically, two of these ground tracks

(20200403GT2L and 20200403GT2R) were generated using

different laser beam intensities - one strong and one weak. These

acquisitions took place at 13:50 local time and exhibited some noise

interference. The third ground track (20211209GT2L), acquired at

20:38 local time, had fewer noisy photons compared to the previous

two tracks. By examining the Sentinel-2 image depicted in

Figure 4A, it is evident that all three ground tracks traverse a

coastal region with varying water depths. Significantly, a

considerable quantity of signal photons were effectively detected

throughout this procedure, encompassing those originating from

both the uppermost and lowermost layers of the ocean. It is

noteworthy that the identified photons from the ocean floor

correspond remarkably well with the underwater topography

observed in the Sentinel-2 image. It is notable that the bottom

photons could even depict the small changes of the underwater

topography, such as the peak near 23°00′10″N, which were marked

by the green rectangles in Figures 4A–C.

Table 3 presents the bathymetric results for all ATL03 ground

tracks. Due to variations in lighting conditions and the use of an

adaptive filtering algorithm, significant discrepancies exist in the

detected signal photon counts. On Long Island, the ground tracks

ranged from 6 to 9 km in length, with sea surface photons detected

between 1242 and 49273, and bottom photons ranging from 928 to

15587. The maximum water depth varied between 18.21 and
TABLE 1 Time-series images of Long Island and Qilianyu Islands.

Long Island Qilianyu Islands

ID Date ID Date ID Date ID Date

1 20160205 9 20210203 1 20190326 9 20210708

2 20170209 10 20210305 2 20190515 10 20210713

3 20171221 11 20210419 3 20191027 11 20210802

4 20180301 12 20210921 4 20210228 12 20210817

5 20181121 13 20211001 5 20210315 13 20210926

6 20190105 14 20211011 6 20210330 14 20211001

7 20190120 15 20211210 7 20210404 15 20211021

8 20201130 16 20220213 8 20210703 16 20211031
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27.47 m. The Qilianyu Islands ground tracks were shorter, spanning

2 to 5 km, with fewer detected photons. Maximum water depths

ranged from 7.44 to 23.08 m. Despite the weak laser beams having

only 25% of the energy of the strong beams, no significant

differences in bathymetric capability were observed. For instance,

the maximum depth of 20200313GT1L was 25.59 m, slightly deeper

than 20200313GT1R.
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4.2 SDB results for single image

On Long Island, a total of 109028 bathymetric points were

obtained from 13 ground tracks of the ICESat-2 ATL03 products to

perform calibration on the SDB models. The reflectances

corresponding to each bathymetric point in the Sentinel-2 images

were extracted for the four bands, namely blue, green, red, and near-

infrared. It is commonly advised to split the modeled data into two

sets - training and testing datasets - to evaluate the machine

learning models’ ability to generalize. Therefore, 70% of the

ICESat-2 bathymetric points were randomly chosen for training

purposes while the remaining points were used for testing. The

training and testing points remained the same for the Sentinel-2

images of different dates. When multiple points corresponded to the

same pixel, the mean water depth value was used for that pixel. The

41734 bathymetric points on the Qilianyu Islands were processed in

the same way as those on Long Island.

Tables 4, 5 list the detailed information on the slope, R², RMSE,

and bias for each image at Long Island and Qilianyu Islands during

the testing procedure, using ICESat-2 data and ALB data,

respectively. The results showed that SVR and RF outperformed

the two empirical models for most images. For example, for images

acquired on October 11, 2021, at Long Island, the R2 and RMSEs

were 0.87, 0.90, 0.97, and 0.99 while the RMSE were 1.37, 1.23, 0.63,

and 0.25 m for BR, LB, SVR and RF models, respectively. For the

SDB method, the bathymetric results were significantly influenced

by the quality of the Sentinel-2 images, particularly for the BR and

LB models. For instance, at Long Island, there was variation in R2

values ranging from 0.75 to 0.95 and RMSE values ranging from

0.87 m to 1.89 m for BR models.
TABLE 2 Detailed information on the ICESat-2 laser-beam ground
tracks used in this study.

Study
area

ATL03
dataset

Acquisition
time (UTC)

Ground track used

Long
Island

20200313 07:59
GT1L (weak), GT2L (weak),

GT1R, GT2R, GT3R*

20200403 18:50
GT1L (weak), GT2L (weak),

GT1R, GT2R

20210101 05:50 GT1L*, GT2L, GT3L

20211209 01:38 GT1L, GT2L, GT3L

Qilianyu
Islands

20181021 19:46 GT1L (weak), GT1R

20190117 03:31 GT1L

20190421 11:06 GT1L, GT1R (weak)

20190819 05:22 GT1L

20200418 17:45 GT3L (weak), GT3R

20210413 12:29 GT3R

20210417 00:25 GT1R, GT2R, GT3R
*Represent the reference ATL03 ground tracks used in Long Island.
FIGURE 3

ICESat-2 laser-beam ground tracks used at (A) Long Island and (B) Qilianyu Islands. The caeruleous and yellow lines represent the ground tracks of
strong laser beams, whereas the caeruleous and yellow dotted lines represent the ground tracks of weak laser beams. The red lines and the green
solid circles represent the reference ICESat-2 ground tracks and ALB points used to evaluate the accuracy of the final SDB results. The purple
rectangle in (A) corresponds to the sample area (to illustrate the details of the detection of signal photons and bathymetry of ICESat-2) in Figure 4.
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4.3 SDB results from the fusion of time-
series images

A bathymetric map of Long Island was produced from the fusion

of multi-method and time-series Sentinel-2 images, as shown in

Figure 5A The underwater topography reflected by the bathymetric

map was highly consistent with the Sentinel-2 images, showing steep

characteristics in the north and gentle characteristics in the south of

Long Island. The scatter diagrams are shown in Figures 5B, C, as well as

the profiles of the SDB results and the reference ICESat-2 depths are

shown in Figures 5D, E. The water depths extracted from the

bathymetric map were significantly correlated with the reference
Frontiers in Marine Science 08
depths of the ICESat-2 ground tracks, with R2 0.99 and RMSE<

0.68 m. On the Qilianyu Islands, a large area of shallow reefs and a

small lagoon can be observed in the bathymetric map (Figure 6A). The

underwater topography reflected by the bathymetric map is similar to

that of Long Island (steep in the north and gentle in the south). As

shown in Figure 6B, despite using the ALB data as a reference at the

Qilianyu Islands, there was a strong correlation observed between the

SDB results and the depths obtained from ALBmeasurements, with an

R2 value of 0.96 and RMSE value of 1.18 m.The validation results,

grounded in reference data from the two study areas, confirmed that

the proposed method could produce high-accuracy shallow-water

bathymetric maps.
FIGURE 4

Sampled area at Long Island in the purple rectangle in Figure 3A. The enlarged Sentinel-2 image and three ATL03 ground tracks (20200403GT2L,
20200403GT2R and 20211209GT2L) were illustrated in sub-figure (A). The sub-figure (B–D) illustrated the raw photons, detected sea-surface
photons, detected bottom photons and corrected bottom photons of these three ATL03 ground tracks, respectively.
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5 Discussion

5.1 Accuracy and reliability of ICESat-2
bathymetric points

On the Qilianyu Islands, two ATL03 ground tracks,

20190117GT1L and 20180819GT1L (Figure 7A) overlap with the

point cloud of ALB data. Thus, the corrected bottom photons of the

two ATL03 ground tracks were evaluated by the ALB data. The

bathymetric profiles of ALB are shown in Figures 7B, C are acquired

by sampling the raw point cloud based on the coordinates of the
Frontiers in Marine Science 09
bottom photons. Results reveal that the underwater topography

reflected by the corrected bottom photons is highly consistent with

the ALB bathymetric profiles. As shown in Figures 8A, B, after

correcting the refraction effect, the RMSE between the bottom

photons and the ALB data were 0.65 and 0.39 m, as well as the

bias, reduced significantly to 0.20 and 0.01 m for 20190117GT1L

and 20180819GT1L, which were consistent with previous research.

the bathymetric precision of the ICESat-2 data exhibited a slight

deviation compared to conventional methods, it is justifiable to

utilize it as an on-site measurement for the purpose of calibrating or

validating the effectiveness of SDB models (Song et al., 2024; Liu
TABLE 3 The number of detected signal photons, minimum and maximum bathymetric results for 15 ground tracks used at Long Island and 12
ground tracks used at Qilianyu Islands.

Study area Ground Track
Number of detected

sea-surface
photons

Number of detected
bottom photons

Water depth (m)

Min max

Long Island

20200313GT1L(weak) 4746 3635 0.87 25.59

20200313GT1R 23782 15597 1.00 22.76

20200313GT2L(weak) 6716 3169 0.66 18.21

20200313GT2R 25890 10348 0.53 19.06

20200313GT3R* 23724 12290 2.33 25.88

20200403GT1L(weak) 3008 2607 0.51 22.08

20200403GT1R 20481 10814 1.24 22.76

20200403GT2L(weak) 4349 3774 0.67 21.71

20200403GT2R 16188 12937 0.30 20.83

20210101GT1L* 10293 15887 0.23 21.42

20210101GT2L 2418 4236 0.31 27.47

20210101GT3L 1242 928 0.22 24.11

20211209GT1L 49273 13278 1.15 21.99

20211209GT2L 31129 14034 1.25 24.24

20211209GT3L 34231 13671 0.98 23.72

Qilianyu Islands

20181021GT1L(weak) 1972 1964 0.32 8.71

20181021GT1R 7981 8185 0.32 14.97

20190117GT1L 2294 2246 0.30 9.84

20190421GT1L 7227 4320 0.80 11.51

20190421GT1R(weak) 1719 890 0.84 15.19

20190819GT1L 1577 1382 0.40 15.72

20200418GT3L(weak) 2122 2288 0.58 7.44

20200418GT3R 9113 9085 0.63 12.81

20210413GT3R 7110 857 2.23 23.08

20210417GT1R 2784 1082 0.40 15.78

20210417GT2R 4825 3495 0.41 19.76

20210417GT3R 9305 5940 0.35 17.12
*Represent the reference ATL03 ground tracks used in Long Island.
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TABLE 4 SDB models testing based on the 30% ICESat-2 bathymetric points at Long Island.

Date/Methods
BR LB SVR RF

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

20160205 0.86 1.33 0.98 0.58 0.99 0.44 0.99 0.31

20170209 0.87 1.39 0.98 0.32 0.99 0.38 0.99 0.24

20171221 0.93 0.99 0.96 0.74 0.95 0.83 0.96 0.66

20180301 0.84 1.52 0.95 0.81 0.95 0.85 0.99 0.29

20181121 0.95 0.79 0.95 0.79 0.97 0.63 0.99 0.24

20190105 0.95 0.87 0.97 0.61 0.98 0.52 0.99 0.21

20190120 0.88 1.34 0.90 1.23 0.91 1.12 0.95 0.73

20201130 0.85 1.49 0.86 1.42 0.89 1.28 0.94 0.94

20210203 0.82 1.61 0.84 1.52 0.97 0.61 0.98 0.41

20210305 0.94 0.92 0.95 0.83 0.99 0.45 0.99 0.25

20210419 0.75 1.89 0.92 1.06 0.98 0.60 0.98 0.39

20210921 0.76 1.86 0.86 1.42 0.95 0.79 0.97 0.52

20211001 0.92 1.07 0.97 0.68 0.98 0.51 0.99 0.20

20211011 0.87 1.37 0.90 1.23 0.97 0.63 0.99 0.25

20211210 0.76 1.85 0.86 1.45 0.92 1.09 0.96 0.63

20220213 0.79 1.76 0.83 1.57 0.94 0.90 0.97 0.44
F
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TABLE 5 SDB models testing based on the 30% ICESat-2 bathymetric points at Qilianyu Islands.

Date/Methods
BR LB SVR RF

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

20190326 0.88 1.51 0.88 1.48 0.92 1.23 0.96 0.84

20190515 0.81 1.88 0.84 1.72 0.90 1.59 0.95 0.95

20191027 0.92 1.22 0.92 1.25 0.94 1.12 0.95 0.98

20210228 0.93 1.18 0.90 1.35 0.90 1.32 0.97 0.79

20210315 0.76 2.13 0.76 2.14 0.83 1.88 0.85 1.72

20210330 0.88 1.48 0.87 1.55 0.92 1.32 0.95 1.02

20210404 0.88 1.51 0.88 1.48 0.90 0.89 0.92 0.40

20210703 0.83 1.78 0.88 1.50 0.92 1.34 0.96 0.85

20210708 0.76 2.12 0.81 1.90 0.83 1.85 0.89 1.42

20210713 0.85 1.68 0.89 1.44 0.89 1.42 0.94 1.06

20210802 0.85 1.65 0.89 1.40 0.92 1.17 0.96 0.86

20210817 0.85 1.71 0.90 1.41 0.91 1.23 0.95 0.96

20210926 0.77 2.08 0.84 1.73 0.86 1.60 0.90 1.36

20211001 0.79 1.99 0.81 1.91 0.83 1.76 0.90 1.41

20211021 0.91 1.31 0.94 1.03 0.95 0.91 0.98 0.69

20211031 0.88 1.53 0.90 1.35 0.89 1.46 0.96 0.87
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et al., 2024). Additionally, the precision of ICESat-2’s bathymetry

relies on various factors such as filtering techniques, fraction

correction methods, and tidal correction algorithms. As a result,

through the optimization of the algorithms mentioned above,

additional improvements can be achieved to boost the precision

of bathymetric data from ICESat-2.
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The reliability of ICESat-2 bathymetric data is considered as a

fundamental prerequisite for incorporating it into SDB models. The

bathymetric accuracy of traditional approaches, such as single/

multibeam sounding systems and ALB systems, is usually better

than 0.3m of RMSE (Cao et al., 2023). Multiple studies have assessed

the accuracy of ICESat-2 data and found that the bathymetric
FIGURE 5

(A) Shallow-water bathymetric map derived from the fusion of the SDB results at Long Island. Relationship between the SDB results and the reference
depths of ICESat-2 ground tracks (B) 20200313GT3R and (C) 20210101GT1L, respectively. The red dashed line is the regression line and the black
dashed line corresponds to the regression line. Profiles of the ICESat-2 depths and SDB results of ICESat-2 ground tracks (D) 20200313GT3R and
(F) 20210101GT1L, respectively.
FIGURE 6

(A) Shallow-water bathymetric map derived from the fusion of the SDB results at Qilianyu Island and (B) the relationship between the SDB depths
and the reference ALB data. The red dashed line is the regression line and the black dashed line corresponds to the regression line.
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precision exceeds an RMSE of 0.6 m (Parrish et al., 2019; Ma et al.,

2020). However, related studies need to be conducted more widely,

such as in areas of variable lighting environments, optically complex

water, and precipitous underwater topography.
5.2 Consistency analysis of the SDB
methods and the time-series images

In the two study areas, the images with the highest and lowest

average bathymetric accuracies (from the R2 and RMSE of the
Frontiers in Marine Science 12
calibration models) of the four SDB methods were selected to

investigate the spatial consistency of the SDB methods (Figures 9, 10).

For instance, images acquired on 05/01/2019 (highest average accuracy)

and 10/12/2021 (lowest average accuracy) on Long Island were selected,

and the bathymetric outcomes obtained from a particular technique

were contrasted with the average values derived from all four SDB

techniques. Figure 9A illustrates the disparity between the bathymetric

findings of the BR model and the collective mean of all four models.

Moreover, the R2, RMSE, and Bias in Figure 9A represent the

correlation between the bathymetric results of the BR model and the

means of all four models. High correlations were observed between the
FIGURE 7

Comparison between the ICESat-2 ground tracks and the ALB data in Qilianyu Islands. The enlarged Sentinel-2 image and two ATL03 ground tracks
(20190117GT1L and 20190819GT1L) were illustrated in sub-figure (A). Sub-figures (B, C) illustrated the raw photons, detected sea-surface photons,
detected bottom photons, and corrected bottom photons of the ATL03 ground tracks, respectively. The green lines represent the bathymetric
profiles resampled from the ALB points cloud.
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FIGURE 8

Comparison of the water depth between the ICESat-2 ground tracks and the ALB data in the Qilianyu Islands. Relationships of Water depth between
the bottom photons before and after refraction correction and the ALB data was illustrated in sub-figures (A, B).
FIGURE 9

Difference of spatial distribution between the bathymetric map of single SDB method and mean of the four SDB methods at Long Island. (A) BR
model, (B) LB model, (C) SVR model, and (D) RF model for Sentinel-2 image acquired on January 5, 2019, and (E) BR model, (F) LB model, (G) SVR
model and (H) RF model for Sentinel-2 image acquired on December 1, 2021. The red, green and violet rectangles illustrated the area with
significant differences in bathymetric results.
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single SDB method and the mean of the four SDB methods. For the

image acquired on 05/01/2019 (Figures 9A–D) and 10/12/2021

(Figures 9E–H), the R2 of the four-method spatial difference

distributions were ranging from 0.96 to 0.99 and 0.91 to 0.95, as well

as the RMSE were ranging from 0.68 to 1.17m and 1.06 to 1.52 m,

respectively. The bathymetric differences are primarily distributed in

three areas: (1) deep-water areas east and west of Long Island (red

rectangles in Figure 9), (2) an extremely shallow area north of Long

Island (green rectangles in Figure 9), and (3) an area covered by thick

clouds (violet rectangles in Figure 9). Moreover, the bathymetric

differences for the specific SDB method seem stable; for example, a

similar distribution of differences for the BR model in images acquired

on 05/01/2019 and 10/12/2021.

Similar patterns were observed on Qilianyu Island. For the image

acquired on 21/10/2021 (Figures 10A–D) and 15/03/2021

(Figures 10E–H), The R2 values for the spatial difference

distributions using four different methods ranged from 0.94 to 0.99

and 0.93 to 0.98, while the RMSE values varied between 1.27 and

1.57 m and between 0.64 and 1.22 m, respectively. The bathymetric

differences on Qilianyu Island were mainly distributed in the deep-

water areas around the reef flat. However, the bathymetric differences

for the SDB method were less stable than those that appeared on Long

Island, for example, the significant differences south of Qilianyu Island

for the BR and RF models.

Previous studies have demonstrated that the uncertainty in

bathymetric results generated by different SDB methods is mainly

distributed in extremely shallow (depth< 2 m) and deep areas

(depth>10 m) (Caballero and Stumpf, 2020; Hsu et al., 2021; Zhang

X. et al., 2022). This uncertainty was also observed in Figures 9, 10 in

this study, with the maximum bias reaching 0.50 m and 0.67m at Long

Island and Qilianyu Island when using RF models. It is impractical and

infeasible for a single method to produce optimal bathymetric results in
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all situations (Dekker et al., 2011). One method to reduce bathymetric

uncertainty is to fuse the results of different SDB methods to produce

optimized bathymetric results, similar to the method proposed in this

study (Daly et al., 2022).

The spatial consistency of the time-series images was also

investigated by comparing the single-date bathymetric results (RF

model) with the mean results. Specifically, Figures 11A–P represent

the spatial difference between the bathymetric result of the image

acquired from 05/02/2016 to 13/02/2022 and the mean of all the dates

on Long Island. The R2 of the multi-date spatial difference distributions

ranged from 0.74 to 0.96, as well as the RMSE ranged from 1.12 to

2.86 m, respectively. Similarly, for the Qilianyu Islands, the R2 values of

the multi-date spatial difference distributions ranged from 0.81 to 0.96,

as well as the RMSE ranged from 1.19 to 2.50 m (Figure 12).

While it was expected that there would be temporal variations

in the underwater topography due to gaps in the data, significant

correlations were found between the bathymetric findings from

images captured on different dates in both study regions. However,

this consistency seems to be slightly lower than that between

different SDB methods. Therefore, the main factor influencing

bathymetric accuracy is the quality of the selected image, which is

related to the radiation performance of the sensors, atmospheric

conditions during image acquisition, inherent optical properties of

the water column, and sediment type of the seafloor (Hedley et al.,

2018; Caballero and Stumpf, 2019; Lumban-Gaol et al., 2022).
5.3 Reliability evaluation of the fusion
bathymetric results

One additional benefit of the suggested approach is its capability

to assess the precision of SDB accuracy for individual pixels using a
frontiersin.o
FIGURE 10

Difference of spatial distribution between the bathymetric map of a single SDB method and the mean of the four SDB methods at Qilianyu Island.
(A) BR model, (B) LB model, (C) SVR model and (D) RF model for Sentinel-2 image acquired on October 21, 2021, and (E) BR model, (F) LB model,
(G) SVR model and (H) RF model for Sentinel-2 image acquired on March 15, 2021.
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series of images over time. The fusion result for bathymetry was

illustrated in Figure 13A. Figure 13B represents the standard

deviation s of the processed bathymetric sequence DP’j for each

pixel at Long Island, and Figure 13C represents the confidence level
Frontiers in Marine Science 15
produced by the fusion depth m and the standard deviation s.
Although the number of remaining values in the processed

bathymetric sequence DP’j was different for the pixels, the

standard deviation gradually increased with increasing water
FIGURE 11

Difference of spatial distribution between the bathymetric map (RF) of a single date and the mean of all the dates at Long Island. Sub-figures (A–P)
represent the difference between the bathymetric map (RF) acquired on 20160205 to 20220213 and the mean of all the dates at Long Island.
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depth, which was consistent with our previous analysis. As shown in

Figure 13C, the confidence levels of the fusion bathymetric results

were almost “low” in the extremely shallow area on the north of

Long Island. However, the confidence levels were “medium” to

“superior” at the gentle slope area on the south of Long Island, and

large areas with the confidence level of “superior” were observed

when the water depth varied between around 8 and 12 meters. To

illustrate the details of the confidence evaluation results for

individual pixels, a straight line from east to west was selected,

and the distribution of the processed bathymetric sequence DP’j for

the five pixels on the line is illustrated in Figures 13D–H. As the

water depth increased, the light reflected by the seafloor was

weakened by the water column, leading to increased absolute

error in the SDB results for different images and models.

Therefore, significant outliers must be removed when fusing the

SDB results of time-series images (Ma et al., 2020; Zhang X.

et al., 2022).

There is a large reef flat of extremely shallow water at the

Qilianyu Islands, resulting in the confidence level of “low” and
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“medium” for most of this region (Figure 14). To illustrate the

details of the confidence evaluation results for individual pixels, a

straight line from north to south was selected, and the distribution

of the processed bathymetric sequence for the four pixels on the line

is illustrated in Figures 14D, G. Compared to the Long Island,

another significant difference at the Qilianyu Islands was that there

are only a few small regions located in the central have the

confidence level of “superior,” which may be due to the complex

underwater terrain and faster water-depth decline in the Qilianyu

Islands, as well as the large amount of cloud coverage in the central

and southern regions of Qilianyu Island for time-series images.
5.4 Comparison of bathymetric results in
two study areas

In this study, the key parameters that represent bathymetric

accuracy (R2 and RMSE between the SDB results and the reference

water depths) at Long Island were slightly better than those at the
FIGURE 12

Difference of spatial distribution between the bathymetric map (RF) of a single date and the mean of all the dates at Qilianyu Island. Sub-figures (A–
P) represent the difference between the bathymetric map (RF) acquired on 20190326 to 20211031 and the mean of all the dates at Long Island.
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Qilianyu Islands. The possible explanations for this can be outlined as

follows. (1) The bathymetric points used to calibrate the SDB models

on Long Island were significantly higher than those on the Qilianyu

Islands and the distribution of these points was more even (Thomas

et al., 2021). (2) The bathymetric points on Long Island from ICESat-2
Frontiers in Marine Science 17
were utilized as calibration data, while the ALB points served as

reference data for the Qilianyu Islands. Although reference data from

two different sensors have been confirmed to exhibit credible

bathymetric accuracy, their variations should not be ignored (Babbel

et al., 2021). (3) The image quality of Long Island was better than that
FIGURE 13

The water depth (A), standard deviation s (B) and the confidence level (C) maps for each pixel at Long Island, as well as the distribution of s and the
produced confidence level at (D) points X1, (E) points X2, (F) points X3, (G) points X4, and (H) points X5 with different water depths.
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of Qilianyu Island, especially for the cloud cover of the images. (4)

There is a large area of medium water depth (2–15 m) on Long Island,

as well as a large reef flat of extremely shallow water (<2 m) on the

Qilianyu Islands, and previous research has demonstrated the relatively

low bathymetric accuracy of SDB models in extremely shallow and

deep water (Caballero and Stumpf, 2020; Le et al., 2022).
6 Conclusion

In this study, a new approach for accurately and reliably

measuring shallow water depths was proposed. This method

involved evaluating the reliability of bathymetric data using

Sentinel-2 time-series images and ICESat-2 data. To generate

precise results, we utilized depth samples obtained from ICESat-2

ATL03 products to construct four SDB models. These models were

then applied to long-term Sentinel-2 multispectral images in order to

derive the final bathymetric information. Furthermore, based on the

SDB results of the pixel and its 3×3 neighborhoods, a bathymetric
Frontiers in Marine Science 18
sequence was built for each pixel, and outliers in the sequence were

removed using a 3-times standard deviation method. Finally, the

water depth and reliability of each pixel were evaluated using a

Gaussian fit model based on the processed bathymetric sequence. To

verify the precision of this approach, a comparison was made

between the SDB results and the reference ICESat-2 as well as in-

situ ALB data. The experimental findings have indicated that at Long

Island, the proposed method achieved a bathymetric accuracy with

an R2 value of 0.99 and an RMSE below 0.68 m. Similarly, at Qilianyu

Islands, the method demonstrated an R2 value of 0.96 and an RMSE

of 1.18 m. Compared with the traditional method using a single

temporal image, the bathymetric accuracy was significantly

improved. The reliability assessment results further demonstrated

that the uncertainty of SDB was mainly distributed in areas with both

shallow and deep depths. Future efforts should be made to improve

the accuracy of fusion results from the following aspects: adding high-

quality images from other sources, integrating more SDB methods,

and optimizing various details of the fusion process, such as the

selection of the pixel neighborhood and fitting model.
FIGURE 14

The water depth (A), standard deviation s (B) and the confidence level (C) maps for each pixel at Qilianyu Islands, as well as the distribution of s and
the produced confidence level at (D) points X1, (E) points X2, (F) points X3, and (G) points X4 with different water depths.
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